Percentage Yield Calculations

The yield in a chemical reaction is the quantity of product obtained. The actual yield can be compared, as a percentage, with the theoretical.

Worked Example 1

5 g of methanol reacts with excess ethanoic acid to produce 9.6 g of methyl ethanoate. Calculate the percentage yield.

Step 1: determine the theoretical yield (the quantity expected from the balanced equation)

Step 2: The actual yield is always given in the question.

$$
\text { Actual yield }=\mathbf{9 . 6 g}
$$

Step 3: \quad Percentage yield $=\frac{9.6}{11.56} \times 100$
$=83 \%$

The percentage yield is a very important consideration for industrial chemists. They must take account of cost of raw materials, plant-running costs etc. If the yield of product is not sufficient enough to cover the costs of production then the process would not be considered to be economically viable.

Atom Economy

Atom economy is a measure of the proportion of reactant atoms which are incorporated into the desired product of a chemical reaction.

Calculation of atom economy therefore also gives an indication of the proportion of reactant atoms forming waste products.

$$
\% \text { atom economy }=\frac{\text { Mass of desired product(s) }}{\text { Total mass of reactants }} \times 100
$$

In developing an atom economical reaction pathway the industrial chemist may well prefer rearrangement and addition reactions over less environmental friendly substitution and elimination reactions.

Example 1: Addition reaction - halogenation of an alkene

(Z)-but-2-ene	Bromine	2,3-dibromobutane
$\mathrm{C}_{4} \mathrm{H}_{8}$	Br_{2}	$\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{Br}_{2}$
1 mol	1 mol	1 mol
$(12 \times 4)+(8 \times 1)$	2×79.9	$(12 \times 4)+(8 \times 1)+(79.9 \times 2)$
$=56 \mathrm{~g}$	$=159.8 \mathrm{~g}$	$=215.8 \mathrm{~g}$

Total mass of reactants $=56 \mathrm{~g}+159.8 \mathrm{~g}=215.8 \mathrm{~g}$
(Note: Product mass is also 215.8 g)
Mass of desired product (2,3-dibromobutane) $=215.8 \mathrm{~g}$

$$
\% \text { atom economy }=\frac{\text { Mass of desired product(s) }}{\text { Total mass of reactants }} \quad \times 100
$$

$$
\% \text { atom economy }=\frac{215.8}{215.8} \times 100=100 \%
$$

This process is 100% atom efficient, with all the reactant atoms included within the desired product.

Example 2: Elimination reaction

2

$+$

$$
\mathrm{Ca}(\mathrm{OH})_{2}
$$

2-chloroethanol
Calcium hydroxide
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OCl}$
2 mol
$2[(12 \times 2)+(5 \times 1)+16+35.5]$
$=161 \mathrm{~g}$
$\mathrm{Ca}(\mathrm{OH})_{2}$
1 mol
$40+2(16+1)$
$=74 \mathrm{~g}$

Desired Product

2 ethylene oxide $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$ 2 mol $\begin{aligned} & 2[(12 \times 2)+(4 \times 1)+16] \\ & =88 \mathrm{~g} \end{aligned}$

Waste Products

CaCl_{2}	+	$2 \mathrm{H}_{2} \mathrm{O}$
Calcium chloride		Water
CaCl_{2}	$\mathrm{H}_{2} \mathrm{O}$	
1 mol	2 mol	
$40+(2 \times 35.5)$	$2[(2 \times 1)+16]$	
$=111 \mathrm{~g}$	$=36 \mathrm{~g}$	

Total mass of reactants $=161 \mathrm{~g}+74 \mathrm{~g}=235 \mathrm{~g}$
(Note: Total product mass $=235 \mathrm{~g}$)
Mass of desired product ethylene oxide $=88 \mathrm{~g}$

$$
\% \text { atom economy }=\frac{\text { Mass of desired product(s) }}{\text { Total mass of reactants }} \times 100
$$

$$
\% \text { atom economy }=\frac{88}{235} \times 100=37.4 \%
$$

This elimination reaction is therefore only 37.4% atom efficient, with the remaining 62.6% in the form of unwanted waste products (calcium chloride and water).

