ࡱ> <>9:; 8bjbjVV a<<Lz& )))8a!,)lI&'''(FAFAFAkkkkkkkojrkFA4@FAFAFAk'(/l*OOOFAL'(kOFAkOOqhvj ( "kY)Db=ikl<lWi&sF0&s4j&sjFAFAOFAFAFAFAFAkk$KlFAFAFAlFAFAFAFA&sFAFAFAFAFAFAFAFAFA : Topic 4. Orthogonal contrasts [ST&D p. 183] ANOVA is a useful and powerful tool to compare several treatment means. In comparing t treatments, the null hypothesis tested is that the t true means are all equal (H0: 1 = 2 = ... = t). If the F test is significant, one accepts the alternative hypothesis, which merely states that they are not all equal (i.e. at least one mean is different). Since the test does not tell you which mean(s) is/are different, the information provided by this initial F test is limited. Further comparisons to determine which specific treatment means are different can be carried out by further partitioning the treatment sum of squares (SST) to provide additional F tests to answer planned questions. The orthogonal contrast approach to mean separation is described as planned F tests. These tests are planned in the sense that the questions of interest are decided upon before looking at the data. In fact, the questions of interest dictate the treatment structure from the very beginning of the experiment. With planned tests, therefore, there is a priori knowledge, based either on biological considerations or on the results of preliminary investigations, as to which comparisons are most important to make. Said another way, if the investigator has specific questions to be answered, treatments are chosen (i.e. a treatment structure is designed) to provide information and statistical tests to answer those specific questions. An experienced investigator will select treatments so that the treatment sum of squares (SST) can be partitioned perfectly to answer as many independent (i.e. orthogonal) questions as there are degrees of freedom for treatments in the ANOVA. Consequently, another name of these tests is single degree of freedom tests. 4. 1. Definitions of contrast and orthogonality [ST&D p. 183] "Contrast" is mathematical jargon for a linear combination of terms (a polynomial) whose coefficients sum to zero. In ANOVA, "contrast" assumes a more limited definition: A contrast (Q) is a linear combination of two or more factor level means whose coefficients sum to zero:  EMBED Equation.2 , with the constraint that  EMBED Equation.2  As an example, consider a comparison of two means, the simplest contrast:  EMBED Equation.2  This is the same as  EMBED Equation.2 , where  EMBED Equation.2 ,  EMBED Equation.2 , and  EMBED Equation.2  It is essential that the sum of the coefficients for each comparison is zero. The terms are the treatment means (it can also be the treatment sums), and m ( t, is the number of treatments being compared. For convenience, the cis are usually integers. A contrast always has a single degree of freedom. Orthogonal: Now consider two contrasts Suppose  EMBED Equation.2 . These two contrasts are said to be orthogonal to one another if the sum of the products of any pair of corresponding coefficients is zero.  EMBED Equation.2  So, orthogonality is a property of a set of two contrasts. A set of more than two contrasts is said to be orthogonal only if each and every pair within the set exhibits pair-wise orthogonality, as defined above. To declare a set of four contrasts (Q1 Q4) to be orthogonal, therefore, one must show that each of the six possible pairs are orthogonal: (Q1 and Q2, Q1 and Q3, Q1 and Q4, Q2 and Q3, Q2 and Q4, Q3 and Q4). Why do we care? Remember in our discussion of CRDs that the total SS could be perfectly partitioned into two parts: The treatment SS and the error SS: TSS = SST + SSE This perfect partitioning is possible due to the fact that, mathematically, SST and SSE are orthogonal to one another. In an analogous way, orthogonal contrasts allow us to partition SST (i.e. decompose the relatively uninformative H0 of the ANOVA) into a maximum of (t - 1) meaningful and targeted comparisons involving different combinations of means. Suppose a set of (t 1) contrasts is orthogonal. If the SS for each contrast are added together, their sum will exactly equal the SST for the original experiment. This means that an experiment can be partitioned into (t  1) separate, independent experiments, one for each contrast. Example Suppose we are testing three treatments, T1, T2 and T3 (control) with treatment means m1, m2, and m3 (two d.f.). The null hypothesis for the ANOVA is H0: (1 = (2 = (3 which uses both degrees of freedom in one test (dft= t-1 = 2). Since there are two degrees of freedom for treatments, there are in principle two independent comparisons that can be made. For example, one could in principle test the two hypotheses that (1 and (2 are not significantly different from the control: (1 = (3 and (2 = (3. As usual, we represent the means (i with their estimates  EMBED Equation.2  1.- (1 = (3 can be rewritten as 1(1 + 0(2 -1(3= 0 the coefficients of this contrast are: c1 = 1, c2 = 0, c3 = -1 2.- (2 = (3 can be rewritten as 0(1 + 1(2 -1(3= 0 the coefficients of this contrast are: d1 = 0, d2 = 1, d3= -1 These linear combinations of means are contrast because  EMBED Equation.2  (1 + 0 + (-1) = 0); and  EMBED Equation.2  (0 + 1 + (-1) = 0). However these contrasts are not orthogonal because:  EMBED Equation.2  (c1d1 + c2d2+ c3d3 = 0 + 0 + 1 = 1). So, not every pair of hypotheses can be tested using this approach. In addition to summing to 0, the ci coefficients are almost always taken to be integers, a constraint which severely restricts their possible values. For t = 3 such a set of values are 1) c1 = 1, c2 = 1, c3 = -2; 2) d1 = 1, d2 = -1, d3 = 0. These are contrasts since (1 + 1 + (-2) = 0 and 1+ (-1) + 0= 0) and are orthogonal because (c1d1 + c2d2+ c3d3 = 1 + (-1) + 0 = 0). Just as not all sets of hypotheses can be asked using orthogonal contrasts, not all sets of orthogonal contrasts correspond to meaningful (or interesting) hypotheses. In this example, the contrasts are, in fact, interesting. The hypotheses they define are: 1) The average of the two treatments is equal to the control (i.e. is there a significant average treatment effect?); and 2) The two treatments are equal to one another (i.e. is one treatment significantly different from the other?). There are two general kinds of linear combinations: Class comparisons Trend comparisons. 4. 2. Class comparisons The first category of hypothesis we can pose using orthogonal contrasts is class (or group) comparisons. Such contrasts compare specific treatment means or combinations of treatment means, grouped is some meaningful way. The procedure is illustrated by an example on page 185 of ST&D, which involves the mint data discussed in Topic 3. To illustrate orthogonal contrasts in class comparisons we will use the data given in Table 4.1. The analysis of variance for this experiment is given in Tables 4.2. Table 4.1. Results (mg shoot dry weight) of an experiment (CRD) to determine the effect of seed treatment by ( acids on the early growth of rice seedlings. TotalMeanTreatmentReplications  EMBED Equation.2   EMBED Equation.2  Control 4.23 4.38 4.1o 3.99 4.25 20.95 4.19HC13.853.783.913.943.8619.343.87Propionic3.753.653.823.693.7318.643.73Butyric3.663.673.623.543.7118.203.64Overall  EMBED Equation.2  = 77.13  EMBED Equation.2  = 3.86 Table 4.2. ANOVA of data in Table 4.1 (t = 4, r = 5) Source of Variation dfSum of SquaresMean Squares FTotal191.0113Treatment 30.87380.291233.87Error160.13760.0086 The treatment structure of this experiment suggests that the investigator had several specific questions in mind from the beginning: 1) Do acid treatments affect seedling growth? 2) Is the effect of =organic acids different from that of inorganic acids? 3) Is there a difference in the effects of the two different organic acids? These are planned questions and so are appropriate candidates for posing via orthogonal contrasts. To do this, we must restate these questions mathematically, as linear combinations of treatments. In the following table (Table 4.3), coefficients are shown that translate these three planned questions into contrasts. Table 4.3. Orthogonal coefficients for partitioning the SST of Table 4.2. into 3 independent tests. ControlHC1PropionicButyricControl vs. acid+3111Inorganic vs. organic 02+1+1Between organics 0 0+1-1Totals20.9519.3418.6418.2ComparisonsMeans4.193.873.733.64 The 1st contrast (first row) compares the control group to the average of the three acid-treated groups, as can be seen from the following manipulations: 3Cont - 1HCl - 1Prop - 1But = 0 Cont = (1/3)*(1HCl + 1Prop + 1But) Mean of the control group = Mean of all acid-treated groups The H0 for this 1st contrast is that there is no average effect of acid treatment on seedling growth. Since this Ho involves only two group means, it costs 1 df. The 2nd contrast (second row) compares the inorganic acid group to the average of the two organic acid groups: 0Cont + 2HCl - 1Prop - 1But = 0 HCl = (1/2)*(1Prop + 1But) Mean of the HCl group = Mean of all organic acid-treated groups The H0 for this second contrast is that the effect of the inorganic acid treatment on seedling growth is no different from the average effect of organic acid treatment. Since this null hypothesis involves only two group means ((means than before), it also costs 1 df. Finally, the third contrast (third row of coefficients) compares the two organic acid groups to each other: 0Cont + 0HCl + 1Prop - 1But = 0 1Prop = 1But The H0 for this third contrast is that the effect of the propionic acid treatment on seedling growth is no different from the effect of butyric acid treatment. Since this null hypothesis involves only two group means (different means than before), it also costs 1 df. At this point, we have spent all our available degrees of freedom (dftrt = t 1 = 4 1 = 3). Because each of these questions are contrasts (each row of coefficients sums to zero) and because the set of three questions is orthogonal (verify this for yourself), these three question perfectly partition SST into three components, each with 1 df. The SS associated with each of these contrasts serve as the numerators for three separate F tests, one for each comparison. The critical F values for these single df tests are based on 1 df in the numerator and dfError in the denominator. All of this can be seen in the expanded ANOVA table below. Table 4.4 Orthogonal partitioning of SST via contrasts. SourcedfSSMSFTotal191.0113Treatment30.87380.291233.87 1. Control vs. acid 1 0.7415 0.7415 86.22 2. Inorg. vs. Org. 1 0.1129 0.1129 13.13 3. Between Org. 1 0.0194 0.0194 2.26Error160.13760.0086 Notice that SST = SSContrast1 + SSContrast2 + SSContrast3. This perfect partitioning of SST among its degrees of freedom is a direct consequence of the orthogonality of the posed contrasts. When comparisons are not orthogonal, the SS for one comparison may contain (or be contained by) part of the SS of another comparison. Therefore, the conclusion from one test may be influenced (or contaminated) by another test and the SS of those individual comparisons will not sum to SST. Computation: The computation of the sum of squares for a single degree of freedom F test for linear combinations of treatment means is  EMBED Equation.2  This expression simplifies to  EMBED Equation.2  in balanced designs (all r's equal) SS1 (control vs. acid) = [3(4.19) 3.64 3.73 3.87]2 / [(12)/5] = 0.74 SS2 (inorg. vs. org.) = [3.64 + 3.73 2(3.87)]2 / [(6)/5] = 0.11 SS3 (between org.) = [-3.64 + 3.73]2 / [(2)/5] = 0.02 Note: ST&D formulas for contrasts (p. 184) are for treatment totals instead of treatment means. The treatments means formula is required for unbalanced designs. From this analysis, we conclude that in this experiment acids significantly reduce seedling growth (F = 86.22, p < 0.01), that the organic acids cause significantly more reduction than the inorganic acid (F = 13.13, p < 0.01), and that the difference between the organic acids is not significant (F = 2.26, p > 0.05). Construction of coefficients for class comparisons (Little & Hills p 66). Contrast coefficients for a class comparison can always be determined by writing the null hypothesis in mathematical form, moving all terms to the same side of the equation, and multiplying by whatever factor is needed to turn the coefficients into integers. This is a general strategy. What follows are more recipe-like, step-by-step operations to arrive at the same results: When the two groups of means being compared each contain the same number of treatments assign +1 to the members of one group and -1 to the members of the other. Thus for line 3 in Table 4.3, we are comparing two means, and assign coefficients of 1 (of opposite sign) to each. The same procedure extends to the case of more than one treatment per group. When comparing groups containing different numbers of treatments, assign to the first group coefficients equal to the number of treatments in the second group; to the second group, assign coefficients of opposite sign, equal to the number of treatments in the first group. Thus, if among 5 treatments, the first two are to be compared to the last three, the coefficients would be +3, +3, -2, -2, -2. In Table 4.3, where the control mean is compared with the mean of the three acids, we assign a 3 to the control and a 1 to each of the three acids. Opposite signs are then assigned to the two groups. It is immaterial as to which group gets the positive or negative sign since it is the sum of squares of the comparison that is used in the F-test. The coefficients for any comparison should be reduced to the smallest possible integers for each calculation. Thus, +4, +4, -2, -2, -2, -2, should be reduced to +2, +2, -1, -1, -1, -1. The coefficients for an interaction comparison are determined by simply multiplying the corresponding coefficients of the two underlying main comparisons. See next example (Table 4.5). Example: Fertilizer experiment designed as a CRD with four treatments. The four treatments result from all possible combinations of two levels of both nitrogen (N0 = 0 N, N1 = 100 lbs N/ac) and phosphorus (P0 = 0 P, P1 = 20 lbs P/ac). The questions intended by this treatment structure are: 1. Is there an effect of N on yield? 2. Is there an effect of P on yield? 3. Is there an interaction between N and P on yield? Equivalent ways of stating the interaction question: a) Is the effect of N the same in the presence of P as it is in the absence of P? b) Is the effect of P the same in the presence of N as it is in the absence of N?) The following table (Table 4.5) presents the contrast coefficients for these planned questions. Table 4.5. Fertilizer experiment with 4 treatments, 2 levels of N and 2 of P. N0P0N0P1N1P0N1P1Between N11 1 1Between P1 11 1Interaction (NxP) 111 1The coefficients for the 1st two comparisons are derived by rule 1. The interaction coefficients are the result of multiplying the coefficients of the first two lines. Note that the sum of the coefficients of each comparison is 0 and that the sum of the cross products of any two comparisons is also 0. When these 2 conditions are met, the comparisons are said to be orthogonal. This implies that the conclusion drawn for one comparison is independent of (not influenced by) the others. 4. 3. Trend comparisons Experiments are often designed to characterize the effect of increasing levels of a factor (e.g. increments of a fertilizer, planting dates, doses of a chemical, concentrations of a feed additive, etc.) on some response variable (e.g. yield, disease severity, growth, etc.). In these situations, the experimenter is interested in the dose response relationship. Such an analysis is concerned with overall trends and not with pairwise comparisons. The simplest example involves a single factor with three levels. This is very common situation in genetic experiments, where the levels are: 0 dose of allele A in homozygous BB individuals 1 dose of allele A in heterozygous AB individuals 2 doses of allele A in homozygous AA individuals. With the use of molecular markers it is now easy to score the genotype of the individuals of a segregating population and classify them into one of these three groups (AA, AB, BB). These individuals are also phenotyped for the trait of interest. Suppose 40 segregating F2 individuals genotyped for a certain molecular known to be linked to a gene affecting N translocation to the grain. The Nitrogen content of the seed is measured in the same 40 individuals. Table 4.6. Genetic example of orthogonal contrasts. Nitrogen content (mg) of seeds of three different genotypes. Genotype (BB)Genotype (AB)Genotype (AA)0 doses, A allele1 dose, A allele2 doses, A allele12.013.513.812.513.814.512.113.013.911.813.214.212.613.014.112.812.913.412.713.6 Unequal replication is common in genetic experiment due to segregation ratios. In F2 populations, the expected ratio of homozygous to heterozygous individuals is 1:2:1, which is what we see in the dataset above. Each individual is an independent replication of its respective genotype; so there are five replications of genotype BB, ten replications of genotype AB, and five replications of genotype AA in this experiment. The "treatment" is dosage of the A allele, and the response variable is seed nitrogen content. With three levels of dosage, the most complicated response the data can reveal is a quadratic relationship between dosage (D) and N content: N = aD2 + bD + c This quadratic relationship is comprised of two components: A linear component (slope b), and a quadratic component (curvature a). It just so happens that, with 2 treatment degrees of freedom (dftrt = t 1 = 3 1 = 2), we can construct orthogonal contrasts to probe each of these components. To test the hypothesis that b = 0 (i.e. there is 0 slope in the overall dosage response relationship), we choose H0: BB = AA. If the means of the two extreme dosages are equal, b = 0. As a contrast, this H0 takes the form: 1BB + 0AB - 1AA = 0. To test the hypothesis that a = 0 (i.e. there is zero curvature in the overall dosage response relationship), we choose H0: AB = (1/2)*(AA + BB). Because the dosage levels are equally spaced (0, 1, 2), a perfectly linear relationship (i.e. zero curvature) would require that the average of the extreme dosage levels [(1/2)*(AA + BB)] exactly equal the mean of the heterozygous group (AB). As a contrast, this H0 takes the form: 1BB - 2AB + 1AA = 0. A quick inspection shows each of these polynomials to be contrasts (i.e. their coefficients sum to zero) as well as orthogonal to each other (1*1 + 0*(-2) + (-1)*1 = 0). Constructing F tests for these contrasts follows the exact same procedure we saw above in the case of class comparisons. So this time, let's use SAS: SAS program: Data GeneDose; Input Genotype $ N; Cards; BB 12.0 BB 12.5 BB 12.1 BB 11.8 BB 12.6 AB 13.5 AB 13.8 AB 13.0 AB 13.2 AB 13.0 AB 12.8 AB 12.9 AB 13.4 AB 12.7 AB 13.6 AA 13.8 AA 14.5 AA 13.9 AA 14.2 AA 14.1 ; Proc GLM Order = Data; Class Genotype; Model N = Genotype; Contrast 'Linear' Genotype 1 0 -1; Contrast 'Quadratic' Genotype 1 -2 1; Run; Quit; The resultant ANOVA table: SourcedfSSMSFpTotal1911.022Model29.0334.516538.60< 0.0001Error171.9890.117R-Square:0.819543ContrastdfSSMSFpLinear19.0259.02577.14< 0.0001Quadratic10.0080.0080.070.7969 The fact that the contrast SS sum perfectly to the SST is a verification of their orthogonality. The significant linear contrast (p < 0.0001) leads us to the reject its H0. There does appear to be a significant, nonzero linear component to the response. The non-significant quadratic contrast (p = 0.7969), however, leads us not to reject its H0. Since the quadratic contrast is not significant we do not reject the hypothesis of a linear response. From the boxplot graph, there does not appear to be a quadratic component to the response (the middle mean is aligned with the line between the extreme means):  We would conclude from all this that the dosage response of nitrogen seed content to the presence of allele A is linear. Before we move on, notice that when there is no significant quadratic response, the F value of the linear response (77.14, critical value F2,17 = 3.59) is twice as large as the Model F value (38.50, critical value F1,17 = 4.45). The reason for this: In the linear contrast, MS = SS/1, while in the complete Model, MS = SS/2 (i.e. the full SST is divided in half and arbitrarily assigned equally to both effects). When a quantitative factor exhibiting a significant linear dose response is measured at several levels, it is possible to have a non-significant overall treatment F test but a significant linear response. This is because the overall treatment F test divides the full SST equally across many effects, most of which are non-significant. This obscures the significance of the true linear effect. In such cases, contrasts significantly increase the power of the test. Here is a similar dataset, but now the response variable is days to flowering (DTF). Table 4.7 Days to flowering (DTF) of seeds of three different genotypes. Genotype (BB)Genotype (AB)Genotype (AA)0 doses, A allele1 dose, A allele2 doses, A allele5871735175685769705972716068677369707172 The SAS coding is identical in this case. The resultant ANOVA table: SourcedfSSMSFpTotal19811.20Model2698.40349.20052.63< 0.0001Error17112.806.635R-Square:0.860947ContrastdfSSMSFpLinear1409.6409.661.73< 0.0001Quadratic1288.8288.843.52< 0.0001 Again, the contrast SS sum perfectly to the SST, a verification of their orthogonality. The significant linear contrast (p < 0.0001) leads us to the reject its H0. There does appear to be a significant, nonzero linear component to the response. And the significant quadratic contrast (p < 0.0001), leads us to reject its H0 as well. There does appear to be a significant, nonzero quadratic component to the response.  All this can be seen quite easily in the following combined boxplot:  We would conclude from all this that the dosage response of flowering to the presence of allele A has both a linear and a quadratic component. In genetic terms, there is dominance. If we were to analyze this last example via a simple lineal regression, we would obtain the following results: SourcedfSSMSFpTotal19811.20Model1409.60409.618.360.0004Error18401.6022.3401.6 = 112.8 + 288.8 The F value is smaller (18.36 < 61.73) because the quadratic SS (288.8) is now included in the error sum of squares (401.6 = 112.8 + 288.8). The message: An ANOVA with linear and quadratic contrasts is more sensitive to linear effects than a linear regression test. A quadratic regression test, however, will yield identical results to our analysis using contrasts. Coefficients for trend comparisons The ci coefficients used for trend comparisons (linear, quadratic, cubic, quartic, etc.) among equally spaced treatments are listed below, taken from Table 15.12 (ST&D 390). Contrast coefficients for trend comparisons for equally spaced treatments No. of Treat.Responsec1c2c3c4c5c62Linear-113Linear-101Quadratic1-214Linear-3-113Quadratic1-1-11Cubic-13-315Linear-2-1012Quadratic2-1-2-12Cubic-120-21Quartic1-46-416Linear-5-3-1135Quadratic5-1-4-4-15Cubic-574-4-75Quartic1-322-31Quintic-15-1010-51As argued in the two previous examples, the values of these coefficients ultimately can be traced back to simple geometric arguments. The plot below shows the values of the linear and quadratic coefficients for t = 5:  SHAPE \* MERGEFORMAT  To illustrate the procedure for evaluating a trend response when more treatment levels are involved, we will use the data from Table 15.11 (ST&D 387). To simplify matters, we will treat the blocks simply as replications in a CRD. Table 4. 8. Partitioning SST using orthogonal polynomials. Yield of Ottawa Mandarin soybeans grown in MN (bushels / acre). [ST&D 387] Rep.*Row spacing (in inches) 1824303642133.631.13328.431.4237.134.529.529.928.3334.130.529.231.628.9434.632.730.732.328.6535.430.730.728.129.6636.130.327.926.933.4Means31.1531.6330.1729.5330.03* Blocks treated as replications in this example First of all, note that the treatment levels are equally spaced (18, 24, 30, 36, 42 ( 6 inches between adjacent levels). Trend analysis via contrasts is greatly simplified when treatment levels are equally spaced (either arithmetic or log scales). The contrast coefficients and the analysis: Row spacing EMBED Equation.3  EMBED Equation.3 SSF1824303642Means35.1531.6330.1729.5330.03Linear-2-1012152.111.6791.2728.8***Quadratic2-1-2-1278.622.3333.6910.6**Cubic-120-210.841.670.500.16 NSQuartic1-46-412.3011.670.200.06 NSIn this trend analysis, we perfectly partitioned SST (125.66) among the four degrees of freedom for treatment, each degree of freedom corresponding to an independent, orthogonal contrast (linear, quadratic, cubic, and quartic components to the overall response). We conclude from this analysis that the relationship between row spacing and yield has significant linear and significant quadratic components. The cubic and quartic components are not significant. This can be seen easily in a scatterplot of the data:  Unequally spaced treatments There are equations to calculate coefficient similar to those of Table 15.12 for unequally spaced treatment levels and unequal numbers of replications. The ability to compute such sums of squares using orthogonal contrasts was crucial in the days before computers. But now it is easier to implement a regression approach, which does not require equal spacing between treatment levels [ST&D 388]. The SAS code for a full regression analysis of the soybean yield data: Data Rows; Do Rep = 1 to 6; Do Sp = 18,24,30,36,42; Input Yield @@; Output; End; End; Cards; 33.6 31.1 33 28.4 31.4 37.1 34.5 29.5 29.9 28.3 34.1 30.5 29.2 31.6 28.9 34.6 32.7 30.7 32.3 28.6 35.4 30.7 30.7 28.1 29.6 36.1 30.3 27.9 26.9 33.4 ; Proc GLM Order = Data; Model Yield = Sp Sp*Sp Sp*Sp*Sp Sp*Sp*Sp*Sp; Run; Quit; Note the absence of a Class statement! In regression, we are not interested in the individual levels of the explanatory variable; we are interested in the nature of overall trend. The output: Sum of Source DF Squares Mean Square F Value Pr > F Model 4 125.6613333 31.4153333 9.90 <.0001 Error 25 79.3283333 3.1731333 Corrected Total 29 204.9896667 R-Square Coeff Var Root MSE Yield Mean 0.613013 5.690541 1.781329 31.30333 Source DF Type I SS Mean Square F Value Pr > F Sp 1 91.26666667 91.26666667 28.76 <.0001 *** Sp*Sp 1 33.69333333 33.69333333 10.62 0.0032 ** Sp*Sp*Sp 1 0.50416667 0.50416667 0.16 0.6936 NS Sp*Sp*Sp*Sp 1 0.19716667 0.19716667 0.06 0.8052 NS This is the exact result we obtained using contrasts (see code and output below): Data Rows; Do Rep = 1 to 6; Do Sp = 18,24,30,36,42; Input Yield @@; Output; End; End; Cards; 33.6 31.1 33 28.4 31.4 37.1 34.5 29.5 29.9 28.3 34.1 30.5 29.2 31.6 28.9 34.6 32.7 30.7 32.3 28.6 35.4 30.7 30.7 28.1 29.6 36.1 30.3 27.9 26.9 33.4 ; Proc GLM Order = Data; Class Sp; Model Yield = Sp; Contrast 'Linear' Sp -2 -1 0 1 2; Contrast 'Quadratic' Sp 2 -1 -2 -1 2; Contrast 'Cubic' Sp -1 2 0 -2 1; Contrast 'Quartic' Sp 1 -4 6 -4 1; Run; Quit; Sum of Source DF Squares Mean Square F Value Pr > F Model 4 125.6613333 31.4153333 9.90 <.0001 Error 25 79.3283333 3.1731333 Corrected Total 29 204.9896667 R-Square Coeff Var Root MSE Yield Mean 0.613013 5.690541 1.781329 31.30333 Source DF Type III SS Mean Square F Value Pr > F Sp 4 125.6613333 31.4153333 9.90 <.0001 Contrast DF Contrast SS Mean Square F Value Pr > F Linear 1 91.26666667 91.26666667 28.76 <.0001 *** -236 c  0 9 B G u  $ + 3 Ⳬ⥕hPKh(W6aJh(Wh(W56B*aJph h(WaJ *h(Wh(W *h(Wh k h k5 h(Wh(W h(W6h(Wh k6 h(WH* h kH*h(Wh khF h kB*ph$@ahF h k5B*CJph$@a3,- @V$a$gdF gdF $a$gdF $`a$gdF ./`gdF *x./]*` x`gd\z/ ? G S Y . 0 ? e m n 1;MY_ijk12@AIVWjkɻɶЧՐՃzi!jP hF CJUVnHtHhhF aJj#hhF UaJ *hF hF hF hF 5B*CJph$@ahF h k5B*CJph$@a hF 5hF hF 56B*ph hF hF h k5hF h(Wh kheh k56B*ph h(WaJhMh(W6aJ)klm-./089LMNOQReôݰԟp_Pj h}hF EHUaJ!jN hF CJUVnHtHjh}hF EHUaJ!jN hF CJUVnHtHjSh}hF EHUaJ!jN hF CJUVnHtHhF jhhF EHUaJ!jP hF CJUVnHtHhhF aJ hF aJj#hhF UaJjhhF EHUaJefghno()HWpqòҟ}vlh`j#h kUh5 *h5hF 5 *h55 h kH* jh khIL_h kjhIL_UmHnHuhF jlh}hF EHUaJ!jN hF CJUVnHtHhhF aJ hF aJj#hhF UaJj) h}hF EHUaJ!jN hF CJUVnHtH! +56EcoYZ"#&'-.1289<=CDGHNաՋ{{{{{{{{{{{{{h5h5H*aJ h5aJh5h5aJjh|ThC0iEHUj['D hC0iCJUV h5h5h5h kB*phh5h k5B*phh5h\z/h kj#h kUjhIL_h$4EHU!j$M h$4CJUVnHtH0RSabx x`gd\z/2$d%d&d'dNOPQ]^`gd5 x`gd5 $`a$gd5`gd5$*x./]*a$xgd\z/NOvbstvwyz4|~"#%Ÿũššōň h kH*h (hp5iCJEHh kCJEHh kOJQJhp5iheh kB*phheh k5B*phh khh5aJh` h5H*aJ *h5h5aJ h5aJh5h5aJh5h5H*aJ3%&(*+,/02`deo!12389:mnprsuyz{~ú h (h (jhCh (EHUaJ!jN h (CJUVnHtHhh (aJj#hh (UaJ h (H* jmh (h (h k6h (h (H*h (h k h kH* jmh k:VWo7^z `gd9 px^pgd ( x`gd\z/$a$`gd\z/(9?ACDGIJKLOQSUVZ[\^`acstwxy{~ DZj#h kUh (h k56B*phhS h (H* h (h (h (h k5B* phph kCJEHh ( h kH* jmh kh kF&'()*<BCVWXYZlnoȯȗxe[SSh kCJEHjh kEHU$j T8 h kCJUVmHnHuh (h k6B*phh (h k56B*phhSheheB*phj,heheEHU!jnM heCJUVnHtHj#heUheheh kB*phj#h kUjh kEHU$j T8 h kCJUVmHnHuh k 4<GH|  &/67]^fqyz|}~ !!#!!!!ĻĻĻĻĻhh9aJ h9aJh9h9CJ aJhh h k5h (h (5B* phP h kH*h (h kh kCJEHJ !!!!!!!!!"Y##$$$$$If "^`"gd9 `^```gd\z/*x./]*` & FxgdpU x`gd\z/`gd9h]h^`gd9hx]h^`gd9!!!!!!!!!!""""";"S"Y"d"o"q""#####$ $m$n$o$$$$$$$$$$ĿpghOheCJj#h(heCJEHU!j]M heCJUVnHtHh7heCJj#h7heCJU heCJhe jh9h\z/h k5 h96 h k6h9h kB*CJph$@ah9h k5B*CJph$@a h k5 h95 hpU5hpUh kh9($$$$$$$$$$$$$ $If`gde $$If`a$ $If`gd9Ff! $$If`a$ $If $$$$$$$$%%%%%%%%%%%%%%%&&&&&&5&7&C&䘉xiaVhAOh9CJaJh\z/h k5j/h(h\z/CJEHU!joM h\z/CJUVnHtHj,h(h\z/CJEHU!joM h\z/CJUVnHtH h9CJh9h khehOheCJj%h(heCJEHU!j9M heCJUVnHtHh7heCJj#h7heCJU heCJ$%% % %%VLL?? $$If`a$ $If`kd)($$Ifx4\}o"a (o"4 xaxf4p(yt\z/%%%%%%!%"%'%(%.%/%4% $$If`a$ $$If`a$ 4%5%9%>%=3& $$If`a$ $If`kdA)$$Ifx4ִb J + }o"o"    4 xaxf4>%C%H%M%R%X%]% $$If`a$ $$If`a$]%^%h%m%=3& $$If`a$ $If`kd.*$$Ifx4ִb J + }o"o"    4 xaxf4m%r%w%|%%%% $$If`a$ $$If`a$%%%%=3& $$If`a$ $If`kd+$$Ifx4ִb J + }o"o"    4 xaxf4%%%%%%% $$If`a$ $$If`a$%%%%=3& $$If`a$ $If`kd,$$Ifx4ִb J + }o"o"    4 xaxf4%%%% &&6kd,1$$Ifx4ֈb J + o"d o"4 xaxf4ytN$$If`a$gd9 $$If`a$ $$If`a$&&E&O&Y&Z&]&d&l&q&y&z&|& $$If`a$ $$If`a$ $If` x`gdN C&D&E&&&&&P'Q'T'W'j'p''''''''''''((((()(0()!)\)^)_)i))))))))))****(*)*:*;*J*K*j*hdChdCCJaJhdCh k5hpUh kCJhIL_h k5hdChIL_CJhhNaJhdLphN6aJ hNaJh\z/hNhShIL_h khAOh9CJaJh9CJaJ8|&}&&&4* $$If`a$ $If`kd2$$IfTx4pr P@@ 24 xaf4p2yt\z/T&&&&&&&&&UK $If`kdD3$$IfTx4 r P@@4 xaf4yt9T $$If`a$ $$If`a$&&&&&&&&e[N $$If`a$ $If`kd3$$IfTx4Jr P@@4 xaf4T $$If`a$&&&Q'''(rl]JJ7*x./]*`gdN&x./]&`gdNx]`gdN]kd4$$IfTx4\r P@@4 xaf4T(^)_)))))))) $$If`a$0<^`0gdN./ ./`gdN ))kdV5$$IfTx4ֈi%  <4 xaf4p<ytpUT))))))**Ckd6$$IfTx4ֈi% 4 xaf4ytpUT <$If$<$If`a$****"*%*(*)*Ckd7$$IfTx4ֈi% 4 xaf4ytpUT <$If$<$If`a$)*:*;*@*D*G*J*K*Ckd8$$IfTx4ֈi% 4 xaf4ytpUT <$If$<$If`a$K*L*S*Y*_*e*j*k*Akdq9$$IfTx4ֈi% 4 xaf4ytdCT $IfgddC$<$If`a$gddCj*k*****,, ,,,,",$,,,4,6,<,F,H,P,f,h,n,v,x,,,,,--0-4---^.b.6/8/@/H/J/P/X/Z/b/j/l/r/|/~////////"0#01122 222س jhNaJ hNH*aJhNhNH*aJhXYhNH*aJhjBhNH*aJh\hNaJhNhNH*aJ hNaJhdChdCCJaJhdCCk*w*}******Akd^:$$IfTx4ֈi% 4 xaf4ytdCT $IfgddC$<$If`a$gddC**-+.+F,, --R.T.2/4/|//00*1+111F2d24`gd/I  & FgdN  & FgdN  & FgdN `gdN22"2$2,24262<2H2J2R2Z2\2b2n2p244e5o5r555555555666%6&6'6K6Z6\6n6o6q6v666666677ɹɯ﨟&hWh/I5CJPJ\aJnHtH h/IaJhh/IaJ h/I5aJhcahNH*aJ hcahNhcahNaJhhNaJhhNH*aJhXYhNH*aJh\hNaJ hNaJhjBhNH*aJ14677 7 777$$If`a$gdl $If`gdl`gd/Ix./`gd/I77 7 7 7 7777777777"7#7$7%7&7'7(717273747:7;7A7B7G7H7I7b7c7h7i7j7o7u7v7{77777777777777777777츧츧외외h/ICJPJaJnHtH hWh/ICJPJaJnHtH hWh/ICJPJaJnHtHhWh/ICJPJnHtH&hWh/I5CJPJ\aJnHtH&hWh/I5CJPJ\aJnHtH<7775( $If`gdlkdK;$$Ifl;rZ6 Vn   2644 lap2yt/I77#7%7'7(7Ckdl<$$Ifl4,rZ6 Vn  644 laf4p2yt/I$$If`a$gdl(72747;7B7H7$xx$If`a$gd/Ixx$If`gd/IH7I7c7j7v777SF6666$$If`a$gdl $If`gdlkdQ=$$Ifl4,rZ6 Vn  644 laf4p2yt/I7777777SF6666$$If`a$gdl $If`gdlkd(>$$Ifl4,rZ6 Vn  644 laf4p2yt/I7777777777788888888888#8$8*8+8,8-8.8C8L8Q8Z8_8h888899[9]99999:̸滋滋滋̸wwwwwhh/IaJhrrIh/IaJh h/IH*aJ h/IaJ hWh/ICJPJaJnHtHh/ICJPJaJnHtH&hWh/I5CJPJ\aJnHtH&hWh/I5CJPJ\aJnHtHhWh/ICJPJnHtH hWh/ICJPJaJnHtH.7777788SF6666$$If`a$gdl $If`gdlkd>$$Ifl4,rZ6 Vn  644 laf4p2yt/I8888$8+8-8SF666F$$If`a$gdl $If`gdlkd?$$Ifl4,rZ6 Vn  644 laf4p2yt/I-8.8/8::::SFFFF=`gd/I ./`gd/Ikd@$$Ifl4;rZ6 Vn  644 laf4p2yt/I::::: :e:f:::::::::::::::;;;;;G;I;Z;[;];^;񨙹yoe\Rh/Ih/IH*aJh/Ih/IaJhh/IH*aJh'h/IH*aJjDhkwh/IEHUaJ!jN h/ICJUVnHtHjAhkwh/IEHUaJ!jN h/ICJUVnHtHj#hh/IUaJhh/I56aJhh/I6aJ hdCaJhdChdC5B*aJphhh/IaJ h/IaJ ::;;[;;;t<u<===z?wk x./` (./`gd/I ./`gd/I ./`gddC & F x./gd/Ih./]h^`gd/I9$h$d%d&d'd./NOPQ]h^`a$gd/I ^;;;;;;;;;;;;;<<<"<1<t<u<z<~<<<<<<<<<<<< ==B=C=M=N=O=P=Q=V=W==========ԼԑԑԑԊ h/I5aJh/Ih/I6aJh'h/I56CJaJh/ICJaJh'h/ICJaJ *h'h/I5CJaJhh/IH*aJhh/IaJh'h/IH*aJ h/IaJh/Ih/IH*aJh/Ih/IaJ4========z??@@@@@@CCCCCCCWDXDDDDDDDEE E2EE?EAEBEIEEEEEEEFFFF.F0F忷忬姠h;h2WaJhnVh2WH*aJ h2WaJ h2W5aJ h*|5 *h2Wh2W56h2Wh k6h2Wh/I h/IaJ h kCJh/IhNCJh/Ih kCJh kh k5B*\phh/I5B*\ph5z?@CDAE/F0FhFFFFF!GGG(H)HwHxH $$If`a$x./`gd\z/h./]h`gd2Wh./]h^`gd2W ./`gd2W & Fx./ & F0FFFFGG(H)H1H2H3HiHjHtHuHyHzH{H|H~HHHHHHHHHHHHHHHHHHIIJ JJJJJJJûûööööööööéåÙÙÙÒ|h2Wh k5B*CJph$@a hMd45CJ h k5CJhMd4h=h=H*h=hpUh k5B*ph h kH*hpUh k5h kh\z/h k5 h2W5h;h2WaJh2Wh2WB*aJphh2Wh2W56B*aJph h2WaJ.xH}HHHH $$If`a$HHHHH9,,, $$If`a$kdFG$$IfTx4r> pFFFF 24 xaf4p2yt\z/THHHHHHHHHjkd_H$$IfTx4r> pFFFF4 xaf4T $$If`a$HHHHHHHwjjjjj $$If`a$kdH$$IfTx4r> pFFFF4 xaf4THHIIJJJJwjdUKK> ./`gdMd4 ./`x./`gd=./ x`gd=kd{I$$IfTx4r> pFFFF4 xaf4TJJJKK:K*hdCh k5B*phhdCh kh2WhdCB*CJph$@ah k5B*CJph$@a9JJL0M`MMMOPPP!P/P$$If`a$gdab$a$gdMd4 & F gddC  & F <gddC`gdpU`gd*| ./`gdMd4 P/P0P2P6P7P9PDPJPLPRPUP\P^PdPePfPuPvPzP{PPPPPPPPPPPPPPPPPPPPPPPPPPPPPѼѼѼѼѼݟݍ|||ݍ|||ݍ|||ݍ|||| hhMd4CJPJaJnHtH#hhMd4CJPJaJhnHtHhhMd4CJPJ#hMd45CJPJ\aJhnHtH)hhMd45CJPJ\aJhnHtHhhMd45CJPJhhMd4CJPJnHtH&hhMd45CJPJ\aJnHtH0/P0PBPSPePqaaa$$If`a$gdabkdJ$$IflF4'X'X'X 6    44 laHpytabePfPkPpPuPqaaa$$If`a$gdabkdJ$$Ifl,F4&X&X&X 6    44 laHpytabuPvP{PPPvvv$$If`a$gdabykdK$$Ifl,F4&X&X&X6    44 laHpytabPPPPPvvv$$If`a$gdabykdRL$$Ifl,F4&X&X&X6    44 laHpytabPPPPPvvv$$If`a$gdabykdL$$Ifl,F4&X&X&X6    44 laHpytabPPPPPvvv$$If`a$gdabykdM$$Ifl,F4&X&X&X6    44 laHpytabPPPPPvvv$$If`a$gdabykdN$$Ifl,F4&X&X&X6    44 laHpytabPPPPPPPPPPPPPPPPPPPP5Q6QCQHQRRRR}S~SMTPTTT"U#UVVVVVVźźźźźzzzjh"~hMd45H*OJQJaJh hMd45H*OJQJaJh{hMd45H*OJQJaJhZbhMd45H*OJQJaJh ehMd45H*OJQJaJhMd45OJQJaJhMd45OJQJ#hhMd4CJPJaJhnHtHhhMd4CJPJnHtH hhMd4CJPJaJnHtH)PPPPPvvv$$If`a$gdabykdN$$Ifl,F4&X&X&X6    44 laHpytabPPPPPvvv$$If`a$gdabykdEO$$Ifl,F4&X&X&X6    44 laHpytabPPPPPvvv$$If`a$gdabykdO$$Ifl,F4&X&X&X6    44 laHpytabPPPPPvvv$$If`a$gdabykdsP$$Ifl,F4&X&X&X6    44 laHpytabPPPRwSSTWZ[\\~ttmttttt~xgdMd4 $xa$gdMd4$a$gdMd4ykd Q$$Ifl;F4&X&X&X6    44 laHpytab VVVVVVVWXXX X X"X&X*X,X.X2X:XXYYYYYYZZ ZRZTZ|ZZZZZZZ\\\\|hMd45B*aJhphhWPhMd45B*aJhphh"~hMd45H*OJQJaJh$ehMd456OJQJaJhghMd45OJQJaJhghMd45H*OJQJaJhMd45H*OJQJaJh hMd45H*OJQJaJhMd45OJQJaJ*\\\\\\\\\\\\]]]]']/]7]?]G]O]W]_]g]o] h7$8$H$`gdMd4 7$8$H$`gdMd4`gdMd4\\\\\\\\o]q]u]v]y]z]]]]]]]]]]]ƧiƧƧJ<hMd4B* CJOJPJQJ^JfHnHphq tH<hMd4B*CJOJPJQJ^JfHnHphq tH<hMd4B*CJOJPJQJ^JfHnHphq tH<hMd4B*CJOJPJQJ^JfHnHphq tHBhMd45B* CJOJPJQJ\^JfHnHphq tH.hMd45B* PJ\aJfHphq o]q]]]]]]^^^^ ^ ^&^-^0^3^6^8^:^$$If`a$gdab x`gdMd4`gdMd4 h 7$8$H$`gdMd4 h7$8$H$`gdMd4 7$8$H$`gdMd4]]]]]]]]]]]]]]]]]]^^^ ^ ^&^޿޿޿޿޿޿__XQX haJh hMd4aJhBhMd45B* CJOJPJQJ\^JfHnHphq tH<hMd4B* CJOJPJQJ^JfHnHphq tH<hMd4B*CJOJPJQJ^JfHnHphq tH<hMd4B*CJOJPJQJ^JfHnHphq tHBhMd45B* CJOJPJQJ\^JfHnHphq tH&^:^;^A^Q^R^X^`^v^w^}^^^^^^^^^^^^^^^^_____m`n`waxaݡunbnbnYhyhMd4CJ h"KhMd45H*aJ hMd45aJhyhMd45CJ aJhMd4hMd4CJPJnHtH hMd4hMd4CJPJaJnHtH&hMd4hMd45CJPJ\aJnHtH,h+yhMd45B*CJPJaJnHphtH h+yhMd4CJPJaJnHtHh+yhMd4CJPJnHtH&h+yhMd45CJPJ\aJnHtH":^;^kdQ$$Ifl,ֈ lD!'@''''' <x644 lap<ytab;^A^D^K^M^O^Q^$$If`a$gdabQ^R^X^Z^`^g^>....$$If`a$gdabkdR$$Ifl,ֈ lD!'@'''''x644 lap<ytabg^m^v^w^}^^.kdS$$Ifl,ֈ lD!'@'''''x644 lap<ytab$$If`a$gdab^^^^^^.kdT$$Ifl;ֈ lD!'@'''''x644 lap<ytab$$If`a$gdab^^^^^^^$$If`a$gdab^^^^^^>....$$If`a$gdabkdU$$Ifl,ֈ lD!'@'''''x644 lap<ytab^^^^^^.kdV$$Ifl,ֈ lD!'@'''''x644 lap<ytab$$If`a$gdab^^^^^$$If`a$gdab^^kd{W$$Ifl,ֈ lD!'@''''' <x644 lap<ytab^^^^^^^$$If`a$gdab^^^^^_>....$$If`a$gdabkdX$$Ifl,ֈ lD!'@'''''x644 lap<ytab_ ___.kdY$$Ifl;ֈ lD!'@'''''x644 lap<ytab$$If`a$gdab__waxa{a|aaheieee ff%f3f$$If`a$gdab $xa$gdy `gdMd4 x`gdMd4 $`a$gdMd4`gdMd4 ]^`gdMd4 ^`gdMd4xayaza{a|aa b b bCbDbIbJbbbbbbbbbbbbbbcc c c cccc/c1c3c4c5c6c;ccccccccd&d8d9d>dddddheeee¸±¸¸¸џ *hyhMd4hhMd4H*aJ hMd4H*aJhMd4hMd46aJhhMd4aJ hMd4aJhMd4hyhMd4CJ aJ h%& hMd4jZh%& hMd4UjhMd4UmHnHu....$$If`a$gdabkd|$$Ifl,ֈ lD!'@'''''x644 lap<ytabEgKgTgUg[g^g.kd}$$Ifl,ֈ lD!'@'''''x644 lap<ytab$$If`a$gdab^gegkgmgogpg.kd|~$$Ifl;ֈ lD!'@'''''x644 lap<ytab$$If`a$gdabpgzgggggg$$If`a$gdabgggggg>....$$If`a$gdabkdk$$Ifl,ֈ lD!'@'''''x644 lap<ytabgggggg.kdL$$Ifl,ֈ lD!'@'''''x644 lap<ytab$$If`a$gdabggggg$$If`a$gdabggkd-$$Ifl,ֈ lD!'@''''' <x644 lap<ytabggggggg$$If`a$gdabgggggg>....$$If`a$gdabkdj$$Ifl,ֈ lD!'@'''''x644 lap<ytabggggg.%`gdMd4kdY$$Ifl;ֈ lD!'@'''''x644 lap<ytab$$If`a$gdabggggghhhi:i;iiiiiiiiiiiii%j0jjjjjjjjkƿ~wmwieiew\V\V\V hMd4aJhhMd4aJhMd4hyhchMd4aJh hMd4aJh!jhy5UaJmHnHu hy5aJjhyUaJmHnHuhyhMd4B*aJphh"KhMd45H*aJ hMd45aJjhyUmHnHuhyhMd4CJ aJhh+yhMd4CJPJnHtH h+yhMd4CJPJaJnHtH giiiiiiiijjkkkkk!k#k%k$$If`a$gdab `gdMd4 $`a$gdMd4`gdMd4 ^`gdMd4k%k&k,k/k0k3k5k....$$If`a$gdabkd$$Ifl,ֈ@ x'@'''''x644 lalp<ytyRkXk_k`kfkik.kd$$Ifl,ֈ@ x'@'''''x644 lalp<yty$$If`a$gdabikpkukwkykzk.kdc$$Ifl;ֈ@ x'@'''''x644 lalp<yty$$If`a$gdabkkkkkkkkk lllAlllllmmmm'm+m,m-m.m}m~mmmmmmmmmmmmmmn˻ݱݗ݃tghMd45B*\aJphh`hMd4B*\aJphh`hMd4B*phh`hMd4aJh#ShMd456B*phhhMd46H*aJhhMd46aJhyhMd45B*\aJph$@ahy5\aJhMd45\aJhhMd4aJ hMd4aJhhMd45B*ph hhMd4(zkkkmmm'mmn-n6n9nn?nAnBnDnEnGnHnInKnQnRnWnXnYnZn[n\n]n^n_n`nbnhninsntnòòæææææææ}rææææ}rhyhMd4CJPJ hyhMd4CJPJaJnHtHhhMd4CJPJnHtHhy5CJPJhyhMd45CJPJ hy5CJPJ\aJnHtH&hyhMd45CJPJ\aJnHtH hMd4aJhhMd4aJh`hMd456B*phh`hMd4B*ph,Yn[n]n_n$$If`a$gdy_n`n kd,$$Ifl4;ִ f"V&&@&&&&&&V6    44 lalf4pPyty`nbninlnnnpnqnrnsn$$If`a$gdysntn kdS$$Ifl4,ִ f"V&&@&&&&&&V6    44 lalf4pPytytnunnnnnnnn$$If`a$gdy$If`gdytnun~nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnooooo ooooo o,o-o.o/o1o7o8oףג hyhMd45B*CJPJph hyhMd45B*CJPJphhhMd4CJPJnHtH&hyhMd45CJPJ\aJnHtHhyhMd4CJPJ hyhMd4CJPJaJnHtHhyhMd45CJPJ9nn kd$$Ifl4;ִ f"V&@&&&&&&V6    44 lalpPytynnnnnnnnn$$If`a$gdynn kd$$Ifl4,ִ f"V&&@&&&&&&V6    44 lalf4pPytynnnnnnnnn$$If`a$gdy$If`gdynn kd6$$Ifl4,ִ f"V&@&&&&&&V6    44 lalpPytynnnnnnnnn$$If`a$gdy$If`gdynn kd$$Ifl4;ִ f"V&@&&&&&&V6    44 lalpPytynnnnnnnnn$$If`a$gdynn kd$$Ifl4,ִ f"V&&@&&&&&&V6    44 lalf4pPytynnnnnnnoo$$If`a$gdy$If`gdyoo kd$$Ifl4,ִ f"V&@&&&&&&V6    44 lalpPytyoo o oooooo$$If`a$gdy$If`gdyoo kdi$$Ifl4,ִ f"V&@&&&&&&V6    44 lalpPytyoo o"o%o'o*o,o.o$$If`a$gdy$If`gdy.o/o kd$$Ifl4;ִ f"V&@&&&&&&V6    44 lalpPyty/o1o8o;o>oAoCoEoGo$$If`a$gdy8oGoHoIoRoSocodoeojokozo{o|ooooooooooppppppppp8quDuKuLuRuUuWuYu\u^ucuFfFf7$$If`a$gdab+u-u.u0u1u2u3u8u9u=u>uCuDuJuKuLuRuTuUuVuWuXuYu[u\u]u^ubucuguhulumutuuuvu~uuuuuuuuuuuuuuuuuuuuuuuͼͼͼͼͼͼͼͼͼͼͼͼhhMd4aJ hMd4aJh5hMd4CJPJh5hMd4CJPJnHtH hyhMd4CJPJaJnHtH hyhMd4CJPJaJnHtH h5hMd4CJPJaJnHtH h5hMd4CJPJaJnHtH:cuhumuuuvu~uuuuuuuuuuuwwww ./`gdMd4 $`a$gdMd4 `gdMd4]`gdyFftFf$$If`a$gdabuuvv_vvvvwwwwwwNxOxaxbxxxxxxxxx#yUyVyyyyyyyy|]|<hMd4B*CJOJPJQJ^JfHnHphq tH<hMd4B*CJOJPJQJ^JfHnHphq tHBhMd45B* CJOJPJQJ\^JfHnHphq tH hhMd4hyhMd45B*ph$@ahy5B*ph hMd45aJjh&BhMd45UaJ hMd4aJhhMd4aJ#wwyyyyyyyyz z z9zRzkzzzzz 7$8$H$`gdMd4 h87$8$H$`gdMd4`gdMd4 ./`gdMd4x./`gdyyyyyyyyyyyyyyyyyyyyyyyyyyzzz zzz޿޿޿޿޿޿g<hMd4B*CJOJPJQJ^JfHnHphq tH3hMd45B* CJOJPJQJfHphq <hMd4B*CJOJPJQJ^JfHnHphq tH<hMd4B*CJOJPJQJ^JfHnHphq tHBhMd45B* CJOJPJQJ\^JfHnHphq tHzzzzzzzzzzzzz{{{{{{| |޿޿޿޿zbO4O5 *hRhMd45>*CJOJPJQJ^JaJnHtH% *hRhMd45>*CJOJPJQJ/h}hMd45CJOJPJQJ^JaJnHtH,h}hMd4CJOJPJQJ^JaJnHtHhhMd4aJ hMd4aJ<hMd4B*CJOJPJQJ^JfHnHphq tH<hMd4B*CJOJPJQJ^JfHnHphq tHBhMd45B* CJOJPJQJ\^JfHnHphq tHzzzzz{{{<|||||&}V}W}}~T~~&d7$8$H$P]`gdR7$8$H$]`gdy 7$8$H$`gdMd4 h7$8$H$`gdMd4 ||;|<|||&}W}j}p}x}y}}}}}}}}}J~P~S~T~~~~ѿwhXCXCXXC)hMd45CJOJPJQJ^JaJnHtHh}hMd45CJOJPJQJhR5>*CJOJPJQJ2h}hMd45>*CJOJPJQJ^JaJnHtH,hR5>*CJOJPJQJ^JaJnHtH,h}hMd4CJOJPJQJ^JaJnHtH"h}hMd45>*CJOJPJQJ% *hRhMd45>*CJOJPJQJ5 *hRhMd45>*CJOJPJQJ^JaJnHtH~~~~~~~~~~~PT\^eʵڱjKj<hMd4B*CJOJPJQJ^JfHnHphq tH<hMd4B*CJOJPJQJ^JfHnHphq tHBhMd45B* CJOJPJQJ\^JfHnHphq tH hMd4aJhMd4)hMd45CJOJPJQJ^JaJnHtHh}hMd45CJOJPJQJh}hMd4CJOJPJQJ,h}hMd4CJOJPJQJ^JaJnHtH~~~OP[m4MOfq h7$8$H$`gdMd4 h87$8$H$`gdMd4 7$8$H$`gdMd4&d7$8$H$P`gdRefgijkoqwyz|}MO޿޿޿޿޿޿dBhRhMd4B*CJOJPJQJ^JfHnHphq tH3hMd45B* CJOJPJQJfHphq <hMd4B*CJOJPJQJ^JfHnHphq tH<hMd4B*CJOJPJQJ^JfHnHphq tHBhMd45B* CJOJPJQJ\^JfHnHphq tHOSTWX]glrw޿޿_____F0hMd4B* CJOJPJQJfHphq BhMd45B* CJOJPJQJ\^JfHnHphq tH<hMd4B* CJOJPJQJ^JfHnHphq tH<hMd4B*CJOJPJQJ^JfHnHphq tH<hMd4B*CJOJPJQJ^JfHnHphq tHBhMd45B* CJOJPJQJ\^JfHnHphq tHq΀ I!KLQRR0 7$8$H$`gdMd4 hTN d&7$8$H$`gdMd4 h7$8$H$`gdMd4ÀĀƀǀȀɀʀˀ̀΀π׀؀߀ጥ᥌mTጥጥ᥌m0hMd4B* CJOJPJQJfHphq <hMd4B*CJOJPJQJ^JfHnHphq tH0hMd4B*CJOJPJQJfHphq 3hMd45B* CJOJPJQJfHphq BhMd45B* CJOJPJQJ\^JfHnHphq tH<hMd4B*CJOJPJQJ^JfHnHphq tH   BȮȕȮȕȮsTsN7,h hMd4CJOJPJQJ^JaJnHtH hMd4aJ<hRB*CJOJPJQJ^JfHnHphq tHBhMd45B* CJOJPJQJ\^JfHnHphq tH0hMd4B*CJOJPJQJfHphq 3hMd45B* CJOJPJQJfHphq <hMd4B*CJOJPJQJ^JfHnHphq tH0hMd4B* CJOJPJQJfHphq BI\`hrL~Ƃʂւق܂߂QRӸӸӦuӸӸӸӦ^uNh hMd45CJOJPJQJ,hR5>*CJOJPJQJ^JaJnHtH2h hMd45>*CJOJPJQJ^JaJnHtH,h hMd4CJOJPJQJ^JaJnHtH"h hMd45>*CJOJPJQJ5 *hRhMd45>*CJOJPJQJ^JaJnHtH% *hRhMd45>*CJOJPJQJ2 *hRhMd45CJOJPJQJ^JaJnHtH0H0N0Q00000000000000003191G1H1L1[1\1111111,2s2v2~33ӲӲӲӲ꧜}}sjdjd hMd4aJhhMd4aJhhMd45aJhMd4B*phhDFhMd4B*aJphhMd4B*aJphhDFhMd4B*phh hMd4OJQJh hMd4CJOJPJQJh hMd45CJOJPJQJU,h hMd4CJOJPJQJ^JaJnHtH)hMd45CJOJPJQJ^JaJnHtH'Quadratic 1 33.69333333 33.69333333 10.62 0.0032 ** Cubic 1 0.50416667 0.50416667 0.16 0.6936 NS Quartic 1 0.19716667 0.19716667 0.06 0.8052 NS So, as long as the treatment levels are equally spaced, the results are the same for both analyses. The multiple regression analysis can be used with unequally spaced treatments, but the orthogonal contrast analysis, with the provided coefficients, cannot. Some remarks on treatment levels for trend analysis The selection of dose levels for a material depends on the objectives of the experiment. If it is known that a certain response is linear over a given dose range and one is only interested in the rate of change, two doses will suffice, one low and one high. However, with only two doses there is no information available to verify the initial assumption of linearity. It is good practice to use one extra level so that deviation from linearity can be estimated and tested. Similarly, if a quadratic response is expected, a minimum of four dose levels are required to test whether or not a quadratic model is appropriate. The variability in agricultural data is generally greater than for physical and chemical laboratory studies, as the experimental units are subject to less controllable environmental influences. These variations cause difficulty in analyzing and interpreting combined experiments that are conducted over different years or across different locations. Furthermore, true response models are rarely known. For these reasons, agricultural experiments usually require four to six levels to characterize a dose-response curve. Final comment about orthogonal contrasts: Powerful as they are, contrasts are not always appropriate. If you have to choose, meaningful hypotheses are more desirable than orthogonal ones!     4.page \* arabic17  EMBED Equation.3  2 - (1/2)*(1 + 3) `" 0 1 - 2 `" 0 X X X T1 T5 +2 -2 X X X X X X X X R00001-24666677A7j75$$d%d&d'dNOPQ]^`a$gdMd4`gdMd4x./`gdR ./`gdMd4&d./P`gdR 7$8$H$`gdMd4344445555D6E6S6_6g6o6666667+737T7j7k7l7n7o7q7r7t7u7w7{7|77777777777777778Ļ̳̑hh=jhIL_hIL_EHUj(|D hIL_CJUVhIL_jhIL_Uh6~mHnHujh kUh khe.jhe.UhMd4hhMd45aJ hMd45aJ hMd4aJhhMd4aJ3j7k7m7n7p7q7s7t7v7w77777777777777777777`gdpU8888888$8&8(8*8,80828486888:8<8@8B8D8F8J8L8T8V8Z8\8`8b8f8h8n8p8v8x8z8~8888888888888888пппддЩИИИИИЇ hlhMd45B*CJaJph hQ6hMd45B*CJaJphhQ6hMd4CJaJhQ6hMd4CJaJ hQ6hMd45B*CJaJphhMd4hMd4CJH*aJhhMd4CJaJhthMd4CJH*aJhthMd4CJaJ572848L8N8P8R8T8V8Z8\8`8b8f8h8n8p8v8x8~88888888gdMd4`gdMd4 $`a$gdMd4888888888888888`gdpU`gdMd48888888h k hQ6hMd45B*CJaJphhMd4 hlhMd45B*CJaJph;0P:p=/ =!"~ #$% Dp@='b+2LB'}#o\xݽUY"JPtlm$Zz"H mII-pT)(RBgƉXό}~#ew͒Ej= [q?~'_|EpU^u}t_|#rj޼_voil ݰ/׳O^^gwiW5>o?wiy*7l^eύ]ݭU}i O>(Њ]12`.P~}xH޽e@Z}{LԯS߽_@}qc?&^@~}9/b;?;H6<}l }Z< }4>=a@y0#r8l1΄p${(+e;3 3c30`F96f0#86ff`> fkeseYeYeYe->oץvs;)s@ߟ|}}}@?,+4%{}xT{}9O=}G@{=}@ߣ}@ߣ{@ߣ{`mrlF{}q|e={@@{@@ߣo>^{=}{=}G=}G{}}@ߣ}=}G=^{=}@{}@ߣ@ߣ{}{=}@{=}@{}@ߣ@ߣ{}{=}@{=}@{}@ߣ@ߣ{}{=}{}G{}o@{=}@{}_52}Oޏ]i}>)yt@{}_y=v@ߧݞ]e?f_랟?2?G%2~`@{=}@{}{=}G=}G{}G{=^{=}{=}G=}G{}G{=^{=}@)Ѷ^}=}{=r}Ma^{=0u3SX}/={={}GC}{}{}{=ܾ{=@{@߻{@U=^^{={@=^^{={@=^^{=k @ߣ=}^=v{={p{}}@ߣ}G߃W}G߃{}{}@ߣ}G߃{}{}@ߣ}G߃{}{}@ߣ5{om=}{={=6{}{={={={@@ߣ}@352}{}:m?~/A_~{@=@{}_{@9=y}Ͽ<~̲ByK,~51^}_=~e}?|%;Oj@{{}^=^{{}}kߗDPjD=>sX}=}Pz|N/~L{~=}}=>Ͷϭ=^@{}ؿmu=>Ə=WjC @}_)?=z_ï^%@ߗ^}gߗﲿP7ߏi}ϯ|}O=k{Ͻ/+5?^@ߧ{?}O=.?CX@Pc@{}}<@x9ƾ6<:;% {=ϩwh{u;{m^@{=}>{}G{}@ߧ@k{}}=^@ߟ==>{=}?\{}~={jcy}n}=^{K>@ߧK}K@Psט3~2}?MOm1 _wS^liwN1霟?ϟϧe@߯9k|=+~s_@]}{=}=^{=}{=}G=}G{}G{=^{=}{=}G=}G{}G{=^{=}?wَo;G}@}qG{={@ߣ=}{={=={{={@ߣAߣG}@^}Q.ۑg G&{={G}{}}}^߃G}{={A{{={={G}{}}}^߃G}{={A{{={={G}{}}={={>={=h0#GD]0#f3}]^v.3{}V̈}f{.`F}@ḧ]0#f= @ߣ@3{&5wv{}_wR1#}wŚ_}{}o@{Hl-3i{{@}߇@߃}lߏYW9}}_y^=@}:K}M+E`F]0#fv{.`F}f+E`F=h1#]}q v.3{}E`F{=h0#Gv3{=E`F=h1#]}˷K.}{}V}}{}cs/̈}C3f;G}{={G=w{@{3f}}{}@{=Aߣ@߃=={@ߣ=={}=={@ߣ@߃=}A^Aߣ@߃=={@ߣ=={}=N{ r= @ߣ@0~6f{.`F}f=h0#Gv3{=h0#v3{}]}=]^v3{=h0#Gv3{}h0#]}]`lG{@{F={={{=@{@ߣ@}@G}}^}}=={}o}^}}}}@G}}^;}^}}}=a@@ߣ@G}}^}}].}}~}1 {ؖ}?\~}}@ys={iއ߷ v2wَ{mc_5=t-e}_{}GY1eYeYeYu|;!<ܽ}h?~;͟w?vovö`!FJp)H; (oi`0xcdd``f 2 ĜL0##0KQ* WÔQRcgbR q &znĒʂT/&`b]F"Li `0ero&B2sSRsnb .v0o8^+KRsA<.E.bdg!u~`Zɘ@us*`J3_1!$A2:@X@:_=9gLQGhRif3[`+F֣<%DzY>,k⚇)doȩg_Qy7%:'!iƸ ͨpgf2Ppx+bj:+م)Ԭ?o=8|mgQ% |ckFgģ?oku$t^SN/O1 A=yYR-ذs2nLͯ# >߮Dd h  s *A? ?3"`?2`ؖOa*Ds `!`ؖOa*Ds j@xK@ǿj A!:U-ŵJĀB %[fq(UpܖbTZ-ܻ{y{R$:%x(-&( C5Zz$y}ka k0x3(&J@Gśl2)tYr\f Vq4*<{1.:8:Sˣ;ː, m^ܮWu؍:Kg=zW~vWiR~ >H76ʳz_iW&p6߀)=]Eqc?^z?R\׋ԔD~$38?_w= 5TJ*4gh궋? ܪ8Ȫ7=7☷JFDd Th  s *A? ?3"`?2qer"UD8f`!^qer"UD8  `\XJ,xcdd``fed``baV d,FYzP1n:&,B@?b X ㆪaM,,He`I? @201d++&1Dl\ _pʠ T0 U"`VBo3aI9 l\|a>#Qdnn%Àf'0@a ~J.hqC<0``ゑI)$5a\E.0dHXDd `Th  s *A? ?3"`?2w }.[*x`!pw }.[*r X XJ>xcdd``dd``baV d,FYzP1n:&&v! KA?H1Z ㆪaM,,He` @201d++&1Dl\ _9ӶUsi#F6VJy 3D 3J_.X'27)? u8 , #l+a`{t1aDGK=i`27n.p 7 `p321)W2lԡ1 ;v8Dd 0Th  s *A? ?3"`?2|!*Ҥ܈LtK&Q_X5 `!P!*Ҥ܈LtK&Q_B kXJxcdd``Vdd``baV d,FYzP1n:&f! KA?H1Z ǀqC0&dT20 KXB2sSRs"6~.Ob+Y Yt9Wr&VJy 3D(d\0Gaw2pbH{MM䂆68F kv0o8+KRs A2u(2tA4Agat?0eZ>q8CDd Th  s *A? ?3"`?2=5>t"Ocm `![=5>t"OR (+XJ)xcdd``dd``baV d,FYzP1n:&,B@?b X ㆪaM,,He` @201d++&1Dl\ _W eF\ gAZ +!)'?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./02345678=BT@ACDEHFGJIMKLNOPSQRUXoVWZY][\^_`cabedifghjlkmnpsqrutxvwyz{~|}Root Entry Fx0kY?@Data 1WordDocumentaObjectPool'@kYx0kY_1356201943 F@kY@kYOle PIC LMETA   !"#$%&'()*+,-./0258:;<=>?@ABCDEFGHIJKMPSUVWXYZ[\]^_`abcdefhknpqrstuvwxyz{|}~LT  X .1  @ & & MathType "-@}@I@}@ITimes New Roman4- 2 4Q 2 Jc 2 eY 2 and 2 ~ Q 2 d 2 eY Times New Roman- 2 Acc 2 i> 2 ki> 2 i> 2 m 2  dp 2 i> 2  i> 2 m 2 ki>Symbol- 2 @= Symbol- 2 ={ 2  ={Symbol- 2 ~ 2 O  Times New Roman4- 2 .8 2 .8Times New Roman- 2 ;k Times New Roman4- 2 1p 2 R1p & "Systemn- FMicrosoft Equation 3.0 DS Equation Equation.39qCompObj fObjInfo Equation Native t_1356201952 F@kY@kYXX[ Q=c i 2Y ii=1m "LT  X .1  @ &Ole PIC  LMETA CompObj1f & MathType "-@}@I@}@ITimes New Roman4- 2 4Q 2 Jc 2 eY 2 and 2 ~ Q 2 d 2 eY Times New Roman- 2 Acc 2 i> 2 ki> 2 i> 2 m 2  dp 2 i> 2  i> 2 m 2 ki>Symbol- 2 @= Symbol- 2 ={ 2  ={Symbol- 2 ~ 2 O  Times New Roman4- 2 .8 2 .8Times New Roman- 2 ;k Times New Roman4- 2 1p 2 R1p & "Systemn- FMicrosoft Equation 3.0 DS Equation Equation.39qCy4N c ii=1m " =0LT ObjInfo3Equation Native 4__1324997544 F@kY@kYOle 6PIC 7LMETA 9CompObjLfObjInfoN X .1  @ & & MathType "-@}@I@}@ITimes New Roman4- 2 4Q 2 Jc 2 eY 2 and 2 ~ Q 2 d 2 eY Times New Roman- 2 Acc 2 i> 2 ki> 2 i> 2 m 2  dp 2 i> 2  i> 2 m 2 ki>Symbol- 2 @= Symbol- 2 ={ 2  ={Symbol- 2 ~ 2 O  Times New Roman4- 2 .8 2 .8Times New Roman- 2 ;k Times New Roman4- 2 1p 2 R1p & "Systemn- FMicrosoft Equation 3.0 DS Equation Equation.39q0Q:  1 =Equation Native OL_1324997519F@kY@kYOle QPIC RL 2LT  X .1  @ & & MathType "-@}@I@}@ITimes New RomanMETA TCompObjgfObjInfoiEquation Native jU4- 2 4Q 2 Jc 2 eY 2 and 2 ~ Q 2 d 2 eY Times New Roman- 2 Acc 2 i> 2 ki> 2 i> 2 m 2  dp 2 i> 2  i> 2 m 2 ki>Symbol- 2 @= Symbol- 2 ={ 2  ={Symbol- 2 ~ 2 O  Times New Roman4- 2 .8 2 .8Times New Roman- 2 ;k Times New Roman4- 2 1p 2 R1p & "Systemn- FMicrosoft Equation 3.0 DS Equation Equation.39q9|  1 " 2 =0LT  X ._1324997575"F@kY@kYOle lPIC !$mLMETA o1  @ & & MathType "-@}@I@}@ITimes New Roman4- 2 4Q 2 Jc 2 eY 2 and 2 ~ Q 2 d 2 eY Times New Roman- 2 Acc 2 i> 2 ki> 2 i> 2 m 2  dp 2 i> 2  i> 2 m 2 ki>Symbol- 2 @= Symbol- 2 ={ 2  ={Symbol- 2 ~ 2 O  Times New Roman4- 2 .8 2 .8Times New Roman- 2 ;k Times New Roman4- 2 1p 2 R1p & "Systemn- FMicrosoft Equation 3.0 DS Equation Equation.39q#9 c 1 =1LT CompObj#%fObjInfo&Equation Native ?_13249975925)F@kY@kYOle PIC (+LMETA CompObj*,f X .1  @ & & MathType "-@}@I@}@ITimes New Roman4- 2 4Q 2 Jc 2 eY 2 and 2 ~ Q 2 d 2 eY Times New Roman- 2 Acc 2 i> 2 ki> 2 i> 2 m 2  dp 2 i> 2  i> 2 m 2 ki>Symbol- 2 @= Symbol- 2 ={ 2  ={Symbol- 2 ~ 2 O  Times New Roman4- 2 .8 2 .8Times New Roman- 2 ;k Times New Roman4- 2 1p 2 R1p & "Systemn- FMicrosoft Equation 3.0 DS Equation Equation.39q'ylR c 2 ="1ObjInfo-Equation Native C_13249976110F@kY@kYOle LT  X .1  @ & & MathType "-@}@I@}@ITimes New RomanPIC /2LMETA CompObj13fObjInfo44- 2 4Q 2 Jc 2 eY 2 and 2 ~ Q 2 d 2 eY Times New Roman- 2 Acc 2 i> 2 ki> 2 i> 2 m 2  dp 2 i> 2  i> 2 m 2 ki>Symbol- 2 @= Symbol- 2 ={ 2  ={Symbol- 2 ~ 2 O  Times New Roman4- 2 .8 2 .8Times New Roman- 2 ;k Times New Roman4- 2 1p 2 R1p & "Systemn- FMicrosoft Equation 3.0 DS Equation Equation.39q9p c 1 +c 2 =0LT  X .Equation Native U_1294237590<7F@kY@kYOle PIC 69LMETA CompObj8:fObjInfo;Equation Native  1  @ & & MathType "-@}@I@}@ITimes New Roman4- 2 4Q 2 Jc 2 eY 2 and 2 ~ Q 2 d 2 eY Times New Roman- 2 Acc 2 i> 2 ki> 2 i> 2 m 2  dp 2 i> 2  i> 2 m 2 ki>Symbol- 2 @= Symbol- 2 ={ 2  ={Symbol- 2 ~ 2 O  Times New Roman4- 2 .8 2 .8Times New Roman- 2 ;k Times New Roman4- 2 1p 2 R1p & "Systemn- FMicrosoft Equation 3.0 DS Equation Equation.39qh\ Q c =c i 2Y i.i=1m " ;  and  Q d =d ii=1m " 2Y i.L`  .1  @& & MathTypeTimes New Roman,_1152460635X_>F@kY@kYOle PIC =@LMETA - 2 c 2  d Times New Roman4- 2 i> 2 i> 2 ki> 2 m Symbol- 2 ={Symbol- 2 8Symbol- 2 = Times New Roman4- 2 ;1pTimes New Roman,- 2 0 & "Systemn- FMicrosoft Equation 3.0 DS Equation Equation.39qeCD c i d ii=1m " =0 ,   (orc i d i CompObj?AfObjInfoBEquation Native _1325055674.{EF@kY@kY/n i =0  for   i=1m " unbalanced    designs)L(  H .Ole PIC DGLMETA CompObjFH f   !"#%(+-./0123456789:;<=>@CFHIJKLMNOPQRSUX[]^_`abcdefghijklmnpuwxyz{|}~1  @@& & MathType "-@@Times New Roman- 2 4Q 2 c 2 Y 2 withkk 2  c Times New Roman%- 2 `i> 2 i> 2 !i> 2 mm 2 0 i> 2  i> 2 = mSymbol- 2 = 2 = Symbol- 2 v={ 2 F ={Symbol- 2  2   Times New Roman- 2 *.8Times New Roman%- 2 ;k Times New Roman- 2 1p 2  1pTimes New Roman%- 2 M0 & "Systemn- FMicrosoft Equation 3.0 DS Equation Equation.39q| 2Y iL( ObjInfoI Equation Native  :_945031561LF@kY@kYOle PIC KNLMETA CompObjMO$fObjInfoP& H .1  @@& & MathType "-@@Times New Roman- 2 4Q 2 c 2 Y 2 withkk 2  c Times New Roman%- 2 `i> 2 i> 2 !i> 2 mm 2 0 i> 2  i> 2 = mSymbol- 2 = 2 = Symbol- 2 v={ 2 F ={Symbol- 2  2   Times New Roman- 2 *.8Times New Roman%- 2 ;k Times New Roman- 2 1p 2  1pTimes New Roman%- 2 M0 & "Systemn- FMicrosoft Equation 3.0 DS Equation Equation.39qcDaIfI c iiEquation Native '`_1293905577SF@kY@kYOle )PIC RU*L=1m " =0L(  H .1  @@& & MathType "-@@Times New Roman- 2 4META ,CompObjTV?fObjInfoWAEquation Native B_Q 2 c 2 Y 2 withkk 2  c Times New Roman%- 2 `i> 2 i> 2 !i> 2 mm 2 0 i> 2  i> 2 = mSymbol- 2 = 2 = Symbol- 2 v={ 2 F ={Symbol- 2  2   Times New Roman- 2 *.8Times New Roman%- 2 ;k Times New Roman- 2 1p 2  1pTimes New Roman%- 2 M0 & "Systemn- FMicrosoft Equation 3.0 DS Equation Equation.39qChě d ii=1m " =0L`  ._945031661JZF@kY0kYOle DPIC Y\ELMETA GS1  @& & MathTypeTimes New Roman,- 2 c 2  d Times New Roman4- 2 i> 2 i> 2 ki> 2 m Symbol- 2 ={Symbol- 2 8Symbol- 2 = Times New Roman4- 2 ;1pTimes New Roman,- 2 0 & "Systemn- FMicrosoft Equation 3.0 DS Equation Equation.39qcXbIfI c i dCompObj[]TfObjInfo^VEquation Native Wt_1293882717ftaF0kY0kY ii=1m " `"0LT  X .1  @ & & MathType "-@}@I@}@ITimes New RomanOle YPIC `cZLMETA \CompObjbdof4- 2 4Q 2 Jc 2 eY 2 and 2 ~ Q 2 d 2 eY Times New Roman- 2 Acc 2 i> 2 ki> 2 i> 2 m 2  dp 2 i> 2  i> 2 m 2 ki>Symbol- 2 @= Symbol- 2 ={ 2  ={Symbol- 2 ~ 2 O  Times New Roman4- 2 .8 2 .8Times New Roman- 2 ;k Times New Roman4- 2 1p 2 R1p & "Systemn- FMicrosoft Equation 3.0 DS Equation Equation.39q8c Y i.LT  X .1  @ &ObjInfoeqEquation Native r:_1293882681hF0kY0kYOle sPIC gjtLMETA vCompObjikfObjInfol & MathType "-@}@I@}@ITimes New Roman4- 2 4Q 2 Jc 2 eY 2 and 2 ~ Q 2 d 2 eY Times New Roman- 2 Acc 2 i> 2 ki> 2 i> 2 m 2  dp 2 i> 2  i> 2 m 2 ki>Symbol- 2 @= Symbol- 2 ={ 2  ={Symbol- 2 ~ 2 O  Times New Roman4- 2 .8 2 .8Times New Roman- 2 ;k Times New Roman4- 2 1p 2 R1p & "Systemn- FMicrosoft Equation 3.0 DS Equation Equation.39q"0 2Y i.LT Equation Native >_1293905846oF0kY0kYOle PIC nqLMETA CompObjprfObjInfosEquation Native : X .1  @ & & MathType "-@}@I@}@ITimes New Roman4- 2 4Q 2 Jc 2 eY 2 and 2 ~ Q 2 d 2 eY Times New Roman- 2 Acc 2 i> 2 ki> 2 i> 2 m 2  dp 2 i> 2  i> 2 m 2 ki>Symbol- 2 @= Symbol- 2 ={ 2  ={Symbol- 2 ~ 2 O  Times New Roman4- 2 .8 2 .8Times New Roman- 2 ;k Times New Roman4- 2 1p 2 R1p & "Systemn- FMicrosoft Equation 3.0 DS Equation Equation.39qs Y .._1293905812QmvF0kY0kYOle PIC uxLMETA LT  X .1  @ & & MathType "-@}@I@}@ITimes New Roman4- 2 4Q 2 Jc 2 eY 2 and 2 ~ Q 2 d 2 eY Times New Roman- 2 Acc 2 i> 2 ki> 2 i> 2 m 2  dp 2 i> 2  i> 2 m 2 ki>Symbol- 2 @= Symbol- 2 ={ 2  ={Symbol- 2 ~ 2 O  Times New Roman4- 2 .8 2 .8Times New Roman- 2 ;k Times New Roman4- 2 1p 2 R1p & "Systemn- FMicrosoft Equation 3.0 DS Equation Equation.39qCompObjwyfObjInfozEquation Native >_1325064141}F0kY0kY"@ā 2Y ..L`  .1  @& & MathTypeTimes New Roman,- 2 c 2  d Ole PIC |LMETA CompObj~fTimes New Roman4- 2 i> 2 i> 2 ki> 2 m Symbol- 2 ={Symbol- 2 8Symbol- 2 = Times New Roman4- 2 ;1pTimes New Roman,- 2 0 & "Systemn- FMicrosoft Equation 3.0 DS Equation Equation.39q SS(Q)=MS(Q)=(c i 2Y i. ) 2 " (c i2 /r i )  "ObjInfoEquation Native _1325064177CF0kY0kYOle L`  .1  @& & MathTypeTimes New Roman,- 2 c 2  d Times New Roman4- 2 i> 2 PIC LMETA CompObjfObjInfoi> 2 ki> 2 m Symbol- 2 ={Symbol- 2 8Symbol- 2 = Times New Roman4- 2 ;1pTimes New Roman,- 2 0 & "Systemn- FMicrosoft Equation 3.0 DS Equation Equation.39qP| (c i 2Y i. ) 2 " (c i2 " )/r FMicrosoft Equation 3.0 DS EqEquation Native _1325146841F0S kY0S kYOle CompObjfs"6~.Ob9Yt9Wc+HA%<?} 2¨?Vbq7Ȟܤ7\|n=p'_F dB2 ;\4n=8gdbR ,.IeԡRYݏ`>zDd h  s *A? ?3"`?2RPh|fc8"1.`!&Ph|fc8"1@xڥO@=8N 5e`#RĂ"eaDX凰A)22 ,l lH,L [ni;۲S*u\{. ?0 #C*?7Bh"Πsnq댏V' 3yghC?G!1&s̎q N`n''j'@W-s8k67 g7m?ϥ#Zws"H(+/!QnrRK}}HpN:}7%b2L6qNo)qO88OQG֏Q݋Nln9))~4f7J.Q!2زcd瑿zձ~l 5^CWN;pmH~td5:+QHlU%p{9|}?.Fu\FɚhtWI ]H6-8:#>z{T(MDd h   s *A ? ?3"`?2W-REV3 `!+-REV"@x5xڥk@ǿ3Y4JED!Cmŋbۛ.4II*eA*RЫ^cq8M2l&yͼ}2.8zNҒByuY)榬'Wj/[sں01 {^ 5[퍵l+998&XAw8?Ki=j ?7i饬WKċ։/ZׁZWQ/u8J=_V7H{T׸¼hَ:A-S@p?Nz\(.Gܵxc$@|a9+$UC,r=äK+x_rt 0bRT9UޑC}"IjǛЮJ:?G:>%%_1[kjxw}cqz3[8jUq ()*LonRVt;xz}GnTtJ=#Dd |h   s *A ? ?3"`? 2g ~VE@p!Г|C `!; ~VE@p!Г|`R0 xcdd``$d@9`,&FF(`T)QRcgbR  fznĒʂT/&`b]F"L `0ero&.dabM-VK-WMc<qCdet3b^?cJ`s#+>#t] `p121)W2ePdk{> 3 [ UL-Dd B   S A ?  2f~ɨ]P݀5AsC`!kf~ɨ]P݀5A@9xRJ@}3 b œ,4/x+;Y.Ԛ0余!5 Ԍz1& Z2G+&CogAQ6- MM M4pt|<`D~dEr_(947 '\|*zU@r.Js"KjjO 7hJAɧJɽS/>_ebẁ^/`ss+aPL>z3NßlnJ%4UrS.8@Ӥ;+KRsA2u(2t5= U~;Dd `B  S A ?  2ynֈ5d`!yynֈ5d@X GxRJ@}3 AAH=xSl/@?P5`B OW'C[/5H ۝ʀ! -Qf9z0gY&+.+5&? :pWt]Z2Cqi xUcs*8j.UnI\0f; 8NQMq\LUy U@2JcU'CֿH%r>NIo~ä>[IQ4E'(W--Ϊ\5Q>q&ge>p=[$F}q]$$Ifx!vh55555555#v#v#v#v#v#v#v:V x4 Po"5555555/ 44 xaxf4pPyt\z/?kd$$Ifx4ִb J + }o" Po"    4 xaxf4pPyt\z/Dd h5h  s *A? ?3"`? 2^Q&9Nw:#$`!2Q&9Nw@|xcdd`` @c112BYL%bpu 1#^'$$Ifx!vh55a55#v#va#v#v:V x4 (o"55a55/ 44 xaxf4p(yt\z/$$Ifx!vh55555555#v#v#v#v#v#v#v:V x4o"555555544 xaxf4$$Ifx!vh55555555#v#v#v#v#v#v#v:V x4o"555555544 xaxf4$$Ifx!vh55555555#v#v#v#v#v#v#v:V x4o"555555544 xaxf4$$Ifx!vh55555555#v#v#v#v#v#v#v:V x4o"555555544 xaxf4Dd h5h  s *A? ?3"`?2U{=h`}19-`!){=h`}@R|xcdd``> @c112BYL%bpuZ,Șh`R0 xڕQN@]!HX B)L :\ RD GPJO(RDv5w#5`=67jD7q}<^Ɉ!U2;5|q- `С+yNAs H}pψ㢊ۦӯ*\$5r5~oGc}!Taζa6fEhG|Qp 8œ5hxX~KidI$$Ifx!vh555555d #v#v#v#v#v#vd :V x4o"555555d / 44 xaxf4ytN3$$If!vh5P5@555@#vP#v@#v#v@:V x4p 25P5@55@/ 44 xf4p2yt\z/T$$If!vh5P5@555@#vP#v@#v#v@:V x4 5P5@55@44 xf4yt9T$$If!vh5P5@555@#vP#v@#v#v@:V x4J5P5@55@44 xf4T$$If!vh5P5@555@#vP#v@#v#v@:V x4\5P5@55@/ 44 xf4T$$If!vh555555#v#v#v#v#v#v:V x4 <555555/ / 44 xaf4p<ytpUT$$If!vh555555#v#v#v#v#v#v:V x455555544 xaf4ytpUT$$If!vh555555#v#v#v#v#v#v:V x455555544 xaf4ytpUT$$If!vh555555#v#v#v#v#v#v:V x4555555/ 44 xaf4ytpUT$$If!vh555555#v#v#v#v#v#v:V x4,555555/ 44 xaf4ytdCT$$If!vh555555#v#v#v#v#v#v:V x4,555555/ 44 xaf4ytdCT$$If!vh5 5 555#v #v #v:V l; 265 5 5/ /  ap2yt/I$$If!vh5 5 555#v #v #v:V l4,65 5 5/  / af4p2yt/I$$If!vh5 5 555#v #v #v:V l4,65 5 5/ af4p2yt/I$$If!vh5 5 555#v #v #v:V l4,65 5 5/ af4p2yt/I$$If!vh5 5 555#v #v #v:V l4,65 5 5/ af4p2yt/I$$If!vh5 5 555#v #v #v:V l4,65 5 5/ af4p2yt/I$$If!vh5 5 555#v #v #v:V l4;65 5 5/  / af4p2yt/IDd  h  s *A? ?3"`?2FM J>z:ڵI%:mcĽwx|el+\w0*;xT[LU_Ig}U߀VR~O R6\E<>OFKB=彲_HBpgg{;_# xנ=."=a>t6#؋}_D 2ֆ(haь1 b1bPGDa%wXx|}Qv aȽGq4YtFZmkY6?)!)NZuZecӲ_f.98?i;^O_ ;J7ɱfU^-o|~shJp2 i_\ _ B=uz6oʇuZ^M*Zdž8GBq[>.rnsK{5},GIqAiSbSta$;B݈ NʡBsuL‰h[8=k lY$$If!vh5p5F5F5F5F#vp#vF:V x4 25p5F/ 44 xf4p2yt\z/T$$If!vh5p5F5F5F5F#vp#vF:V x45p5F44 xf4T$$If!vh5p5F5F5F5F#vp#vF:V x45p5F44 xf4T$$If!vh5p5F5F5F5F#vp#vF:V x45p5F/ 44 xf4T$$IfH!vh5X5X5X#vX:V l 6,5X9/ / aHpytab$$IfH!vh5X5X5X#vX:V l, 65X9/  / aHpytab$$IfH!vh5X5X5X#vX:V l,65X9/ aHpytab$$IfH!vh5X5X5X#vX:V l,65X9/ aHpytab$$IfH!vh5X5X5X#vX:V l,65X9/ aHpytab$$IfH!vh5X5X5X#vX:V l,65X9/ aHpytab$$IfH!vh5X5X5X#vX:V l,65X9/ aHpytab$$IfH!vh5X5X5X#vX:V l,65X9/ aHpytab$$IfH!vh5X5X5X#vX:V l,65X9/ aHpytab$$IfH!vh5X5X5X#vX:V l,65X9/ aHpytab$$IfH!vh5X5X5X#vX:V l,65X9/ aHpytab$$IfH!vh5X5X5X#vX:V l;65X9/  / aHpytab;$$If!vh5@55555#v@#v:V l, <x6,5@59/  / ap<ytab$$If!vh5@55555#v@#v:V l,x6,5@59/ /  / ap<ytab$$If!vh5@55555#v@#v:V l,x6,5@59/ ap<ytab$$If!vh5@55555#v@#v:V l;x6,5@59/  / ap<ytab$$If!vh5@55555#v@#v:V l,x6,5@59/ ap<ytab$$If!vh5@55555#v@#v:V l,x6,5@59/  ap<ytab;$$If!vh5@55555#v@#v:V l, <x6,5@59/  / ap<ytab$$If!vh5@55555#v@#v:V l,x6,5@59/ / ap<ytab$$If!vh5@55555#v@#v:V l;x6,5@59/  / ap<ytab3Dd y;D%KK0  # A"ZTa_s'EZ@=ZTa_s'EB'}#o\QxݻTY"JPtlm$Zz"\$x )B7Mrf|9>O{^ǞWxqw^~,O4Ǘ~|mWn\&~j~7/߸{.wo5?{ZF;>;~OEW^2 9ex}ݹ[.Ǯ/<{~ )]chپ5`媏{4>,ϧ,3tX7a9 0 0 0}l߷Tï`2}?S@߳L(}{}~}O}~> t)}7|{}yϯ5=}{=}G{m{=}X{=}@ߣ{=}{=}@{=}@ߣ}@ߣ{@ߣ{=}{=}@{=}@ߣ}@ߣ{@ߣ{=}{=}@ߣﻭ=}{={=w{={@}}G}=}{=}{={={={@@{@@ߣ}G}}G}=}{M]m7@m|_}So)n}{}x}{~=eP{@y~)>uOC9vspz]Fn}@ߗ]={}G߃X}=}^=9@ߣ}G߃{={}@ߣ}G߃{={}@ߣ}Gv@ߣ{{={}{@@ߣA{G}=}^==G}}{={=l@{{={={}G~}{={={}{@@ߣA{{@@ߣA{{@@ߣA{{@@ߣA{{@@ߣA{{@@ߣA{{@@ߣA{{@@ߣA{{@@ߣA{{@@ߣA{BM]m7=>ߧ,@NZf|uc}=~]}h{={}_ϟ:ܧ}ov~}C~ο}?~ϵAY󻆾=}{={@@ߣAﵱ=}{={={=}{={={=}{=h7#G{=^{=}{=}G4G{=^߻O{=}sY}i6@ߣ@G}qBm@G}}}8{}=={={{={{@ߣ@@ߣ@G}}^}}}=={}=={={{={{@ߣ@@ߣ@G}$}s]F{={{{}^{={{{}Cw@{}t}|@_D]1{-}Ưo_} {}@G}@{޼}{@ߣ=%{}Gw;@ߣ0'{}}}}9Iv@ߣ{{I={=^X={Q=={={{T{{={{{}^)}8jc}q}}}={=8}=}@{}~p,(}=={=^X={Q=={={{}@{=={={{}@{=={={{}@{=={={{}@{=={={{}@{=={={{}@{=={={{}@{=={={{}@{=={={{}@{=={={{}@{=M,}޾k=^]1姸K}4s}~}=$R{O=uo'eOP$p;>z9s>^={>?@Ǽ}o=@ߣ@G}z@kc}=={={{ip,={={{8c@ߣ@G}}^}}}=={}=={={{={{@ߣ@@ߣ@G}}^}}}=={}=={={{={{@ߣ@@ߣ@G}}^}}}=Yۆm=׶}=}{}=}{={=={={@ߣ{@ߣG}@^{=n{wcG}@^={=^߃G}@^={=^߃G}@~NZs{@ߗ{}ϼ}?}/}C}_V;}7_}_> ={羯_=>~y}<=~}}m[4{}}=}{}o ={=^߃G}@^}Aߣ=}{=}{sL{={@{Nd{@ߣp{u}{};}}7}@}@{{9&{={==^߃G={={==^߃G={=s{={={={@{AߣG}@^9"{={={@{{@ߣG}@߃G}@}}}=}{=={={={@{i={={={@{i={={={@{n={={={@c }@}=}{=6{@ߣG}S\>=}[{=COq;wA3'{@/6@~7|@~ݏOcOۛϏ#w}Wׯٟ:|<~_ϵ=g^}G9 0 0 0퍹Q!\=޿U?N|p<ؿO^$$IfH!vh5X5X5X#vX:V l 6,5X9/ / aHpytab$$IfH!vh5X5X5X#vX:V l, 65X9/  / aHpytab$$IfH!vh5X5X5X#vX:V l,65X9/ aHpytab$$IfH!vh5X5X5X#vX:V l,65X9/ aHpytab$$IfH!vh5X5X5X#vX:V l,65X9/ aHpytab$$IfH!vh5X5X5X#vX:V l,65X9/ aHpytab$$IfH!vh5X5X5X#vX:V l,65X9/ aHpytab$$IfH!vh5X5X5X#vX:V l,65X9/ aHpytab$$IfH!vh5X5X5X#vX:V l,65X9/ aHpytab$$IfH!vh5X5X5X#vX:V l,65X9/ aHpytab$$IfH!vh5X5X5X#vX:V l,65X9/ aHpytab$$IfH!vh5X5X5X#vX:V l;65X9/  / aHpytab;$$If!vh5@55555#v@#v:V l, <x6,5@59/  / ap<ytab$$If!vh5@55555#v@#v:V l,x6,5@59/ /  / ap<ytab$$If!vh5@55555#v@#v:V l,x6,5@59/ ap<ytab$$If!vh5@55555#v@#v:V l;x6,5@59/  / ap<ytab$$If!vh5@55555#v@#v:V l,x6,5@59/ uation Equation.39qa c i 2Y i. ()  "  2 FMicrosoft Equation 3.0 DS Equation Equation.39qObjInfoEquation Native }_1325146916F0S kY0S kYOle CompObjfObjInfoEquation Native c_1151237160F0S kY0S kYG`,T c i2 ()  " /rL(  FMicrosoft Equation 3.0 DS Equation Equation.39qOle PIC LCompObjfObjInfoEquation Native >1TableZsSummaryInformation(DocumentSummaryInformation8 L    ]" 2Y i.Oh+'0, @L l x  (Topic 5: Orthogonal contrasts [S&T p Valued Gateway 2000 CustomerNormal Jdubcovs4Microsoft Office Word@^в@5@5     T !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRap<ytab$$If!vh5@55555#v@#v:V l,x6,5@59/  ap<ytab;$$If!vh5@55555#v@#v:V l, <x6,5@59/  / ap<ytab$$If!vh5@55555#v@#v:V l,x6,5@59/ / ap<ytab$$If!vh5@55555#v@#v:V l;x6,5@59/  / ap<ytab;$$Ifl!vh5@55555#v@#v:V l, <x6,5@59/  / alp<yty$$Ifl!vh5@55555#v@#v:V l,x6,5@59/ /  / alp<yty$$Ifl!vh5@55555#v@#v:V l,x6,5@59/ alp<yty$$Ifl!vh5@55555#v@#v:V l;x6,5@59/  / alp<yty$$Ifl!vh55@555555#v#v@#v:V l4 PV6,55@59/ /  alf4pPytyKkdR$$Ifl4ִ f"V@&&&&&& PV6    44 lalf4pPyty%$$Ifl!vh55@555555#v#v@#v:V l4;V6,55@59/  / alf4pPytyT$$Ifl!vh55@555555#v#v@#v:V l4,V6+,55@59/ / / / / alf4pPyty5$$Ifl!vh55@555555#v#v@#v:V l4;V6+,55@59/ /  / alpPytyT$$Ifl!vh55@555555#v#v@#v:V l4,V6+,55@59/ / / / / alf4pPytyQ$$Ifl!vh55@555555#v#v@#v:V l4,V6+,55@59/ / / / / alpPyty5$$Ifl!vh55@555555#v#v@#v:V l4;V6+,55@59/ /  / alpPytyT$$Ifl!vh55@555555#v#v@#v:V l4,V6+,55@59/ / / / / alf4pPytyQ$$Ifl!vh55@555555#v#v@#v:V l4,V6+,55@59/ / / / / alpPytyQ$$Ifl!vh55@555555#v#v@#v:V l4,V6+,55@59/ / / / / alpPyty5$$Ifl!vh55@555555#v#v@#v:V l4;V6+,55@59/ /  / alpPytyT$$Ifl!vh55@555555#v#v@#v:V l4,V6+,55@59/ / / / / alf4pPytyQ$$Ifl!vh55@555555#v#v@#v:V l4,V6+,55@59/ / / / / alpPytyQ$$Ifl!vh55@555555#v#v@#v:V l4,V6+,55@59/ / / / / alpPytyQ$$Ifl!vh55@555555#v#v@#v:V l4,V6+,55@59/ / / / / alpPyty5$$Ifl!vh55@555555#v#v@#v:V l4;V6+,55@59/ /  / alpPytyDd] K D   3 @@"?$$If!vh55$#v#v$:V l4, `6,55$/  / / /  / af4pytabQ$$If!vh555555#v:V l, <6,5/  / /  / / ap<ytab$$If!vh555555#v:V l4, ` 6,5/ / / / / af4p<ytab$$If!vh555555#v:V l4, ` 6,5/ / / / / af4p<ytab$$If!vh555555#v:V l4, ` 6,5/ / / / / af4p<ytab$$If!vh555555#v:V l4, ` 6,5/ / / / / af4p<ytab$$If!vh555555#v:V l4, ` 6,5/ / / / / af4p<ytab$$If!vh555555#v:V l4; ` 6,5/  /  / / / af4p<ytab $$If!vh555555#v:V l4,6,5/  /  / / / af4p<ytabDd b  c $A? ?3"`?2ڠS1^9,ƨH`!ڠS1^9,ƨN@Cyxcdd``^$d@9`,&FF(`TV! KA?H1 @e@P5< %!  @_L ĺE141X@ ȝ} V9@&&ܤ n 3Dl\ _yb!f227JBips6 H.d 5W?\! ~ Ay8 1 jvVF==2vGbod2))rf p3@{g0ڂ͍@J.hNpt0@``3#RpeqIj.C,E.Yݏ`%rDd b  c $A? ?3"`?2S$mL9 uլ`!S$mL9 uZ h^xcdd``^ @c112BYL%bpuǧ쿏}+?^W?zϟEO{K<ź}{@@~u|nz X=6w{lοm?C->tl?9}0z9'skKs`s>y}|KPz?hTS7tm㽞{}{ڕs ׇ{}}ιL@߻Z:?qr΁:z5}Cq uS;5>sml)3>My_^3XXC[؄ǯOX56[o]P׸,:_`Ǿ"kq uOM6ڸ&:S-M@NPgP߽1l;A{"\ChB]ci|✏j|{0NSmblBOS714Nƪ:e]; 0Nk|M ouzn`kS^c? >:Z`lj|Bk9^gJS46!5o''X0>cOMO0>O0>M:M0>:O060>cc0>lqlbX,bX,K/{9`3-)-i|}߮7@ǻ_k{}O}oc~?)WO~Km}_{OoKﯧ66#x.={}}=^{}{}@{=}@{}@{@ߣ}{}@{λ@{}?s}@{}@{={}G={}^{}^{=^=}={}G={}^{}^{=^=}={}G=~@{S>{}=={}{=={{?{}^8@ߣܫ@{=^{}=@{}`_} Bߣ=A{@߃F{=@^\}l}@{}k@ߣ=^ =A{}}^={}{{}=@kt}ѹ>5c=)}FAo%r>@߃@߃u<@߃_Z={q^{;}Km?}uWO@o{?]c<6Owi)}?s~K@{}^{9{}{} :}9@{wF~G{s:~}@3GZGX9}^(^W@{0{]}.#tNsI߃眾{=h9AߣO^ <} {} = ~=O| ??}@hx?)þ3{{A{C^}}s=ߠ=`Ώ1}Zy{=@{0NGsp=;x=}6^6`"{=[1` `#{}E͙t=1 ^{}ZsI͠=7wk5}ڍ^ߛpغ7?:^{?|+傾M{xGߣ47+:}=r+ {}_8>vߛ }}N6=70tq|s G{K~r\lWF^{sP|{:g0Zo;`G[ﱏ]{t=vY{'@F=chG]=\}}^{}}nXG}`?v}p5`;=`{]}==}^}{}`_=50?y9O0o{s}]%p^y }آlw}=]=;}~؏h|}}~ ~۾=Kv|\؆'{해p}7~}=x?#BE߯w{mA{=h{=@{@{@}AG߃g@{9{}}}멗Z{폭lzO={bFk<b}!vk{꽞Z@{@ߣA}A{WSA߮=q=>s^߃}mO=g_߃}_oߟ{﷿._߃}^{s;x.}͹9烶}_/m~;G幄:}?t m>=ǚ@Ǻwm}m{}={===cPq~={@{X{}^C=o{}^C=o?{}==h{@{h{@{}{===h{@{={@{}Gߣ}A^߃G}}c[}m@ߣi={}m_Ͽ}A^ߣG}m{}m{===@{=h{@{{}Gߣ}A^ߣG}G[h{}Gߣ}^ߣG}G{}m{=}=ھ1#=>}}}ѭ=^[{}{}{}V]'c'm=^ߣ}^ߣG{}@ߣ=h{}^k{}^ߣG{}=^{}m{m=@{=@ߣ=h{}Wǔ}:]﹏@o?8}}=m_r~ߣ=h{}?u>^ӻmG^i[<=_w~>{@j|}@߷>xCΟr|}׹bX,bhtpXJ>lu`޾Z|qc_`/~眣@em?)^1//}S0_/SK(^@[KPg;v?ts3G.sou޽|;Q1c3(Dd |b  c $A? ?3"`?2rJp)H; (oiN`!FJp)H; (oi`0xcdd``f 2 ĜL0##0KQ* WÔQRcgbR q &znĒʂT/&`b]F"Li `0ero&B2sSRsnb .v0o8^+KRsA<.E.bdg!u~`Zz &Topic 5: Orthogonal contrasts [S&T p Title  F'Microsoft Office Word 97-2003 Dof  2 0@P`p2( 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p8XV~OJQJ_HmH nH sH tH L`L Normal `CJOJQJ_HmH sH tH N@N  Heading 1 ^`5N@N  Heading 2 0x^`06NN  Heading 3 0<^`05BB  Heading 4^`5JJ  Heading 5 8^`6>>  Heading 6^`FF  Heading 7   ^ `FF  Heading 8 @ @ ^@ `F F  Heading 9   ^ `DA`D Default Paragraph FontVi@V  Table Normal :V 44 la (k (No List 88 body text $<a$4 4 Footer  !4@4 Header  !:":  Footnote TextCJ66 References$a$>> mathsubscriptCJEH<OR< pn,no indent `DOQRD pc,centered,c$xxa$R/rR listing 88^8OJQJ_HmH sH tH HH SAS output `CJOJQJkHHC@H Body Text Indentx/.J>@J Title$`a$5OJQJhtH uLBL Body Text `CJOJQJhtH uPR@P Body Text Indent 2&./]&HH 5 Balloon TextCJOJQJ^JaJNN 5Balloon Text CharCJOJQJ^JaJ.). Md4 Page NumberPK![Content_Types].xmlj0Eжr(΢Iw},-j4 wP-t#bΙ{UTU^hd}㨫)*1P' ^W0)T9<l#$yi};~@(Hu* Dנz/0ǰ $ X3aZ,D0j~3߶b~i>3\`?/[G\!-Rk.sԻ..a濭?PK!֧6 _rels/.relsj0 }Q%v/C/}(h"O = C?hv=Ʌ%[xp{۵_Pѣ<1H0ORBdJE4b$q_6LR7`0̞O,En7Lib/SeеPK!kytheme/theme/themeManager.xml M @}w7c(EbˮCAǠҟ7՛K Y, e.|,H,lxɴIsQ}#Ր ֵ+!,^$j=GW)E+& 8PK!Ptheme/theme/theme1.xmlYOo6w toc'vuر-MniP@I}úama[إ4:lЯGRX^6؊>$ !)O^rC$y@/yH*񄴽)޵߻UDb`}"qۋJחX^)I`nEp)liV[]1M<OP6r=zgbIguSebORD۫qu gZo~ٺlAplxpT0+[}`jzAV2Fi@qv֬5\|ʜ̭NleXdsjcs7f W+Ն7`g ȘJj|h(KD- dXiJ؇(x$( :;˹! I_TS 1?E??ZBΪmU/?~xY'y5g&΋/ɋ>GMGeD3Vq%'#q$8K)fw9:ĵ x}rxwr:\TZaG*y8IjbRc|XŻǿI u3KGnD1NIBs RuK>V.EL+M2#'fi ~V vl{u8zH *:(W☕ ~JTe\O*tHGHY}KNP*ݾ˦TѼ9/#A7qZ$*c?qUnwN%Oi4 =3ڗP 1Pm \\9Mؓ2aD];Yt\[x]}Wr|]g- eW )6-rCSj id DЇAΜIqbJ#x꺃 6k#ASh&ʌt(Q%p%m&]caSl=X\P1Mh9MVdDAaVB[݈fJíP|8 քAV^f Hn- "d>znNJ ة>b&2vKyϼD:,AGm\nziÙ.uχYC6OMf3or$5NHT[XF64T,ќM0E)`#5XY`פ;%1U٥m;R>QD DcpU'&LE/pm%]8firS4d 7y\`JnίI R3U~7+׸#m qBiDi*L69mY&iHE=(K&N!V.KeLDĕ{D vEꦚdeNƟe(MN9ߜR6&3(a/DUz<{ˊYȳV)9Z[4^n5!J?Q3eBoCM m<.vpIYfZY_p[=al-Y}Nc͙ŋ4vfavl'SA8|*u{-ߟ0%M07%<ҍPK! ѐ'theme/theme/_rels/themeManager.xml.relsM 0wooӺ&݈Э5 6?$Q ,.aic21h:qm@RN;d`o7gK(M&$R(.1r'JЊT8V"AȻHu}|$b{P8g/]QAsم(#L[PK-![Content_Types].xmlPK-!֧6 +_rels/.relsPK-!kytheme/theme/themeManager.xmlPK-!Ptheme/theme/theme1.xmlPK-! ѐ' theme/theme/_rels/themeManager.xml.relsPK]  !"#$%&'ANOPQRUX[_cgknqtwz}z        hrtvwxyz{|}~ !"#$%&'ANOPQRUX[_cgknqtwz}  !"#zH %%%%%( keN%!$C&j*277:^;=0FJPPV\]&^xaeggkkntn8oqst+uuyz |~eOB3888BDEFGIJLMNPR^ilntxz{}    # $$%4%>%]%m%%%%%&|&&&&())*)*K*k**477(7H7778-8:z?xHHHHHJ/PePuPPPPPPPPPP\o]:^;^Q^g^^^^^^^^^__3fifsf}fffffffffgg-gEg^gpggggggggg%k&k3a< "$'b+2L=H2$Jp)H; (oiNE`@+( F f  E eC  "0?t f s *X99? "` E g BCJDEF :4tJE@@  S" K h 6h S"`?S~# ZB i S D  ZB j S D tZB k S D @ t@ ZB l S D L tL ZB m S D tZB nB S D U ' ZB oB S D bV b( ZB pB S D id i6 ZB qB S D e 7  r 6r S"`?K  fB sB s *D $w t 6t S"`?] k  ZB u S D \   v 6v S"`?k [   w 6w S"`?&k    x 6x S"`?B}  y 6y S"`?   z 6z S"`?S`  { 6{ S"`?d    | 6| S"`? tJ  } 6 } S"`?      ~ 6!~ S"`?o !  6" S"`?:   "  6# S"`?< J #  6$ S"`? '  $  6A ? ? C"`??T "F& #" ?nB  S D#" ?iF&nB  S D#"  ?F&YF&nB  S D#" $?iYnB  S D#" (?YYF&t  3 3"`,?+!"5#   C FA. T`TT`T#" `?bB  c $D"?bB  c $D"?bB  c $D"?bB @ c $D"?n  S #" `? B S  ? ePVXXXXX_zDGt rjt @1t11it7tGDat1teD h to s beFH^gZ\ R"W"T#V###$$U%W%3&<&''K'P'^(`() ))!)7)>)))_*d*--(.-.;;IFKFGGGGGGHHHIIIIIIIIIKKMMMMUUVVZZ\\^\e\^ ^i^p^^^cdjdjeqe7f>f}ffkkkkllm(mrm|mmmooFqKqLqOqrrssbslsssssLzNzOzQzRzTzUzWzXzqzrzz$%89  {WZ^a  _ i j T#V#U%W%''^(`() )))J7L7:::>;\@a@=A?AZBdBeBBBBGGM_NnQqQTTV9WXX|``hhfnrn"z%zLzNzOzQzRzTzUzWzXzZz\zqzrzz333333333333333333333333333333333333333333333V  o7E K!L!j!k!!R"y"# $)*-9.e.x.7O77 8::o;;==B C CCCC?FPFKK\L^LLMTUUVY~Z ]&]]^ab[cgccccdhhhhh&i)kkllmmmm=nIn\nwnnnooooooooooooooooooooooo6pp9qLzNzOzQzRzTzUzWzXzZz\zqzrzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzVm  )BYu/u/LLjjjj)k)k@k@kzkzkkkkkkkkkkkll+l+lDlDl\l\lllllllmmYmYmmmmmmmr?rPrPrTrTrrrrrrrrrrr3s3sDsDsssssttuuwwyyKzLzLzNzOzOzQzRzTzUzWzXzqzrzrzszzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz sT Ҡ"Fy,Z8Z|GCtNY~ZQ-zj 3 {yZB~0::lXh^`OJQJo(hHh^`OJQJ^Jo(hHohp^p`OJQJo(hHh@ ^@ `OJQJo(hHh^`OJQJ^Jo(hHoh^`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHohP^P`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHohp^p`OJQJo(hHh@ ^@ `OJQJo(hHh^`OJQJ^Jo(hHoh^`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHohP^P`OJQJo(hH@^`@o(.88^8`.L^`L.  ^ `.  ^ `.xLx^x`L.HH^H`.^`.L^`L.h^`OJQJo(hHh^`OJQJ^Jo(hHohp^p`OJQJo(hHh@ ^@ `OJQJo(hHh^`OJQJ^Jo(hHoh^`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHohP^P`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHohp^p`OJQJo(hHh@ ^@ `OJQJo(hHh^`OJQJ^Jo(hHoh^`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHohP^P`OJQJo(hHh^`.hpp^p`.h@ L@ ^@ `L.h^`.h^`.hL^`L.h^`.hPP^P`.h L ^ `L.h^`CJOJQJo(hHh^`OJQJ^Jo(hHohpp^p`OJQJo(hHh@ @ ^@ `OJQJo(hHh^`OJQJ^Jo(hHoh^`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHohPP^P`OJQJo(hHhv^v`OJQJo(hHhF^F`OJQJ^Jo(hHoh^`OJQJo(hHh ^ `OJQJo(hHh ^ `OJQJ^Jo(hHoh^`OJQJo(hHhV^V`OJQJo(hHh&^&`OJQJ^Jo(hHoh^`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHohp^p`OJQJo(hHh@ ^@ `OJQJo(hHh^`OJQJ^Jo(hHoh^`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHohP^P`OJQJo(hH8^8`o(. ^`hH.  L^ `LhH.  ^ `hH. x^x`hH. HL^H`LhH. ^`hH. ^`hH. L^`LhH. NYy,Q-z0::GCB~sT 83 {                    ȶ                                   >l                          .         76elNb}& (e.\z/Md4ra6dC/I|TpU2W_X]IL_C0ip5i kv'v m{6~==$4e5bN@RSyab|9J&8(W$hh*|F p2tZEPTLzNz@/"/#/$%&GHJrzzp@pp4@p,p.p`@p2ph@pVpXp@p`@p8Unknown Iago Lowe a* Times New RomanTrebuchet MS5Symbol?. * ArialArial;SimSun[SOG5  hMS Mincho-3 fg?= * Courier New;WingdingscCG Times (W1)Times New Roman5. *aTahomaW  BCambria MathCalisto MT"CV$\Ff$\F@ h>@ h>!V24dzz 3QVHX?v2! xx%Topic 5: Orthogonal contrasts [S&T pValued Gateway 2000 CustomerJdubcovs4         CompObjycument MSWordDocWord.Document.89q