Exercise 8.1

Page: 146

1. The angles of quadrilateral are in the ratio $3: 5: 9: 13$. Find all the angles of the quadrilateral.

Solution:
Let the common ratio between the angles be $=\mathrm{x}$.
We know that the sum of the interior angles of the quadrilateral $=360^{\circ}$
Now,

$$
\begin{aligned}
& 3 \mathrm{x}+5 \mathrm{x}+9 \mathrm{x}+13 \mathrm{x}=360^{\circ} \\
& \Rightarrow \quad 30 \mathrm{x}=360^{\circ} \\
& \Rightarrow \quad \mathrm{x}=12^{\circ}
\end{aligned}
$$

\therefore, Angles of the quadrilateral are:

$$
\begin{aligned}
& 3 \mathrm{x}=3 \times 12^{\circ}=36^{\circ} \\
& 5 \mathrm{x}=5 \times 12^{\circ}=60^{\circ} \\
& 9 \mathrm{x}=9 \times 12^{\circ}=108^{\circ} \\
& 13 \mathrm{x}=13 \times 12^{\circ}=156^{\circ}
\end{aligned}
$$

2. If the diagonals of a parallelogram are equal, then show that it is a rectangle.

Solution:

Given that,
$\mathrm{AC}=\mathrm{BD}$
To show that, ABCD is a rectangle if the diagonals of a parallelogram are equal
To show ABCD is a rectangle we have to prove that one of its interior angles is right angled.
Proof,
In $\triangle A B C$ and $\triangle B A D$,
$\mathrm{AB}=\mathrm{BA}$ (Common)
$\mathrm{BC}=\mathrm{AD}$ (Opposite sides of a parallelogram are equal)
$\mathrm{AC}=\mathrm{BD}$ (Given)
Therefore, $\triangle \mathrm{ABC} \cong \triangle \mathrm{BAD}$
$\angle A=\angle B$
also,
$\angle A+\angle B=180^{\circ}$ (Sum of the angles on the same side of the transversal)
$\Rightarrow 2 \angle A=180^{\circ}$
$\Rightarrow \angle A=90^{\circ}=\angle B$
$\therefore, A B C D$ is a rectangle.
Hence Proved.

3. Show that if the diagonals of a quadrilateral bisect each other at right angles, then it is a rhombus.

 Solution:

Let ABCD be a quadrilateral whose diagonals bisect each other at right angles.
Given that,

$$
\mathrm{OA}=\mathrm{OC}
$$

$O B=O D$
and $\angle \mathrm{AOB}=\angle \mathrm{BOC}=\angle \mathrm{OCD}=\angle \mathrm{ODA}=90^{\circ}$
To show that,
if the diagonals of a quadrilateral bisect each other at right angles, then it is a rhombus.
i.e., we have to prove that ABCD is parallelogram and $\mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{AD}$

Proof,
In $\triangle \mathrm{AOB}$ and $\triangle \mathrm{COB}$,
$\mathrm{OA}=\mathrm{OC}$ (Given)
$\angle \mathrm{AOB}=\angle \mathrm{COB}$ (Opposite sides of a parallelogram are equal)
$\mathrm{OB}=\mathrm{OB}$ (Common)
Therefore, $\triangle \mathrm{AOB} \cong \triangle \mathrm{COB} \quad$ [SAS congruency]
Thus, $\mathrm{AB}=\mathrm{BC}$
[CPCT]
Similarly we can prove,

$$
\mathrm{BC}=\mathrm{CD}
$$

$$
\mathrm{CD}=\mathrm{AD}
$$

$$
\mathrm{AD}=\mathrm{AB}
$$

$\therefore, \mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{AD}$
Opposites sides of a quadrilateral are equal hence ABCD is a parallelogram.
$\therefore, \mathrm{ABCD}$ is rhombus as it is a parallelogram whose diagonals intersect at right angle.
Hence Proved.
4. Show that the diagonals of a square are equal and bisect each other at right angles. Solution:

Let ABCD be a square and its diagonals AC and BD intersect each other at O .
To show that,
$\mathrm{AC}=\mathrm{BD}$
$\mathrm{AO}=\mathrm{OC}$
and $\angle \mathrm{AOB}=90^{\circ}$
Proof,
In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{BAD}$,
$\mathrm{BC}=\mathrm{BA}($ Common $)$
$\angle \mathrm{ABC}=\angle \mathrm{BAD}=90^{\circ}$
$\mathrm{AC}=\mathrm{AD}$ (Given)
$\therefore \triangle \mathrm{ABC} \cong \triangle \mathrm{BAD} \quad$ [SAS congruency]
Thus,

$$
\mathrm{AC}=\mathrm{BD} \quad[\mathrm{CPCT}]
$$

diagonals are equal.
Now,
In $\triangle \mathrm{AOB}$ and $\triangle C O D$,

$$
\angle \mathrm{BAO}=\angle \mathrm{DCO} \text { (Alternate interior angles) }
$$

$$
\angle \mathrm{AOB}=\angle \mathrm{COD} \text { (Vertically opposite) }
$$

$$
\mathrm{AB}=\mathrm{CD} \text { (Given) }
$$

$\therefore, \triangle \mathrm{AOB} \cong \triangle \mathrm{COD} \quad$ [AAS congruency]
Thus,

$$
\mathrm{AO}=\mathrm{CO} \quad[\mathrm{CPCT}] .
$$

\therefore, Diagonal bisect each other.
Now,
In $\triangle \mathrm{AOB}$ and $\triangle \mathrm{COB}$,
$\mathrm{OB}=\mathrm{OB}$ (Given)
$\mathrm{AO}=\mathrm{CO}$ (diagonals are bisected)
$\mathrm{AB}=\mathrm{CB}$ (Sides of the square)
$\therefore, \triangle \mathrm{AOB} \cong \triangle \mathrm{COB} \quad$ [SSS congruency]
also, $\angle \mathrm{AOB}=\angle \mathrm{COB}$

$$
\angle \mathrm{AOB}+\angle \mathrm{COB}=180^{\circ} \text { (Linear pair) }
$$

Thus, $\angle \mathrm{AOB}=\angle \mathrm{COB}=90^{\circ}$
\therefore, Diagonals bisect each other at right angles
5. Show that if the diagonals of a quadrilateral are equal and bisect each other at right angles, then it is a square.
Solution:

Given that,
Let ABCD be a quadrilateral and its diagonals AC and BD bisect each other at right angle at O .
To prove that,
The Quadrilateral ABCD is a square.
Proof,
In $\triangle \mathrm{AOB}$ and $\triangle \mathrm{COD}$,
$\mathrm{AO}=\mathrm{CO}$ (Diagonals bisect each other)
$\angle \mathrm{AOB}=\angle \mathrm{COD}$ (Vertically opposite)
$\mathrm{OB}=\mathrm{OD}$ (Diagonals bisect each other)
$\therefore, \triangle \mathrm{AOB} \cong \triangle \mathrm{COD} \quad$ [SAS congruency]
Thus,

$$
\mathrm{AB}=\mathrm{CD} \quad[\mathrm{CPCT}]---(\mathrm{i})
$$

also,
$\angle \mathrm{OAB}=\angle \mathrm{OCD}$ (Alternate interior angles)
$\Rightarrow \mathrm{AB} \| \mathrm{CD}$
Now,
In $\triangle \mathrm{AOD}$ and $\triangle \mathrm{COD}$,
$\mathrm{AO}=\mathrm{CO}$ (Diagonals bisect each other)
$\angle A O D=\angle C O D$ (Vertically opposite)
$\mathrm{OD}=\mathrm{OD}$ (Common)
$\therefore, \triangle \mathrm{AOD} \cong \triangle \mathrm{COD} \quad[$ SAS congruency]
Thus,

$$
\mathrm{AD}=\mathrm{CD} \quad[\mathrm{CPCT}]---(\mathrm{ii})
$$

also,

$$
\mathrm{AD}=\mathrm{BC} \text { and } \mathrm{AD}=\mathrm{CD}
$$

$$
\Rightarrow A D=B C=C D=A B---(i i)
$$

also, $\angle \mathrm{ADC}=\angle \mathrm{BCD} \quad[\mathrm{CPCT}]$
and $\angle \mathrm{ADC}+\angle \mathrm{BCD}=180^{\circ}$ (co-interior angles)
$\Rightarrow 2 \angle \mathrm{ADC}=180^{\circ}$
$\Rightarrow \angle A D C=90^{\circ}$--- (iii)
One of the interior angles is right angle.
Thus, from (i), (ii) and (iii) given quadrilateral ABCD is a square.
Hence Proved.
6. Diagonal AC of a parallelogram ABCD bisects $\angle A$ (see Fig. 8.19). Show that
(i) it bisects $\angle \mathrm{C}$ also,
(ii) ABCD is a rhombus.

Fig. 8.19
Solution:
(i) In $\triangle \mathrm{ADC}$ and $\triangle \mathrm{CBA}$,
$\mathrm{AD}=\mathrm{CB}$ (Opposite sides of a parallelogram)
$\mathrm{DC}=\mathrm{BA}$ (Opposite sides of a parallelogram)
AC $=\mathrm{CA}$ (Common Side)
$\therefore, \triangle \mathrm{ADC} \cong \triangle \mathrm{CBA} \quad$ [SSS congruency]
Thus,
$\angle \mathrm{ACD}=\angle \mathrm{CAB}$ by CPCT
and $\quad \angle \mathrm{CAB}=\angle \mathrm{CAD}$ (Given)
$\Rightarrow \quad \angle \mathrm{ACD}=\angle \mathrm{BCA}$
Thus,
AC bisects $\angle \mathrm{C}$ also.
(ii) $\angle \mathrm{ACD}=\angle \mathrm{CAD}$ (Proved above)
$\Rightarrow \quad \mathrm{AD}=\mathrm{CD}$ (Opposite sides of equal angles of a triangle are equal)
Also, $\quad \mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{DA}$ (Opposite sides of a parallelogram)
Thus,
ABCD is a rhombus.
7. ABCD is a rhombus. Show that diagonal AC bisects $\angle \mathrm{A}$ as well as $\angle \mathrm{C}$ and diagonal BD bisects $\angle \mathrm{B}$ as well as $\angle \mathrm{D}$.
Solution:

Given that,
ABCD is a rhombus.
AC and BD are its diagonals.
Proof,
$\mathrm{AD}=\mathrm{CD}$ (Sides of a rhombus)
$\angle \mathrm{DAC}=\angle \mathrm{DCA}$ (Angles opposite of equal sides of a triangle are equal.)
also, $\mathrm{AB} \| \mathrm{CD}$

$$
\Rightarrow \angle \mathrm{DAC}=\angle \mathrm{BCA} \text { (Alternate interior angles) }
$$

$\Rightarrow \angle \mathrm{DCA}=\angle \mathrm{BCA}$
\therefore, AC bisects $\angle \mathrm{C}$.
Similarly,
We can prove that diagonal AC bisects $\angle \mathrm{A}$.
Following the same method,
We can prove that the diagonal BD bisects $\angle \mathrm{B}$ and $\angle \mathrm{D}$.

8. ABCD is a rectangle in which diagonal AC bisects $\angle \mathrm{A}$ as well as $\angle \mathrm{C}$. Show that:

(i) ABCD is a square
(ii) Diagonal BD bisects $\angle \mathrm{B}$ as well as $\angle \mathrm{D}$.

Solution:

(i) $\quad \angle \mathrm{DAC}=\angle \mathrm{DCA}$ (AC bisects $\angle \mathrm{A}$ as well as $\angle \mathrm{C}$)
$\Rightarrow \quad \mathrm{AD}=\mathrm{CD}$ (Sides opposite to equal angles of a triangle are equal)
also, $\quad \mathrm{CD}=\mathrm{AB}$ (Opposite sides of a rectangle)
$\therefore, \mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{AD}$
Thus, $\quad \mathrm{ABCD}$ is a square.
(ii) In $\triangle \mathrm{BCD}$,

$$
\mathrm{BC}=\mathrm{CD}
$$

$\Rightarrow \quad \angle \mathrm{CDB}=\angle \mathrm{CBD}$ (Angles opposite to equal sides are equal)
also, $\quad \angle \mathrm{CDB}=\angle \mathrm{ABD}$ (Alternate interior angles)
$\Rightarrow \quad \angle C B D=\angle A B D$
Thus, $\quad B D$ bisects $\angle B$
Now,
$\angle \mathrm{CBD}=\angle \mathrm{ADB}$
$\Rightarrow \quad \angle \mathrm{CDB}=\angle \mathrm{ADB}$
Thus, $\quad \mathrm{BD}$ bisects $\angle \mathrm{D}$
9. In parallelogram $A B C D$, two points P and Q are taken on diagonal $B D$ such that $D P=B Q$ (see Fig. 8.20). Show that:
(i) $\triangle \mathrm{APD} \cong \triangle \mathrm{CQB}$
(ii) $\mathrm{AP}=\mathbf{C Q}$
(iii) $\triangle \mathrm{AQB} \cong \triangle C P D$
(iv) $\mathrm{AQ}=\mathrm{CP}$
(v) APCQ is a parallelogram

Fig. 8.20
Solution:
(i) In $\triangle \mathrm{APD}$ and $\triangle \mathrm{CQB}$,
$\mathrm{DP}=\mathrm{BQ}$ (Given)
$\angle \mathrm{ADP}=\angle \mathrm{CBQ}$ (Alternate interior angles)
$\mathrm{AD}=\mathrm{BC}$ (Opposite sides of a parallelogram)
Thus, $\triangle \mathrm{APD} \cong \triangle \mathrm{CQB} \quad$ [SAS congruency]
(ii) $\mathrm{AP}=\mathrm{CQ}$ by CPCT as $\triangle \mathrm{APD} \cong \triangle \mathrm{CQB}$.
(iii) In $\triangle \mathrm{AQB}$ and $\triangle \mathrm{CPD}$,
$\mathrm{BQ}=\mathrm{DP}$ (Given)
$\angle \mathrm{ABQ}=\angle \mathrm{CDP}$ (Alternate interior angles)
$\mathrm{AB}=\mathrm{CD}$ (Opposite sides of a parallelogram)
Thus, $\triangle \mathrm{AQB} \cong \triangle \mathrm{CPD}$
[SAS congruency]
(iv) As $\triangle \mathrm{AQB} \cong \triangle \mathrm{CPD}$
$A Q=C P$
[CPCT]
(v) From the questions (ii) and (iv), it is clear that APCQ has equal opposite sides and also has equal and opposite angles. \therefore, APCQ is a parallelogram.
10. $A B C D$ is a parallelogram and $A P$ and $C Q$ are perpendiculars from vertices A and C on diagonal BD (see Fig. 8.21). Show that
(i) $\triangle \mathrm{APB} \cong \triangle \mathrm{CQD}$
(ii) $\mathbf{A P}=\mathbf{C Q}$

Fig. 8.21

Solution:
(i) In $\triangle \mathrm{APB}$ and $\triangle \mathrm{CQD}$,

$$
\begin{aligned}
& \angle \mathrm{ABP}=\angle \mathrm{CDQ} \text { (Alternate interior angles) } \\
& \angle \mathrm{APB}=\angle \mathrm{CQD}\left(=90^{\circ} \text { as AP and } \mathrm{CQ}\right. \text { are perpendiculars) } \\
& \mathrm{AB}=\mathrm{CD}(\mathrm{ABCD} \text { is a parallelogram }) \\
& \therefore, \triangle \mathrm{APB} \cong \triangle \mathrm{CQD} \quad[\mathrm{AAS} \text { congruency] }
\end{aligned}
$$

(ii) $\mathrm{As} \triangle \mathrm{APB} \cong \triangle \mathrm{CQD}$. $\therefore, \mathrm{AP}=\mathrm{CQ} \quad[\mathrm{CPCT}]$
11. In $\triangle A B C$ and $\triangle D E F, A B=D E, A B \| D E, B C=E F$ and $B C \| E F$. Vertices A, B and C are joined to vertices D, E and F respectively (see Fig. 8.22).

Show that
(i) quadrilateral ABED is a parallelogram
(ii) quadrilateral BEFC is a parallelogram
(iii) $\mathrm{AD} \| \mathrm{CF}$ and $\mathrm{AD}=\mathrm{CF}$
(iv) quadrilateral ACFD is a parallelogram
(v) $\mathrm{AC}=\mathrm{DF}$
(vi) $\triangle \mathrm{ABC} \cong \triangle \mathrm{DEF}$.

Fig. 8.22

Solution:
(i) $\mathrm{AB}=\mathrm{DE}$ and $\mathrm{AB} \| \mathrm{DE}$ (Given)

Two opposite sides of a quadrilateral are equal and parallel to each other.
Thus, quadrilateral ABED is a parallelogram
(ii) Again $\mathrm{BC}=\mathrm{EF}$ and $\mathrm{BC} \| \mathrm{EF}$.

Thus, quadrilateral BEFC is a parallelogram.
(iii) Since ABED and BEFC are parallelograms.
$\Rightarrow \mathrm{AD}=\mathrm{BE}$ and $\mathrm{BE}=\mathrm{CF}$ (Opposite sides of a parallelogram are equal)

$$
\therefore, \mathrm{AD}=\mathrm{CF} .
$$

Also, $\mathrm{AD} \| \mathrm{BE}$ and $\mathrm{BE} \| \mathrm{CF}$ (Opposite sides of a parallelogram are parallel)
$\therefore, \mathrm{AD} \| \mathrm{CF}$
(iv) AD and CF are opposite sides of quadrilateral ACFD which are equal and parallel to each other. Thus, it is a parallelogram.
(v) Since ACFD is a parallelogram
$\mathrm{AC} \| \mathrm{DF}$ and $\mathrm{AC}=\mathrm{DF}$
(vi) In $\triangle \mathrm{ABC}$ and $\triangle \mathrm{DEF}$,
$\mathrm{AB}=\mathrm{DE}$ (Given)
$\mathrm{BC}=\mathrm{EF}$ (Given)
$\mathrm{AC}=\mathrm{DF}$ (Opposite sides of a parallelogram)
$\therefore, \triangle \mathrm{ABC} \cong \triangle \mathrm{DEF} \quad$ [SSS congruency]
12. $A B C D$ is a trapezium in which $A B \| C D$ and $A D=B C$ (see Fig. 8.23). Show that
(i) $\angle \mathrm{A}=\angle \mathrm{B}$
(ii) $\angle \mathrm{C}=\angle \mathrm{D}$
(iii) $\triangle \mathrm{ABC} \cong \triangle B A D$
(iv) diagonal $\mathrm{AC}=$ diagonal BD
[Hint : Extend AB and draw a line through C parallel to DA intersecting AB produced at E.]

Fig. 8.23
Solution:
To Construct: Draw a line through C parallel to DA intersecting AB produced at E .
(i) $\mathrm{CE}=\mathrm{AD}$ (Opposite sides of a parallelogram)

$$
\mathrm{AD}=\mathrm{BC} \text { (Given) }
$$

$$
\therefore, \mathrm{BC}=\mathrm{CE}
$$

$\Rightarrow \angle \mathrm{CBE}=\angle \mathrm{CEB}$
also,
$\angle \mathrm{A}+\angle \mathrm{CBE}=180^{\circ}($ Angles on the same side of transversal and $\angle \mathrm{CBE}=\angle \mathrm{CEB})$
$\angle \mathrm{B}+\angle \mathrm{CBE}=180^{\circ}$ (As Linear pair)
$\Rightarrow \angle \mathrm{A}=\angle \mathrm{B}$
(ii) $\angle \mathrm{A}+\angle \mathrm{D}=\angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}$ (Angles on the same side of transversal)

$$
\begin{aligned}
& \Rightarrow \angle \mathrm{A}+\angle \mathrm{D}=\angle \mathrm{A}+\angle \mathrm{C}(\angle \mathrm{~A}=\angle \mathrm{B}) \\
& \Rightarrow \angle \mathrm{D}=\angle \mathrm{C}
\end{aligned}
$$

(iii) In $\triangle A B C$ and $\triangle B A D$,

$$
\mathrm{AB}=\mathrm{AB}(\text { Common })
$$

$\angle \mathrm{DBA}=\angle \mathrm{CBA}$
$\mathrm{AD}=\mathrm{BC}$ (Given)

$$
\therefore, \Delta \mathrm{ABC} \cong \Delta \mathrm{BAD} \quad[\text { SAS congruency }]
$$

(iv) Diagonal $\mathrm{AC}=$ diagonal BD by CPCT as $\triangle \mathrm{ABC} \cong \triangle \mathrm{BA}$.

Exercise 8.2

1. $A B C D$ is a quadrilateral in which P, Q, R and S are mid-points of the sides $A B, B C, C D$ and $D A$ (see Fig 8.29). AC is a diagonal. Show that:
(i) $\mathrm{SR} \| \mathrm{AC}$ and $\mathrm{SR}=1 / 2 \mathrm{AC}$
(ii) $\mathbf{P Q}=\mathbf{S R}$
(iii) PQRS is a parallelogram.

Fig. 8.29
Solution:
(i) In $\triangle \mathrm{DAC}$,
R is the mid point of DC and S is the mid point of DA.
Thus by mid point theorem, $\mathrm{SR} \| \mathrm{AC}$ and $\mathrm{SR}=1 / 2 \mathrm{AC}$
(ii) $\operatorname{In} \triangle \mathrm{BAC}$,
P is the mid point of $A B$ and Q is the mid point of $B C$.
Thus by mid point theorem, $\mathrm{PQ} \| \mathrm{AC}$ and $\mathrm{PQ}=1 / 2 \mathrm{AC}$
also, $\mathrm{SR}=1 / 2 \mathrm{AC}$
$\therefore, \mathrm{PQ}=\mathrm{SR}$
(iii) $\mathrm{SR} \| \mathrm{AC}$ from question (i)
and, $\mathrm{PQ} \| \mathrm{AC}$ from question (ii)
\Rightarrow SR || PQ - from (i) and (ii)
also, $\mathrm{PQ}=\mathrm{SR}$
$\therefore, \mathrm{PQRS}$ is a parallelogram.
2. $A B C D$ is a rhombus and P, Q, R and S are the mid-points of the sides $A B, B C, C D$ and $D A$ respectively. Show that the quadrilateral PQRS is a rectangle.
Solution:

Given in the question,
$A B C D$ is a rhombus and P, Q, R and S are the mid-points of the sides $A B, B C$, CD and DA respectively.
To Prove,
PQRS is a rectangle.
Construction,
Join AC and BD.
Proof:
In $\triangle \mathrm{DRS}$ and $\triangle \mathrm{BPQ}$,
$\mathrm{DS}=\mathrm{BQ} \quad$ (Halves of the opposite sides of the rhombus)
$\angle \mathrm{SDR}=\angle \mathrm{QBP}$ (Opposite angles of the rhombus)
$\mathrm{DR}=\mathrm{BP} \quad$ (Halves of the opposite sides of the rhombus)
$\therefore, \triangle \mathrm{DRS} \cong \triangle \mathrm{BPQ} \quad$ [SAS congruency]
$R S=P Q$
[CPCT]
In $\triangle \mathrm{QCR}$ and $\triangle \mathrm{SAP}$,
$\mathrm{RC}=\mathrm{PA} \quad$ (Halves of the opposite sides of the rhombus)
$\angle \mathrm{RCQ}=\angle \mathrm{PAS}$ (Opposite angles of the rhombus)
$\mathrm{CQ}=\mathrm{AS} \quad$ (Halves of the opposite sides of the rhombus)
$\therefore, \Delta \mathrm{QCR} \cong \triangle \mathrm{SAP} \quad$ [SAS congruency]
$R Q=S P$
[CPCT]-
Now,
In $\triangle \mathrm{CDB}$,
R and Q are the mid points of $C D$ and $B C$ respectively.
$\Rightarrow \mathrm{QR} \| \mathrm{BD}$
also,
P and S are the mid points of $A D$ and $A B$ respectively.
$\Rightarrow \mathrm{PS} \| \mathrm{BD}$
$\Rightarrow \mathrm{QR} \| \mathrm{PS}$
$\therefore, \mathrm{PQRS}$ is a parallelogram.
also, $\angle \mathrm{PQR}=90^{\circ}$
Now,
In PQRS,

$$
\begin{aligned}
& \mathrm{RS}=\mathrm{PQ} \text { and } \mathrm{RQ}=\mathrm{SP} \text { from (i) and (ii) } \\
& \angle \mathrm{Q}=90^{\circ} \\
& \therefore, \mathrm{PQRS} \text { is a rectangle. }
\end{aligned}
$$

3. ABCD is a rectangle and P, Q, R and S are mid-points of the sides $A B, B C, C D$ and $D A$ respectively. Show that the quadrilateral $P Q R S$ is a rhombus.
Solution:

Given in the question,
$A B C D$ is a rectangle and P, Q, R and S are mid-points of the sides $A B, B C, C D$ and $D A$ respectively.
Construction,
Join AC and BD.
To Prove,
PQRS is a rhombus.
Proof:
In $\triangle \mathrm{ABC}$
P and Q are the mid-points of $A B$ and $B C$ respectively
$\therefore, \mathrm{PQ} \| \mathrm{AC}$ and $\mathrm{PQ}=1 / 2 \mathrm{AC}$ (Midpoint theorem)
In $\triangle \mathrm{ADC}$,
SR \| AC and $\mathrm{SR}=1 / 2 \mathrm{AC}$ (Midpoint theorem)
So, $P Q \| S R$ and $P Q=S R$
As in quadrilateral PQRS one pair of opposite sides is equal and parallel to each other, so, it is a parallelogram.

$$
\therefore, \mathrm{PS} \| \mathrm{QR} \text { and } \mathrm{PS}=\mathrm{QR} \text { (Opposite sides of parallelogram) } \quad--- \text { (iii) }
$$

Now,
In $\triangle B C D$,
Q and R are mid points of side BC and CD respectively.
$\therefore, \mathrm{QR} \| \mathrm{BD}$ and $\mathrm{QR}=1 / 2 \mathrm{BD}$ (Midpoint theorem)
$\mathrm{AC}=\mathrm{BD} \quad$ (Diagonals of a rectangle are equal) $\quad--$ (v)
From equations (i), (ii), (iii), (iv) and (v),

$$
\mathrm{PQ}=\mathrm{QR}=\mathrm{SR}=\mathrm{PS}
$$

So, PQRS is a rhombus.
Hence Proved
4. $A B C D$ is a trapezium in which $A B \| D C, B D$ is a diagonal and E is the mid-point of $A D$. A line is drawn through E parallel to $A B$ intersecting BC at F (see Fig. 8.30). Show that F is the mid-point of BC.

Fig. 8.30
Solution:
Given that,
$A B C D$ is a trapezium in which $A B \| D C, B D$ is a diagonal and E is the mid-point of $A D$.
To prove,
F is the mid-point of BC .
Proof,
BD intersected EF at G.
In $\triangle \mathrm{BAD}$,
E is the mid point of $A D$ and also $E G \| A B$.
Thus, G is the mid point of BD (Converse of mid point theorem)
Now,
In $\triangle \mathrm{BDC}$,
G is the mid point of $B D$ and also $G F\|A B\| D C$.
Thus, F is the mid point of BC (Converse of mid point theorem)
5. In a parallelogram $A B C D, E$ and F are the mid-points of sides $A B$ and CD respectively (see Fig. 8.31). Show that the line segments AF and EC trisect the diagonal BD.

Fig. 8.31
Solution:
Given that,
ABCD is a parallelogram. E and F are the mid-points of sides AB and CD respectively.
To show,
AF and EC trisect the diagonal BD .
Proof,
ABCD is a parallelogram
\therefore AB || CD
also, $\mathrm{AE} \| \mathrm{FC}$
Now,
$\mathrm{AB}=\mathrm{CD}$ (Opposite sides of parallelogram ABCD)
$\Rightarrow 1 / 2 \mathrm{AB}=1 / 2 \mathrm{CD}$
$\Rightarrow A E=F C$ (E and F are midpoints of side AB and CD)
AECF is a parallelogram (AE and CF are parallel and equal to each other)
$\mathrm{AF} \| \mathrm{EC}$ (Opposite sides of a parallelogram)
Now,
In $\triangle \mathrm{DQC}$, F is mid point of side DC and FP \| CQ (as AF \|EC). P is the mid-point of DQ (Converse of mid-point theorem)
$\Rightarrow \mathrm{DP}=\mathrm{PQ}--$ - (i)
Similarly,
In $\triangle \mathrm{APB}$,
E is midpoint of side $A B$ and $E Q \| A P$ (as $A F \| E C$).
Q is the mid-point of PB (Converse of mid-point theorem)
$\Rightarrow P Q=Q B---(i i)$
From equations (i) and (i),
$D P=P Q=B Q$
Hence, the line segments AF and EC trisect the diagonal BD.

Hence Proved.
6. Show that the line segments joining the mid-points of the opposite sides of a quadrilateral bisect each other.
Solution:

Let $A B C D$ be a quadrilateral and P, Q, R and S are the mid points of $A B, B C, C D$ and $D A$ respectively.
Now, In $\triangle \mathrm{ACD}$,
R and S are the mid points of $C D$ and $D A$ respectively.
\therefore SR \| AC.
Similarly we can show that,
PQ || AC,
PS || BD and QR || BD
\therefore PQRS is parallelogram.
PR and QS are the diagonals of the parallelogram PQRS. So, they will bisect each other.
7. $A B C$ is a triangle right angled at C. A line through the mid-point M of hypotenuse $A B$ and parallel to BC intersects AC at D. Show that
(i) D is the mid-point of $A C$
(ii) $\mathrm{MD} \perp \mathrm{AC}$
(iii) $\mathbf{C M}=\mathrm{MA}=1 / 2 \mathrm{AB}$

Solution:

(i) In $\triangle \mathrm{ACB}$,

M is the midpoint of AB and $\mathrm{MD}|\mid \mathrm{BC}$
$\therefore \mathrm{D}$ is the midpoint of AC (Converse of mid point theorem)
(ii) $\angle \mathrm{ACB}=\angle \mathrm{ADM}$ (Corresponding angles)
also, $\angle \mathrm{ACB}=90^{\circ}$
$\therefore, \angle \mathrm{ADM}=90^{\circ}$ and $\mathrm{MD} \perp \mathrm{AC}$
(iii) In $\triangle \mathrm{AMD}$ and $\triangle \mathrm{CMD}$,
$A D=C D(D$ is the midpoint of side $A C)$
$\angle \mathrm{ADM}=\angle \mathrm{CDM}\left(\right.$ Each $\left.90^{\circ}\right)$
$\mathrm{DM}=\mathrm{DM}$ (common)
$\therefore, \triangle \mathrm{AMD} \cong \triangle \mathrm{CMD} \quad$ [SAS congruency]
$\mathrm{AM}=\mathrm{CM}$
[CPCT]
also, $\mathrm{AM}=1 / 2 \mathrm{AB}$ (M is midpoint of AB)
Hence, $C M=M A=1 / 2 A B$

