ࡱ> {#` rbjbj eo    ****8$Tx,*0B`LTUqAAAAAAA$Ch@FA*A  cOAN *AAd7;$*; J!C 98c>LB00B9 FVFp;F*;0"AAX^0B***R(}0***(}***       Topic M. Trigonometry, Part II. Ratios and Relationships in Right Triangles Trigonometry has many different facts that are all related to each other. This lesson is organized to help you discover some of those relationships and then to use them to solve right triangles. Objectives: Use the three main trigonometric ratios to solve right triangles. Check your results by measurement on a careful diagram. Use the Pythagorean Theorem to solve right triangles. Understand and use various relationships between the sine and cosine values of angles. When a triangle has measured values for the sides, use the Pythagorean theorem to determine whether the values given are consistent with a right triangle. (Note that measured values dont have to exactly fit the Pythagorean theorem to be consistent with a right triangle.) If the sides of a triangle are not consistent with a right triangle, determine whether it is an acute triangle or an obtuse triangle.  The most important trigonometric functions of an angle A, based on the ratios between the sides of a right triangle containing that angle, are: sine of A (usually written as sin A) =  EMBED Equation.DSMT4  cosine of A (usually written as cos A) =  EMBED Equation.DSMT4  tangent of A (usually written as tan A) =  EMBED Equation.DSMT4  Example 1: Using the values shown in the diagram below, compute numerical values of these trigonometric ratios of the angle A. First write the ratio, then the quotient:  sin A =  EMBED Equation.DSMT4  =  EMBED Equation.DSMT4  = cos A =  EMBED Equation.DSMT4  =  EMBED Equation.DSMT4  = tan A =  EMBED Equation.DSMT4  =  EMBED Equation.DSMT4  = Solution:  EMBED Equation.DSMT4  Example 2: Compute the size of angle A in Exercise 1 using the inverse tangent function. Assume the lengths are exact. Then compute the size of angle B. What is the sum of those angle sizes? Solution:  EMBED Equation.DSMT4   EMBED Equation.DSMT4   EMBED Equation.DSMT4  Making use of sine and cosine functions Your calculator handles sin and cos functions just like the tan function. Which function to use depends on which two side-length measurements you know (or want to find out), and where those sides are compared to the angle whose size you know (or want to find out). When one of the sides is the hypotenuse, use the sine if the other side is opposite to the angle, and the cosine if it is adjacent. If neither side is the hypotenuse, use the tangent. Notice that, in the solutions to these examples, we do these steps: Confirm that the triangle is a right triangle, so that we can use these definitions of sine, cosine, and tangent. Identify the parts of the triangle given and wanted. Using those parts, choose the appropriate trig ratio and plug in the values. Solve the trig ratio to find a formula for the unknown quantity. Use a calculator to compute the formula at these values. Round the answer appropriately. Example 3: Find the length y in the figure below.  Note that the angle in the triangle at the bottom right is a right angle. Solution: Since we are given the angle of 35 and the hypotenuse, and are asked to find the side opposite the angle of 35, we use the sine ratio. (Because it includes these three values: angle, the opposite side from that angle, and the hypotenuse.)  EMBED Equation.DSMT4 Example 4: For the figure below, find the length of the base of the triangle.  Note that the angle in the triangle at the bottom right is a right angle.Solution: Since we are given the angle and the hypotenuse, and are asked to find the side adjacent to the 42 angle, we can use the cosine ratio since it is stated in terms of these three values.  EMBED Equation.DSMT4  Example 5: For the figure below, find the length of the hypotenuse.  Note that the angle in the triangle at the bottom right is a right angle.Solution: Since we are given the angle and the side adjacent to it, and are asked to find the hypotenuse, we can use the cosine ratio since it is stated in terms of these three values. [Note that the same ratio is used as in Example 4, but now the hypotenuse is solved for instead of the adjacent side.] EMBED Equation.DSMT4  Example 6. For the figure below, find the size of angles A and B.  Note that the angle in the triangle at the bottom right is a right angle.Solution: Since we are given one side and the hypotenuse, we will first find the angle opposite the given side, so we will use the sine ratio. After we find that angle, we will use the fact that the three angles sum to 180 to find the other angle. EMBED Equation.DSMT4  Further examples of solving triangles, with answers, can be found in the problems in Topic U. Trigonometry, Part VI, on pages 8-16, with answers at the end on page 26. Trigonometric-ratio relationships The right triangle to the right, in which all three angles and all three sides are labeled, will be used throughout the discussion below to illustrate the relationships between the sides, angles, and trigonometric ratios of right triangles. The sides are labeled with the lower-case letter (a, b, or c) matching the uppercase letter (A, B, or C) used for the angle that the side crosses. The hypotenuse of this triangle is side c. The side a is opposite to angle A and is adjacent to angle B. The side b is opposite to angle B and adjacent to angle A. Using the definitions of the trigonometric ratios, we can see that sin A and cos B are the same ratio:  EMBED Equation.DSMT4  In the same way, we can show that cos A is the same ratio as sin B.  EMBED Equation.DSMT4  Since A and B are complementary to each other (that is, they add up to 90(), the above result can be expressed as either of these equations: sin(angle) = cos(90( angle) or cos(angle) = sin(90( angle) Example 7: Verify that both the relationships for complementary angles are true for the angle 37(. sin(37() = 0.6018 cos(90( 37() = cos(53() = 0.6018 cos(37() = 0.7986 sin(90( 37() = sin(53() = 0.7986 RELATIONSHIPS BETWEEN RIGHT-TRIANGLE SIDES The surprising relationship The relationships between sine and cosine ratios that have been shown so far follow from the definitions of the ratios in a straightforward way. However, the most important relationship of this kind is not nearly as obvious. It is indicated by the table below, which gives the sines and cosines of various angles, then lists the square of these values (that is, the value multiplied by itself) for each angle. The surprise is the value of the sum of the squares, (sin A)2 + (cos A)2, which is traditionally written as sin2 A + cos2 A in mathematical work. Example 8: Compute the sum sin2 A + cos2 A for 10(, 20(, 30(, and 40(. Angle A10(20(30(40(50(60(70(80( sine A0.173650.342020.500000.642790.766040.866030.939690.98481 cosine A0.984810.939690.866030.766040.642790.500000.342020.17365(sin A)20.030150.116980.250000.413180.586820.750000.883020.96985(cos A)20.969850.883020.750000.586820.413180.250000.116980.03015 sin2 A + cos2 A 1.000001.000001.000001.00000 Answer: All those sums are 1.00000. It can be shown that this sin2 A + cos2 A = 1 equation is exactly true for all angles (although a proof takes more than checking a few values with a calculator). This Pythagorean Identity is an important and useful mathematical fact in itself, but it can be transformed into an even more useful result by expressing it in terms of the lengths of the sides of a right triangle which has A as one if its angles. Using the labeled right triangle introduced at the beginning of this section, we saw that  EMBED Equation.DSMT4  and  EMBED Equation.DSMT4  This means that the equation sin2 A + cos2 A = 1 can also be stated as  EMBED Equation.DSMT4  which in turn can be stated as  EMBED Equation.DSMT4  which is equivalent to  EMBED Equation.DSMT4  If both sides of this equation are multiplied by the denominator term c 2, the equation  EMBED Equation.DSMT4  is obtained, which can be expressed in words as: The square of the length of the hypotenuse of a right triangle equals the sum of the squares of the lengths of the other two sides. This result is called the Pythagorean Theorem. When it was first proved by ancient Greeks, it was expressed in a geometrical form that uses the term square literally, not algebraically: The area of the square on the hypotenuse of a right triangle is equal to the sum of the areas of the squares on the other two sides. This figure shows a right triangle whose sides measure 28, 45, and 53 mm. The square of 53 is 2809, which is equal to 784 (which is the square of 28) plus 2025 (the square of 45). Exactness The Pythagorean Theorem is exactly true for all triangles containing an angle of exactly 90(, regardless of whether the triangles sides have lengths that can be expressed as integers or exact decimals. The examples above were chosen from among the unusual cases where all three sides of a right triangle can be expressed exactly in the same units, because in that case it is easy to demonstrate the relationship. However, a right triangle with two sides whose lengths are expressed as integers or short decimal fractions will in most cases have a third side whose length cant be exactly expressed in numerical form because its pattern of digits never repeats or ends. This usually does not cause difficulties in practical work for two different reasons: [i] Calculators use so many digits that round-off errors are almost always too small to make a significant difference in the final result. [ii] All physical measurements are approximate to some degree anyway, so that the uncertainty in numerical results is determined by measurement quality rather than by computational precision, as long as the values were never excessively rounded off. The question of how to deal with the lack of exactness of measurement processes is a major topic of this course. The main implication for mathematical theorems and relationships is that when you are working with approximate numbers it is not meaningful to talk about exact equality. Statements like Within the accuracy of the measurements, the measured sides are consistent with a right triangle. are more appropriate. Using the Pythagorean Theorem In many practical situations, two of the three sides of a right triangle can be determined by measurement or by the conditions of the problem. The advantage of the Pythagorean Theorem is that in such cases the third side can be determined without having to determine the angles of the triangle or to calculate any trigonometric ratios. (This was particularly important before calculators made such calculations easy.) Since the theorem is about the squares of the lengths, however, rather than the lengths themselves, it is usually necessary to find a square root at the end of the calculation. (The square root of a number is the value that will give the number as a result when squared for example, 3 is the square root of 9.) All calculators have a key to find square roots; it is usually marked with the mathematical radical symbol  EMBED Equation.DSMT4 . Example 9: How long is the diagonal of a rectangular lot 23.000 meters long and 45.000 meters deep?  Since the field is rectangular, its width and depth are the sides of a right triangle whose hypotenuse is the diagonal distance d that we wish to find. Thus d 2 = 232 + 452 = 529 + 2025 = 2554 meters2 Taking the square root of both sides of this equation gives d =  EMBED Equation.DSMT4   EMBED Equation.DSMT4  50.537 meters (As is usual with square roots, this value is a rounded approximation, since no value with this precision gives exactly 2554 when squared.) Example 10: Here is a case where a side is unknown rather than the hypotenuse. If the lengths of the hypotenuse and of one side are known, finding the length of the other side can be done by subtracting the square of the length of the known side from the square of the length of the hypotenuse. For example, if a 10-foot ladder is placed with its base 4.000 feet from a vertical wall, how high on the wall will the top reach? Let us call the desired height h. The Pythagorean Theorem tells us that h2 + 42 = 102 This is the same as h2 = 102 42 = 100 16 = 84 so that h =  EMBED Equation.DSMT4   EMBED Equation.DSMT4  9.165 feet Limitations of the Pythagorean Theorem Remember that the a2 + b2 = c2 equation only applies to right triangles. It cannot be used to directly find the standoff of a ladder placed against a leaning wall, or the diagonal across a non-rectangular field. Before applying the Pythagorean Theorem to a problem, you must make sure that the sides whose lengths you are using in the equation form a right triangle. Later in the course we will discuss how to use a more powerful (but somewhat more complicated) method that works with all triangles, whether or not they contain a right angle. The Pythagorean Theorem is a special case of this more general Law of Cosines. Using the Pythagorean Theorem to make a right triangle Not all true statements can be turned around: for example, all triangles are figures formed from straight lines, but it is not true that all figures formed from straight lines are triangles. The converse of a true theorem is not always true. But the Pythagorean Theorem works both ways. If the sum of the squares of the lengths of the two smaller sides of a triangle equals the square of the length of the third side, then the angle opposite the third side is a right angle. Because 32 + 42 = 52 (that is, 9 + 16 = 25), a triangle whose sides have the lengths 3, 4, and 5 will thus have a right angle opposite the side whose length is 5. This is also true of any triangle whose sides are in this same proportion, such as 6, 8, and 10 or 30, 40, and 50 (also for lengths in feet, meters, or exotic length units such as cubits or furlongs). This fact was used by the ancient Egyptians in making right triangles for use in construction and surveying. Although the set {3,4,5} contains the smallest-number case, there are infinitely many other Pythagorean triplets of whole numbers. However, most right triangles will not have whole-number side lengths. To test the size of an angle of a triangle, compare the square of the length of the side opposite to it to the sum of the squares of the lengths of the other two sides. If the square of the length equals the sum, the angle is a right angle. If it is less than the sum, the angle is an acute angle (less than 90() If it is greater than the sum, the angle is an obtuse angle (greater than 90() Example 11: Classify (as right, acute, or obtuse) the largest angle in each listed triangle. a. Triangle 1 has sides with lengths 11.2, 6.3, and 8.4 b. Triangle 2 has sides with lengths 1.2, 0.5, and 1.3 c. Triangle 3 has sides with lengths 5.6, 3.2, and 4.4 d. Triangle 4 has sides with lengths 7.2, 6.3, and 8.1 Answers: a.  EMBED Equation.DSMT4  and  EMBED Equation.DSMT4 . Notice that the square of the longest side is larger than the sum of the squares of the shorter sides. Thus the angle is obtuse. b.  EMBED Equation.DSMT4  and  EMBED Equation.DSMT4 . Notice that the square of the longest side is equal to the sum of the squares of the short sides. Thus the angle is a right angle. c.  EMBED Equation.DSMT4  and  EMBED Equation.DSMT4 . Notice that the square of the longest side is larger than the sum of the squares of the shorter sides. Thus the angle is obtuse. d.  EMBED Equation.DSMT4  and  EMBED Equation.DSMT4 . Notice that the square of the longest side is smaller than the sum of the squares of the shorter side. Thus the angle is acute. Exercises: Part I. For Example 1, compute the sine, cosine, and tangent of the indicated angle. For the triangle in Example 1, compute the tangent of both the non-right angles, and then use the inverse tangent function to find both angles. Check your work by finding the sum of those two angles. (What should it be?) In Example 3, find the length of side y. (First find the ratio to use, then solve it to find a formula for the unknown value before you plug any numbers into your calculator.) In Example 4, find the length of the base of the triangle. (First find the ratio to use, then solve it to find a formula for the unknown value before you plug any numbers into your calculator.) In Example 5, find the length of the hypotenuse. (First find the ratio to use, then solve it to find a formula for the unknown value before you plug any numbers into your calculator.) In Example 6, find the sizes of all the angles. In Example 7, verify that both the relationships for complementary angles are true for the angle 37(. Compute the sum sin2 A + cos2 A for 10(, 20(, 30(, and 40(. How long is the diagonal of a rectangular lot 23 meters long and 45 meters deep? If a 10.00-foot ladder is placed with its base 4.00 feet from a vertical wall, how high on the wall will the top reach? Classify (as right, acute, or obtuse) the largest angle in each listed triangle. Triangle 1 has sides with lengths 11.2, 6.3, and 8.4 Triangle 2 has sides with lengths 1.2, 0.5, and 1.3 Classify (as right, acute, or obtuse) the largest angle in each listed triangle. Triangle 3 has sides with lengths 5.6, 3.2, and 4.4 Triangle 4 has sides with lengths 7.2, 6.3, and 8.1 For additional practice, see Topic U, problems on pages 8-16, with answers on page 26. Part II. Solve the following using trig/algebra. After you have solved it, then use a careful diagram to check your work on any problems for which no diagram is given here. In 13-15, for each, first find the ratio to use, then solve it to find a formula for the unknown value before you plug any numbers into your calculator. 13. Find the height h 14. Find the base b 15. How long is the diagonal d?   In 16-18, find the length of the side whose length is not indicated. Each of these is a right triangle. For each, first find the equation to use, then solve it to find a formula for the unknown value before you plug any numbers into your calculator. [Answers: ] 16. 17. 18.  19. For each triangle in 16-18, find the size of the smallest angle. For each, first find the ratio to use, then solve it to find a formula for the unknown value before you plug any numbers into your calculator. In 20-22, find the length of the indicated side. For each, first find the ratio to use, then solve it to find a formula for the unknown value before you plug any numbers into your calculator. 20. Find the height h 21. Find the width w [Answer: ] 22. How long is side c?   23. Consider Topic F, Example 1. Can it be easily solved using right-triangle trigonometry? If so, solve it. If not, tell how you decided that it cannot be easily solved using right-triangle trigonometry. 24. Consider Topic F, Example 2. Can it be easily solved using right-triangle trigonometry? If so, solve it. If not, tell how you decided that it cannot be easily solved using right-triangle trigonometry. 25. Consider Topic F, Example 3. Can it be easily solved using right-triangle trigonometry? If so, solve it. If not, tell how you decided that it cannot be easily solved using right-triangle trigonometry. 26. Consider Topic F, Example 4. Can it be easily solved using right-triangle trigonometry? If so, solve it. If not, tell how you decided that it cannot be easily solved using right-triangle trigonometry. 27. Consider Topic F, Example 5. Can it be easily solved using right-triangle trigonometry? If so, solve it. If not, tell how you decided that it cannot be easily solved using right-triangle trigonometry. 28. Consider Topic F, Example 6. Can it be easily solved using right-triangle trigonometry? If so, solve it. If not, tell how you decided that it cannot be easily solved using right-triangle trigonometry. 29. Verify that both these equations sin(angle) = cos(90( angle) and cos(angle) = sin(90( angle) are true for some arbitrary angle of your choice between 1 and 89 degrees. angle = ____( sin(angle) = _________ cos(90( angle) = _________ cos(angle) = _________ sin(90( angle) = _________ 30. Verify these Pythagorean Theorem examples. (actual side lengths are given in millimeters)  For problems 31-38, ignore the curvature of the earth and assume that the measurements given are on a flat surface. For each, draw a rough sketch and determine whether it is correct to use right-triangle methods to solve the problem using algebra/trigonometry. Then solve it by right-triangle methods, if appropriate, or, if not, solve it using a careful diagram. For each problem you solve using right-triangle methods, first find the ratio to use, then solve it to find a formula for the unknown value before you plug any numbers into your calculator. 31. How long is the diagonal of a rectangle with width 17.203 meters and length 12.341 meters? 32. If one location is 45.0 kilometers south and 15.0 kilometers west of another, how far apart are they in a straight line? 33. A plane flies 41.23 miles on a bearing of 36( and then turns and flies on a bearing of 126( for 92.7 miles. After this, what is the straight-line distance of the plane from its starting point? 34. A plane flies 127 miles on a bearing of 48( and then turns and flies on a bearing of 138( for 38 miles. After this, what is the straight-line distance of the plane from its starting point? 35. Ship A starts from the port and travels 44.2 miles on a bearing of S 34( W. Ship B starts from the same port and travels 62 miles on a bearing of N 56( W. How far apart are the ships? 36. Ship 1 starts from the port and travels 27.3 miles on a bearing of S 13( W. Ship B starts from the same port and travels 19 miles on a bearing of N 77( W. How far apart are the ships? 37. Two lighthouses are located on an east-west line. From lighthouse 1, the bearing of a ship 1.63 miles away is 142(. From lighthouse 2, the bearing of that same ship is 232(. What is the distance between the two lighthouses? 38. Two lighthouses are located on an east-west line. From lighthouse A, the bearing of a ship 2.13 miles away is 152(. From lighthouse 5, the bearing of that same ship is 217(. What is the distance between the two lighthouses? 39. The sides of a triangle are measured to be 6.3 meters, 7.5 meters, and 9.8 meters. Are these measurements consistent with a right triangle? If not, does it appear that the largest angle is obtuse or acute? 40. The sides of a triangle are measured to be 18.4 meters, 25.7 meters, and 15.3 meters. Are these measurements consistent with a right triangle? If not, does it appear that the largest angle is obtuse or acute? 41. A 9.00-foot rod is placed so that it touches the ceiling where it meets the wall. (We assume the wall is perpendicular to both the floor and the ceiling.) The base of the rod is found to be 3.00 feet from the wall. (See illustration to the right.) a. How high is the ceiling? b. What is the angle between the rod and the floor? c. If the rod had been 10.00 feet long, with the same ceiling height, how far from the wall would its end have been under the same circumstances? 42. A 12.00-foot rod is placed so that it touches the ceiling where it meets the wall. (We assume the wall is perpendicular to both the floor and the ceiling.) The base of the rod is found to be 4.00 feet from the wall. (See illustration to the right.) a. How high is the ceiling? b. What is the angle between the rod and the floor? c. If the rod had been 11.50 feet long, with the same ceiling height, how far from the wall would its end have been under the same circumstances? 43. If the sine of an angle is 0.582, compute the cosine of that same angle by two different methods. [Hint: Use inverse trigonometric functions during one method, and find a square root during the other.] 44. If the cosine of an angle is 0.247, compute the sine of that same angle by two different methods. [Hint: Use inverse trigonometric functions during one method, and find a square root during the other.] 45. Rather than measuring straight across a board whose actual width is exactly 12 inches, a workman accidentally measures so that one end of his ruler is offset from the point straight across the board by exactly 1 inch (see illustration to the right). [a] How much longer will his measurement be than it should be? [b] Consider these two different ways (below) that width measurements could be used. For each way, will this mistake in cutting be so important that you should discard the board and start over? [i] Finding out how wide the board is to choose a correct mounting bracket. [ii] Using the shortest path that you measure across the board for a cut that you want to be perpendicular so that it will line up with other cuts.  46. The triangle on the right is an equilateral triangle, in which all three sides and angles are equal. The vertical line is an altitude, meeting the side in a right angle. Using this information, but with no knowledge of what the numerical lengths of the side or altitude are, find the sine and cosine of the angle at B.     Mathematics for Measurement by Mary Parker and Hunter Ellinger M. page  PAGE 12 of  NUMPAGES 12 Rev. 10/22/07 Topic M. Trigonometry, Part II. Ratios and Relationships in Right Triangles Mathematics for Measurement by Mary Parker and Hunter Ellinger Topic M. Trigonometry, Part II. Ratios and Relationships in Right Triangles M. page  PAGE 1 of  NUMPAGES 12 a c 22( 47( 33 ft A 33 mm 65 mm 56 mm h 65 300 4.86 15.35 143 113 35( 27 ft b 4 feet h 10 feet 23 meters d 45 meters Area of this square is 282 = 784 mm2 Area of this square is 452 = 2025 mm2 Area of this square is 532 = 2809 mm2 C b 3 feet A B 273 ft 215 ft 31( h 5.8 ft b 50. mm 42( d 30( 50( 4.5 ft h 8 48.5 47.6 9.3 20 12 16 37 35 12 30 16 34 55( 2.15 km w 250 mm 380 mm B path used correct path 3 feet 84 85 13 17 15 117 ft 35( 27 ft y B A a c B #*<OPQ b 9 ĸĬĠĉ|k|Wk|H|k|hgRkh?K CJOJQJaJ'j1aA hgRkh?K CJOJQJUV!jhgRkh?K CJOJQJUhgRkh?K CJOJQJ,jhgRkh?K CJOJQJUmHnHuhgRkhk5CJ\hgRkh5CJ\hgRkhuD5CJ\hgRkhM75CJ\h^4h?K aJh^4huDaJ h^4aJh^4h@aJ h\paJh^4hZ!aJQ ! ) = V W m3$ !  $d%d&d'dNOPQ] ^ a$0 !  $d%d&d'dNOPQ] ^  ! - & FgdM7-xgdM7 -x`gdM7-$xa$ morW B i j buue !x]` !x]^ !0x^`0 !0 !  $d%d&d'dNOPQ] ^ 4 !  $d%d&d'dNOPQ] ^ ` % & = > ? @ B i j q %&=>?@Cɼɼɼ{dɼP?ɼ!j< hgRkh?K CJOJQJU'j A hgRkh?K CJOJQJUV,jhgRkh?K CJOJQJUmHnHuhgRkh\CJOJQJ!j#hgRkh?K CJOJQJU'jmaA hgRkh?K CJOJQJUVhgRkh?K CJOJQJaJhgRkh?K CJOJQJ!jhgRkh?K CJOJQJU!jhgRkh?K CJOJQJU'jBaA hgRkh?K CJOJQJUVCD[\]^qrͼᨗ͆raP!j]hgRkh?K CJOJQJU!jghgRkh?K CJOJQJU'j-A hgRkh?K CJOJQJUV!jhgRkh?K CJOJQJU!jhgRkh?K CJOJQJU'jA hgRkh?K CJOJQJUV!j7 hgRkh?K CJOJQJU'jMA hgRkh?K CJOJQJUVhgRkh?K CJOJQJ!jhgRkh?K CJOJQJU"#\I6 VXYZ[ x$Ifgd;nxgdS & Fgd!x$xa$gd\  !] !|    1234@AXYZ[\~l_VhgRkh?K CJj|%hgRkhCJU#jQEI hgRkhCJUVaJj!hgRkhCJU#jGEI hgRkhCJUVaJjhgRkhCJU#j1EI hgRkhCJUVaJhgRkh.8`CJjhgRkh\CJU#jxE hgRkh\CJUVaJjhgRkh\CJU hgRkCJhgRkh\CJ\IJ =RVW캱ԕԕvi`M$jhgRkhSCJUmHnHuhgRkh1.CJj}(hgRkhCJU#j`EI hgRkhCJUVaJjhgRkhdCJUhgRkhdCJ$jhgRkh'CJUmHnHuhgRkh;nCJhgRkh-CJhWhWCJaJ h'CJ h!CJhgRkhfV;CJhgRkhuDCJhgRkh?K CJh!h?K 5CJxmmmmmm x$Ifgdl*xgd;nfkd.-$$IflF 8#R   t$$6    44 la$x$Ifa$gd'H x$Ifgd;n bmr&'()@ABCEF!=GϰxxxoxbjhgRkh'CJUhgRkh? CJhgRkht%CJ$jhgRkht%CJUmHnHuhgRkh;nCJ hgRkCJj-hgRkhF-CJU#j`H hgRkhF-CJUVaJjhgRkhdCJUhgRkhdCJhgRkh'CJhgRkh'CJaJhgRkhSCJaJhgRkhSCJ&b'(DEwpeeeee x$Ifgdtxgd;nfkd2$$IflF; $R   tV%6    44 la x$IfgdS $Ifgd' x$Ifgdl* +,-prstuvw{{xgd;nfkdn8$$IflF w$ U \ tV%6    44 la $Ifgdt x$Ifgdt'()*,T`fopqtvIJ ¹¹¦|j]|TKhgRkh+DCJhgRkhFCJj9hgRkhF-CJU#jAH hgRkhF-CJUVaJjhgRkh? CJUhgRkhSWCJhgRkh? CJaJhgRkh? CJ$jhgRkhSWCJUmHnHuhgRkh^8CJhgRkh;nCJjhgRkh'CJUj-3hgRkhuCJU#jBH hgRkhuCJUVaJhgRkh'CJwQ0{{{rf hx]h`-$xa$xgd;nfkdA>$$IflFj $ U \ tV%6    44 la $Ifgdt x$Ifgdt  X0ABYZ[\_` ǺwleVIlB h=h=jCh=h=EHUjq 5I h=CJUVaJ hgRkh=jhgRkh=Uh?K CJOJQJhgRkh?K aJj>h=h=EHU!jl 5I h=CJOJQJUV hgRkh?K jhgRkh?K UhgRkh?K CJOJQJhgRkh?K CJh!h?K CJ\'jh!h?K CJU\mHnHuhgRkh+DCJhgRkhO`$CJ0@A`PQ 3 !$d%d&d'dNOPQ]`gdFgd/  !gdM7$a$gd= !  !`gd=  !`  !x`  fg       $ & / 0 4 5 ? @ B D E L M _ ` d f p z } ͰͰͣͰͰͰͣͰͰhgRkh= CJOJQJhgRkhAjCJOJQJhgRkhCJOJQJ jhgRkhm40CJOJQJhgRkhQCJOJQJhgRkhm40CJOJQJhgRkh/CJhgRkh?K CJOJQJ jhgRkh?K CJOJQJ3 M #j#r#v#z#~###zjjjjjj$ !x$Ifa$  !xx !x0: !@ `x$d%d&d'dNOPQ]^``gdF4 !@ $d%d&d'dNOPQ]gdF """"""###'#(#)#@#A#I#J#T#U#Y#Z#^#_#g#h#t#u#x#y#|#}#################($)$*$+$2$4$t$u$|$~$ֻ֮֞֞֞֞֞֞֞֞֞֞֞֞֕֕֕֕֕֕hgRkh?K CJ jhgRkh?K CJOJQJhgRkhQCJOJQJhgRkhBHCJOJQJhgRkh?K CJH*OJQJhgRkh?K CJOJQJhgRkh?K CJOJQJaJhgRkh?K 5>*CJ\:###############{{{{{{{  !x$IfakdtJ$$Ifl$0%00%62(4 laFf>H$ !x$Ifa$######$$$$ $($)$*$FfO$ !x$Ifa$Ff*L  !x$If *$+$4$<$D$L$T$\$d$l$t$u$~$$${FfpS  !x$If$ !x$Ifa$akdQ$$Ifl$0%00%62(4 la$$$$$$$$$$$$$$${$ !x$Ifa$akdY$$Ifl$0%00%62(4 laFfV  !x$If~$$$$$$$$$$$$$$$$$$$$%<%=%E%F%'''1'2'3'4'I'J'a'b'c'd''''󼮼yf%j1`h=h=CJEHOJQJU!j8 5I h=CJOJQJUV%j]h=h=CJEHOJQJU!j 5I h=CJOJQJUVjh=CJOJQJUh=CJOJQJhgRkh@CJhgRkhBHCJOJQJhgRkh?K CJH*OJQJhgRkh?K CJhgRkh?K CJOJQJ($$$$$$$%'e'''(](^(( $ !a$gd=  !x^`  !xgd !x`gd !x $ !a$  !x`gd@ !FfZ  !x$If''''''''''(((((((A(B(Y(Z(ƵxdSxx?'j? !@ x^@ `  !x` !h !` x]` ` !x]gd+ !x  !x]88999999999999999999::::.:/:0:1:4:5:L:M:N:O:^:::::ǽ߽߽ǽ߽߽߰ߜ߰}nbǽhgRkh?K 5CJ\jB{hgRkh?K CJEHUj? hgRkh?K CJUVj[xhgRkh?K CJEHU'jKLA hgRkh?K CJOJQJUVjhgRkh?K CJUhgRkh?K CJH*hgRkh?K 56CJ\]hgRkh.8`CJhgRkh?K CJ-jhgRkh?K 5>*CJU\mHnHu&::::::::::;%;];;;<<2======>??!?"?&?'?AjBBBBB)C/CFCGCICQCyymhgRkh1J5CJ] jhgRkh?K CJhgRkhfPCJhgRkh?K 5CJ\aJhgRkhkCJhgRkh?K 6CJ]hgRkh?K 5CJ]hgRkh?K 6CJhgRkh?K 5CJ\]hgRkh?K 5CJhgRkh?K CJH*hgRkh?K 56CJ\]hgRkh?K CJ)?AjBBBICCC&DeDDDDzmmmmhh0$a$  !^gd  !gdfP6 !Px$d%d&d'dNOPQ]^`P6 !x$d%d&d'dNOPQ]^` !x` QCSCCCCC&D*DeDiDDDDDDDDDDDDDDDDD^EsḚ̙̰p^RhgRkhk5>*CJ#jhgRkh1J5>*CJEHU,j}E hgRkh1J5>*CJUV\aJ#j}hgRkh1J5>*CJEHU,jb}E hgRkh1J5>*CJUV\aJjhgRkh1J5>*CJUhgRkh<85>*CJhgRkh1J5>*CJhgRkh?K CJhgRkh1JCJhgRkh?K CJ]hgRkhQ5CJ]DsEtE9F:FFGGGGGG#H$HIIII{J|J5K6KfKgK0$a$gdQ0$a$gdQH 0$ & Fa$gdG&0$a$gd6 0$a$gd/0$a$gd1J0$a$sEtExEyEEEEEEEEEEEEF%F7F9F:F>F?FVFWF濭斄xll\lE,j{~E hgRkh/5>*CJUV\aJjhgRkh/5>*CJUhgRkh/5>*CJhgRkhk5>*CJ#jhgRkh1J5>*CJEHU,j2~E hgRkh1J5>*CJUV\aJ#jhgRkh1J5>*CJEHU,j!~E hgRkh1J5>*CJUV\aJjhgRkh1J5>*CJUhgRkh1J5>*CJhgRkhk5>*CJaJWFXFYF^F_FvFwFxFyF|FFGGGGGG!G"G9G:G;G*CJEHU,jE hgRkh/5>*CJUV\aJ#jhgRkh/5>*CJEHU,j~E hgRkh/5>*CJUV\aJhgRkhk5>*CJ#jjhgRkh/5>*CJEHU,ju~E hgRkh/5>*CJUV\aJhgRkh/5>*CJjhgRkh/5>*CJU#j`hgRkh/5>*CJEHUGGGGG*I+I,IIIIzJ{JJ4KfKrKsKKKKKKKKKKKKuiZIZIiZi hgRkhG&5CJH*\]aJhgRkhG&5CJ\]aJhgRkhG&CJ]aJ# jhgRkh5>*CJ]aJhgRkhQ5>*CJaJhgRkhQH5>*CJaJhgRkhu5>*CJaJhgRkh}56>*CJaJhgRkh}5>*CJaJhgRkh1;5>*CJaJhgRkh1;>*CJaJhgRkhG&5>*CJhgRkh?K 5>*CJgKKL_LL)MeMMMM/NgNhNNNrOsO0$a$gdu0$a$gd6 gdO`$  & F !gdD1  !gdD1  & F !gdD1  & F !gdG& & F !xgdG& & F !xxgdG& 0$ & Fa$gdG&KKKKLLL L L^LgLjLLLL(MMMMMM/NgNNNNNNNOqOrO P÷îsesWehgRkh1;5>*CJaJhgRkhu5>*CJaJhgRkhuD5>*CJaJhgRkhuD>*CJaJhgRkh1;>*CJaJhgRkhD1>*CJaJhgRkhO`$CJhgRkhD1CJhgRkhD1CJ]aJhgRkhD1CJaJhgRkhd;CJaJhgRkhG&CJaJhgRkhG&CJ]aJ jhgRkhG&CJ]aJ sO PbPdPfPgPhPiPjPkPuQQQQQQQQ~R?SSSSxgdi1gd^*  !gdi1gdi1`gdi1 x`gdi1  xgdfP0$a$gdu P P PPP"P#P$P%P&P)P8P9PEP_P`PbPcPdPePiPjPkP÷{mUmJAh505>*CJhgRkhi1CJaJ.jhgRkhi16CJU]aJmHnHuhgRkhi16CJ]aJ(jhgRkhi1CJUaJmHnHuhgRkhD1CJ]aJhgRkhi15CJ\]aJhgRkhi1CJ]aJhgRkhuCJ]aJhgRkhi1CJ\]aJhgRkhD1CJ\]aJ(jhgRkhfPCJUaJmHnHuh50hu5>*CJkPlPxPPPgQjQrQtQuQQQQQQQQQQQQQQ{Rǻm__XMBhgRkhuCJaJhgRkh1.CJaJ h^*h^*hgRkhi16CJ]aJ(jhgRkhi1CJUaJmHnHuhgRkhi1CJaJhgRkhD1CJaJh50hi15>*CJh5056>*CJaJh505>*CJaJhgRkhu5>*CJhgRkhfV;5>*CJhgRkhi15>*CJhgRkhD15>*CJ(jhgRkh50CJUaJmHnHu{R}R~RRR>S?SCSDSUSbSfSgSwSxS{SSSSSSSSSS}q}fN.jhgRkh.8`6CJU]aJmHnHuh506CJ]aJh50h506CJaJh50h50CJaJ hgRkhi156CJ\]aJhgRkhi16CJ]aJhgRkhD16CJ]aJhgRkhD1CJ]aJhgRkh50CJaJhgRkhuCJaJhgRkhi1CJaJhgRkhD1CJaJh^*5CJaJh505CJaJSSSSSSSSSSSSSSSNTUTTTTTTTTT&U-UXUYUUڷujuj_WLjjhgRkhTCJaJh^*CJaJh50h50CJaJhgRkhuCJaJhgRkhB CJaJhgRkhqFCJaJhgRkhi\CJaJhgRkhD1CJaJhgRkh^*CJaJhgRkh.8`CJaJhgRkhi1CJaJ.jhgRkhi15CJU\aJmHnHuhgRkhi16CJ]aJ.jhgRkhi16CJU]aJmHnHuSSSSSSTTWUXU,VVVWXXqYYZZrZ 0$]a$gdfPxgdD1 !@ xgdi1 !h^h`gd^*gdqFgdi1 x`gdi1UUUU(V*V+V,V-VXV_VVVVV+W2WWWWWWWWWXrXyXXXXXXXXXXYYY$YpY~YYYYt jhgRkhi1CJaJ jhgRkhi1CJ\aJhgRkhi1CJ\aJhgRkhi1CJaJhgRkhi1CJ]aJhgRkhqFCJ]aJhgRkhD1CJ]aJhgRkhD1CJaJh^*CJaJh50h50CJaJhgRkhqFCJaJhgRkhuCJaJ-YYYYYYZZZZZrZsZtZyZzZ{ZZZZa[Ƚqf^SfK@hgRkh= CJaJh7CCJaJhgRkh)CJaJhiCJaJhgRkhD1CJaJhgRkhi15>*CJ\aJ$jhgRkh*CJaJhgRkhqF5>*CJaJhgRkhD15>*CJaJhgRk5>*CJaJhgRkhfP5CJ jhgRkhi1CJhgRkhi1CJ jhgRkhi1CJaJhgRkhi1CJaJrZtZuZvZwZxZyZzZ{Z\\ ]]]]X^____``aa 5$7$8$9DH$gd+D  !gd+Dgd+D0$a$gdi1gdi1  !xgdi1a[[[\\\\] ] ] ]]]](]*]B]D]p]]]]]]]]]]]]]]]]]]]ɾɤəəɾɎ߃xxi^xxixhgRkhCJaJ jhgRkhCJ]aJhgRkh$CJaJhgRkh+CJaJhgRkh1.CJaJhgRkhd;CJaJhgRkhi1CJOJQJaJh50h50CJaJhgRkhuDCJaJhgRkhi1CJaJhgRkhqFCJaJhgRkhD1CJaJhgRkh= CJaJhgRkhuCJaJ$]]U^W^^^^^____L_N_i_j________ ``(`)`*`Y`y`z`````aaOaPaaԯߍzoԕddddhgRkh$CJaJhgRkh)CJaJhiCJaJhgRkhpCJaJh= CJaJ jhgRkhCJ]aJhgRkhd;CJaJhgRkh1.CJaJhgRkhD1CJaJ jhgRkhfWCJ]aJhgRkhfWCJaJh50h50CJaJhgRkh= CJaJhgRkh+CJaJ'aaaaaabb;b*CJaJh^*5>*CJaJh50h505>*CJaJh505>*CJaJh1;5>*CJaJhgRkh+DCJaJhgRkhi1CJaJ(jhgRkhi1CJUaJmHnHummmmmmmmmm6nnn ooooooooooooo$a$gd1;$a$gd,1$a$gd_0$a$gd^*@nFnGnInJnNnOnYnZn\n]n_ncndnhninnnqnrnxnnnnnn oooo,o2oʿʷxtjd^UdOd h^4CJhs h1;CJ h\pCJ h1;CJhh1;6CJh;qhuhF-CJ hnf~CJhgRk0J,CJh!0J,CJh\0J,CJh^*0J,CJh.8`0J,CJhnf~0J,CJh\p0J,CJhZFhu0J,CJjhZFhu0J,CJUh\p0J,CJmHnHujhs hu0J,CJUhs hu0J,CJ2oDoWoXowozooooooooooooooooooooooooooʿʲʿ~qmfm\hi1OJQJaJ jhi1hi1hi1OJQJ\]aJh?K 6CJ$]h2uph?K h/oh?K CJhZFh1;0J,CJjhZFh1;0J,CJUh\p0J,CJmHnHuhs h1;0J,CJjhs h1;0J,CJUhs h1;CJ h1;CJ h\pCJ h/oCJ huDCJ h^4CJoooooooooooooooooooooooo. !5$7$8$9DH$gdi1gdi1$$5$7$8$9D@& H$gdi1$a$oooooooooooooooooooopppp p p p ppppppp p!p(p)p*p,p.p5p6p8p9p*CJaJ6&P1h:p/ =!P"#$% za3x!tV$d( zaH_-n( za|T>( wwwwwwza 1=<*I؜U( wwwwwwwwDd J  C A? "2qkǪ Fr*MD`!EkǪ Fr*̖` .dxڕRAoAf,mbbt$&mt & rR^ҟQ/ IYo|7of lWdpRd X,g_\3;B "dT] vX&"G94 |h2F@Y~QQY25D(! +slf\]&x-b?Iw"Ƀ\P=/#-ϷG!{wÊ4UuHWj }m|";'dOxƶxk}Bljzh9>\:_X JViԚ ;uBYz#o5çd1/"5U4wpoTg- [ijSf3ƻxfbɵ].xWr#&lb4pֲ$>-Dd J  C A? "2v/ETˍZLzTRS`!J/ETˍZLzTԖ` .dxڕRn@}N-*D@PDRq1B%v;9W.g*7 aflgp9R \.g_\Ӟ;B5"bsD% ױpyӴMA_L4ߞ5+i]sOP1de;OE|+MVyPh# Q8|;dnrX=e{UAlǡ CsLy8'0RoOUHmL C6cL#wNոXD JVk5 JVÞjzUb_E5= U _Mx\mO㉇|>8ͤ`w7oYz̏\bf^Ovd=d_qvݚ[Ou,SI.F pl2~m3D >CAe^dn0YfatR3YTwiDhףuYAwDYGu ҚEX;{JqDd J  C A? "2{}9kͶCS[aWg`!O}9kͶCS[a` .dxڕSn@}N- *P7聠FbJ(vEs.C s炐O f׎"80μϼ+ 8-d_.ڳîjmN]ȐEgVݺ`#D |6,DӍvc |QU4𚮹UQe*taOW KF23 Avm&;*JKD@p<#/"-zx  G kO0)WƇfFlj9˴4w}Ě9ـ\#?g4;kVdTnv*ÁlOdrO~e==tT'C ͎pNK,/uf]]uI6APɪ+3sa2Ӟ} [FIk[&=ƨ#q+DSR())5PJR\qv2>? J_% w5+SZU'C]Q,G929+% UDd OJ  C A? "2]R11{Tèsi69 `!1R11{Tèsi6` 0, dxڕRn@}NPZ DCRQ%nhY5FIlŎO+pgDrOpD $IUnzggf`|@3ђB OZb-umy )T*J+wRwM,xQ"˜'Zՠ]YTnw@ E*U͹-Q5f76 'D%zXawշM aWhA^)aN xMsRƷfZ k+f8#5jϚf}=:`%ocP,^HsYs;U౶.;q9~)CU;q%U/ӘDd lJ  C A? "21~6\[˟g { `!1~6\[˟g פxڕRJ@}IEk1 =UAVx3F ZhZi+ړz/ԋ̓'`4 ޜ4 M3hBbJE*-VGє~SL|Wbu6Dd OJ  C A? "2bxܽQPz[9>`!6xܽQPz[9` 0, dxڕRϏ@f ]1V=ln4&^qDx&K =^?  !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~Root Entry F|yCcData WordDocumentObjectPoolEC|yC_1106600241FCCOle CompObjiObjInfo  #&'()*-012369:;<=@CDEFGJMNOPQRSTUX[\]^_befghilopqruxyz{|}~ FMathType 4.0 Equation MathType EFEquation.DSMT49qh%MU2GxDSMT4WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A    sideEquation Native _1106600258 FCCOle  CompObj i opposite to A hypotenuse FMathType 4.0 Equation MathType EFEquation.DSMT49qh%MU2GxDSMT4WinAllBasicCodePagesObjInfo Equation Native _1106600301FCCOle Times New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A    side adjacent to A hypotenuse FMathType 4.0 Equation MathTyCompObjiObjInfoEquation Native _1106580492hFCCpe EFEquation.DSMT49qܐ%MU2GxDSMT4WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A    side opposite to A side adjacent to AV FMathType 4.0 Equation MathType EFEquation.DSMT49qD%MU2GxDSMT4WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_EOle !CompObj"iObjInfo$Equation Native %`_A   opposite sidehypotenuse FMathType 4.0 Equation MathType EFEquation.DSMT49q%MU2GxDSMT4WinAllBasicCodePages_1106579533|FCCOle +CompObj,iObjInfo.Equation Native / _1106580437FCCOle 4CompObj 5iTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A              FMathType 4.0 Equation MathType EFEquation.DSMT49qObjInfo!7Equation Native 8`_1106580525$FCCOle >D%MU2GxDSMT4WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A   adjacent sidehypotenuse FMathType 4.0 Equation MathTyCompObj#%?iObjInfo&AEquation Native Bp_1169127448)FCCpe EFEquation.DSMT49qT%MU2GxDSMT4WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A   opposite sideadjacent sideOle HCompObj(*IiObjInfo+KEquation Native Lw FMathType 5.0 Equation MathType EFEquation.DSMT49qO[4XDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  sinA== 3365==0.5077cosA== 5665==0.8615tanA== 3356==0.5893 FMathType 5.0 Equation MathTy_1226261809.FCCOle VCompObj-/WiObjInfo0Ype EFEquation.DSMT49q+QDDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  A==tan "-1  3356()==30.51Equation Native Zm_1226261831,63FCCOle `CompObj24ai FMathType 5.0 Equation MathType EFEquation.DSMT49q+QDDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  B==tan ObjInfo5cEquation Native dm_12262618418FCCOle j"-1  5633()==59.49 FMathType 5.0 Equation MathType EFEquation.DSMT49q+DDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APCompObj79kiObjInfo:mEquation Native n _12262618561Y=FCCG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  A++B==90 FMathType 5.0 Equation MathType EFEquation.DSMT49q+JDDSMT5WinAllBasicCodePagesOle sCompObj<>tiObjInfo?vEquation Native wfTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  sin35== oppositehypotenuse== y2727"sin35==27" y2727"sin35==yy==15.486564y==15feet FMathType 5.0 Equation MathType EFEquation.DSMT49q_1220262496JBFCCOle CompObjACiObjInfoD#cLXDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  cos42== adjacenthypotenuse== b1171Equation Native _1220263490 ;GFCCOle CompObjFHi17"cos42==117" b117117"cos42==bb==86.947945b==87feet FMathType 5.0 Equation MathType EFEquation.DSMT49q#­\XDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  cos31== adjacenthObjInfoIEquation Native _1220263489LFCCOle ypotenuse== 5.8hh"cos31" 1cos31==h" 5.8h" 1cos31               h== 5.8cos31h==6.766474              h==6.8 feet FMathType 5.0 Equation MathType EFEquation.DSMT49q#!LXDSMT5WinAllBasicCodePagesCompObjKMiObjInfoNEquation Native =_1228212588QFCCTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  sinA== oppositehypotenuse== 215273sinA==0.787545787A==sin "-1 (0.7875)==51.956749  H" 5522..00B==180"-9900"-52.0==3388..00 FMathType 5.0 Equation MathType EFEquation.DSMT49qOle CompObjPRiObjInfoSEquation Native f"JDXDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  sinA== side opposite to Ahypotenuse== ac== side adjacent to Bhypotenuse==cosB FMathType 5.0 Equation MathType EFEquation.DSMT49q"J4XDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/AP_1228213361VFCCOle CompObjUWiObjInfoXEquation Native f_1228212754Oc[FCCOle CompObjZ\iG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  cosA== side adjacent to Ahypotenuse== bc== side opposite to Bhypotenuse==sinB FMathType 5.0 Equation MathType EFEquation.DSMT49q"DXDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  sinA== ObjInfo]Equation Native _1228212792`FCCOle ac FMathType 5.0 Equation MathType EFEquation.DSMT49q"DXDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_ECompObj_aiObjInfobEquation Native _1228212955^TeFCC_A  sinB== bc FMathType 5.0 Equation MathType EFEquation.DSMT49q"UDXDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APOle CompObjdfiObjInfogEquation Native qG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A   ac() 2 ++ bc() 2  == 1 FMathType 4.0 Equation MathType EFEquation.DSMT49q_1106590948"jFCCOle CompObjikiObjInfolEquation Native p_1106590964oFCCOle CompObjnpiT%MU2GxDSMT4WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A   a 2 c 2 ++ b 2 c 2  == 1* FMathType 4.0 Equation MathTy   !$'(),/014789:=@ABCDEHKLMNQTUVWX[^_`adghijknqrstwz{|}~pe EFEquation.DSMT49q0%MU2GxDSMT4WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A   a 2 ++b 2 c 2  == 1ObjInfoqEquation Native L_1169147302tFCCOle  FMathType 5.0 Equation MathType EFEquation.DSMT49qO:XDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A   da  d2 dCompObjsu iObjInfov Equation Native  V_1073281189yFCC++ db  d2 d== dc  d2 FMathType 4.0 Equation MathType EFEquation.DSMT49q %MU2GlxDSMT4WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APOle CompObjxziObjInfo{Equation Native G_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A     FMathType 4.0 Equation MathType EFEquation.DSMT49q %MU2GxDSMT4WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/AP_1073283718w~FCCOle CompObj}iObjInfoEquation Native _1073283805FCCOle "CompObj#iG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A   2554  FMathType 4.0 Equation MathType EFEquation.DSMT49q %MU2GlxDSMT4WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APObjInfo%Equation Native &_1106594891mFCCOle *G_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  E"@ FMathType 4.0 Equation MathType EFEquation.DSMT49q%MU2GxDSMT4WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APCompObj+iObjInfo-Equation Native ._1169128802FCCG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A   84  FMathType 5.0 Equation MathType EFEquation.DSMT49qO4XDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APOle 2CompObj3iObjInfo5Equation Native 6*G_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  11.2 2 ==125.44 FMathType 5.0 Equation MathType EFEquation.DSMT49qOn$XDSMT5WinAllBasicCodePages     .! #"%$&')(*+,-/0123456789;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz|}~ċ^?ɋ1=i"7-ěoޏyo`|@KіB ORz5wU'T)+J3wVsXNQ&͊G Ԫ{TE5s_$w$d]*f[]&S.OHs'*0W3xi}T5mg0r ( R^=:d|k|RJaMPy@r|LuE9a,~=~7D^Pf{Q}zx|nT9Q*Q1??jƇ=u\FAk<:qȶ:?o [&V.5X,Z}/NknڭV(@?I#r|ql3I~0 FgA1x !0Jc ")9ǘg*yIyxIܬZ6/e;mZ7 B5ټ y'bWDd lJ  C A? "21~6\[˟g `!1~6\[˟g פxڕRJ@}IEk1 =UAVx3F ZhZi+ړz/ԋ̓'`4 ޜ4 M3hBbJE*-VGє~SL|Wbu6Dd OJ  C A? "2XKe BX8t4`!,Ke BX8tx 0, dxڕR1oPsdCRX&Wl<GmF4ee ?#[!'w{wǰh (J9c(d|Z)=vMisrU2G,T^q+y 0H$v|VUEK^9H_ *.oqBuB*m4 M3hBbJE*-VGє~SL|Wbu6Dd Tlb   c $A? ?3"`? 2,̷h,F.r N9`!̷h,F.r N6 *MAxڥTOA3V + D QI,ź$.xPV\' &z2Lh<CLٓ݊Λyޛ~-<0;geGv }:C P}:osH@ ?Ɂցڴ;]u=s'HS\ΖOj?_2C&A0/f䢱.{mH[#2fL+-aD<^5:\CeY"q F5"vc7XT ϕXt$1VtBFF ,Igev$ w nDȌ.jBU5D^Qȑ҈ 4M,n*Hrمۘ1(F[Lڡ==3s{xd&Un^ʗBa\7sFZ7Lyw9$Bމ򭅼@򤲑ReA0&Z P h`%Vu,:P:A7J +[zV^Hꥫ5-q벰83}G.PIj'l.k,tՅQ@MerF1xҘ .<<eי; F19kDKĮ[l4B O6ԐqR/0[ ⴤ#CpW jp.۞Y؉]9i1c-˻#rB!zz 5VS l]م3F3V>l=M RϫXlu[S;iW{w9njS(ll2:k^\-\2&+F3Kv~ep}:cLr2L(Mw`:6MDZs> ̄yȬQR}4Uf(=nVagQBt¤Oy86̈!X\z|s: y kT9̇DOG ~4wphےg` o iN͉zRZ],0Ͼrdvp Ps}5+Y Dd 8 b   c $A ? ?3"`? 2ڪ9kCpr!`!ڪ9kCpr@xڵTkA3iW M~Zz4iDM$qU&Rsj ŃA*](d JgW\[zVNH -q6cI(E$u65֧}(IerZF+f1Mt4Az5FzXqvh_z<鋺 iffĐG .Dw"|9JwVUY8d(wDB_"M>êAǾ{Im~3Fn nL:f⿲ G'U'҃*~NgJ GZCbu>H,S-??G tË x[@Y6IopV熼3) !i%Ԡx5'd0 <rGttEBbC DMZWjVօJ h2z8V!y>TDd @ b  c $A ? ?3"`? 2V^6~Q(`!V^6~Q@ @dxVMLA~3?TFDC&Th4&"RuhZ !^`1V:*k:Wi;;߹su!- >>)Fl}ɩɸ6IS#21\Y"ms2\=OJҡ(">RKTi^)h4R'q38^8 X1.T<Ɗ|L\'8_^Wo OcKII#~)DB2d4uLp@Cl)\LJ Y;A&(D-"?ƘU/迤 DpD2v򭄺6+tw2s:7*_g,oQ9mH_kbx!s6=e|HsJ6?8ЧPxPVNGQzYZa9*h4RfȃqpBbN]:v\3IdP,w' k!iӜ.I)ŒA"I"[r$#"a>, l;~#l1u\+n+5Uf6zUxw򠭢 .oPR[m}ݖ9`m~$fo};?/i)sKF9rX]ZWocJ wA'|4b]<]0hA H _<|sẃЂ^(O"6ޖ֩&AG$_])UZ٨ Y/Km .mN>`y{{k]'9ً~Go$ {{w֞nDGZ/6oۚBM\rI:>J[~U1;ǣH0*#5'lT_Z^02=B&߀0($} ȓu˓vaSޏs|g1[]~T=y}hmdR^'F.5F8]0Ý)Z3VKխ[I֜5jΊ=NttV\g~zY* Diј~`!ڻ:AŊe5QZ[]2V\$Qe5 =|<=y<5oeR3_9@ t rz`Hf-$ya Hf2n/8^A *q~i;.l$/jPIH*tlY$r^"'R%Bd)2:`mUQӼXLGm}3iL<=6e~VFk4a|NL,jQ)[w?crHNfa%#DϺy&xA^v4+!Nh:2[-Weztn< [b*ʟxEV[EH$$If!vh5 5 5s#v #v #vs:V7l t0V%65 5U 5\+Dd 'b  c $A ? ?3"`? 2uui q. [ h QZ9 `!Iui q. [ h  @ % &xڵVoUoڎ];I`U[ɮ?};1(" {Q4D% q'rpΈFBA̼ֆDzyo}2p× *h9zymXsDž4όvi(УQl9B 3* JaD[O `EI67n[1݉ >|M&=CtZƢij*uGm$~ fHɈLL߷|2WѰՖJp\^%N:pɠ02x7Bt>YB n-ѴR4v(]N5?. 㼌8d3洉bsʿ{L2rQ1 \Txμm݇ 2TBjgQlL'ոTs7OE8k8 &>O9a,koڸ`oGLem0* :=7{|A>ցD/$:u:w=,_Y8`@%:N>E"?b]3\bTbܭ_7nLr[^X1"ݬ kkJ֬Tyjˆ;LfN0/Z܃kkn4JK/\RbwXF-~{<-3ܚGp?lPu;n1-? `!6Lk`^}kmxc&# p:7dxڵUkA36RP-7m`*^5YMJNAz?CzAhߛi-I߼y2J>a͏3hmM6] }c1&B0 m2A}{n -tRb^C? b>ā?CeŖ".v.b1!mb^Qi0 ™RE3KZMlTT~.|8c -:,4٨V dieȊ@²t#(lA#,Uf Gr4$;r@'%'rI!nתٌ=!zհ4}:<5*Vcnl:#{ccX/6;O8:<z-İܩr?eOt2ِ8Fѿfr $Ip_ D% RbWJR.'T5 ZZ3"9QEJI[IR9yZQ! ܴnCJԏh%[f"Z84KC3ٚη9yT\6٢ 2,ذ( @"5 ź8%Ө 2hA@B#!0HT=at[Ɩg"yDGg%EXjn]u#W=l{wZE-r81z~~Wƾ~=C}!,p/MKл pO"?Fw$vDd /b  c $A? ?3"`?2c%' pJ}m4⥂?EC `!7%' pJ}m4⥂&# 7dxڵUkA3#nPc6ZbS=&d[ƃ) BA,u]դJ%#jiJ/+sMŀDp *WWTe&!캹"CzdzqiΊ.C$֨cS44Xaj$wgHcB֢2,ذ( 9E bKkj; i4&ћ*2 HBeh$L_F(ƗHI|U?žDD莥s\^e3E'A_q"^΄ǡf'놩Tq ۸0 lSd񧤻^ϔ` z=x"$$If!v h555555555 #v#v :V l00%6, 55 2(2(2(2(2(2(2(2(2 (44kdG$$Ifl  l P4 $00%6$$$$2(2(2(2(2(2(2(2(2 (4 la$$If!vh50%#v0%:V l00%6,50%2(4"$$If!v h555555555 #v#v :V l00%6, 55 2(2(2(2(2(2(2(2(2 (44kdK$$Ifl  l P4 $00%6$$$$2(2(2(2(2(2(2(2(2 (4 la"$$If!v h555555555 #v#v :V l00%6, 55 2(2(2(2(2(2(2(2(2 (44kd`N$$Ifl  l P4 $00%6$$$$2(2(2(2(2(2(2(2(2 (4 la$$If!vh50%#v0%:V l00%6,50%2(4"$$If!v h555555555 #v#v :V l00%6, 55 2(2(2(2(2(2(2(2(2 (44kdLR$$Ifl  l P4 $00%6$$$$2(2(2(2(2(2(2(2(2 (4 la"$$If!v h555555555 #v#v :V l00%6, 55 2(2(2(2(2(2(2(2(2 (44kdU$$Ifl  l P4 $00%6$$$$2(2(2(2(2(2(2(2(2 (4 la$$If!vh50%#v0%:V l00%6,50%2(41$$If!v h555555555 #v#v :V l00%6, 55 92 2(2(2(2(2(2(2(2(2 (4=kdY$$Ifl  l P4 $&00%6$$$$2 2(2(2(2(2(2(2(2(2 (4 la-Dd lb  c $A? ?3"`?2wLh^O^SH] `!KLh^O^.L xڵSkAff61"h*`+ǀd#xܮq FRz/( ^Qt((Ko߼c4@ &g,EO( B0Uh$}'**<"IR r%ޏqךB%Btr'|89Kl=/,_F`[FҼSMxE\+# `]INg`bPg͘wql&7r99x&<:D6h{TV~ڇ!Nz׳Ag[ez#7@vU7;mnz!,}>?KXz{uKkEK*i\ud˙ӄ&Ui6eg-Ē+?\# cGFQӠb0S 5O[! |lKjTUm7;qUcGn-GbX"9CGoO` OcWާbj/f.b_0Dd lb  c $A? ?3"`?2zDBsJVu` `!NDBsJ. xڵSkAff61zLq,V0L&v!H6椴TD $9z(A/ғx]/ 7#JRag77R8{C$DKL,; ?jХcb"QN7h ű X+j ;y~'\2ƪD)ͣMDgdE^7܎n:­np-•oSh4M?) H rLV)&|9 Giʱ/Nէ@+s)ۋ魋ÖDd b  c $A? ?3"`?21cZ>%Dhc `!1cZ>%Dh 8>(+xڥTkAoviHڃRu[~/Ih. x @Ҕ&%dKI&ҿxAADtmC7; _o߼}3Cc Pg6Bt,4gm9~^BV=!B|0  )5[nYV^^H%d=& : aƾ[(D:űe8abօo(ol#(`T1jjh}^miNmL{聾6m"nPdA޵[%~;>~"oWE3ژ_ 2 QSibq&YC]e{4.XtUep7{tZtz'ř&N3ܔ}mgǮb*GAx6SZYV*ƪw` 3 ٱXued,IȩxP_!cSf|J˘~\^|xO3a^2yB~_̈́9OMrƇID>O|^#FAʪVf?lXy|zb_lEh0"( uNf Gz7WA4EeYw-uz6crt5Hnv;Ș]FiC nQƬK3o[n0W -64W\uwD<=M&'8 ]7E(.wW,`*T#eXNy=Ls 8S9\k3La+b+B|.Dd J  C A? "2S?i-}G`Tl`j `!dS?i-}G`T e d2xڕSAkQfvS4Ĵ5X<6 `$a $$ҋPԃٓqllZf73=B0lL@ S^&BH,d23钞2W%E2tm!ULTv#=|6$jE>rOK )f|e.pA7Ba:IZS_-:]w`uZz]ggZ_FꋈE|7A|Hޚϫ~LW7W}Y, TMM~|TIm:sp_9b|yc.pt'XFfW3}~LO- N JJ&(ycw:Π*U;@"t1(*n_HU\╍aWxvî&x%f+{WfCP`7J;%X4vTWUNgH W¯Dd |b  c $A? ?3"`? 2fFr0e78 N,Bm`!:Fr0e78 N,p `0xڕSMkQ=D40TBѩ[p#:MF3e$HI"1taQuή])/pJtRt\L8̛{wB؃zQH-7'!FyFXXQ㗼vX s+׻n:O(t\I ~{)Fp-k^vxccc;ƴN4$7/)@<(R(ZviU>D*2ٷr56UYDe <&*4WY;ۋ*z]_DqB{ز5ۨum]7H(T<׾iTΝ^CWa~.~b>n#pps `Rg{8zm=I\rBp@DXWc4nHxdyc"0̔Z5Z;zpBOQ gʃnoa[uLM"!s"?pDd hTJ  C A? "25(^hp `!5(^hp@ |XJx]QMK@}ij!Ճ"ZE=~A<4m=X)6E$F Zi4ɟ#xozԣ I:*N2ٷB@NGehDe*PT$EZ$CGbg|+\G#AUyb]`IŧLL;HQVi!@E"z}~s <ViNQZiV74K$})g>,Z!u׼\~BɤàZjA/iPbkUn1WDܸ-ڵ*{אr>h5\<ƒgsv'?gX?O07-,:bfN8~GYX3Nޱ}[f'Is')e['dω&Š*9tQǝ*k cM3Rjߐҗ M;kDd J  C A? "2`OS4v`!`OS`@!oxMQJ@6b A4ꡠE%iJ)cEMSIO^y" mgw 9@A!,MSi i9`*QAK]QaRsFNڠ0NyńӟR@Ux,ӏl ^DYFG,p(#+E#\Lf14Hgs+Z^_ny3`7=Uӕvx?T|9=M=X՝wV?mo^W-H줞-vXZLҏ]Vv"@FB" ȡY,l;F8Z**١<"`\t!L`2Dd hJ  C A? "2IX֤K]ݴ%x `!X֤K]ݴ@|x]ROQf 6AB@D遛]il 1YW`MKM[b{xV!+WE1yvgf#BM<Ж,%%9ϰ2,`$[J,G"% D)輮ކ@^qoO^5Wi*hƠSfPY<+O 30yTYW`̋m%s:C/LI.r8cءGاfT-]t T٧f#8qC빁Lkt6 lbT́2;^ڵW^X6:iklWyت-XVvkrr6}9EEw/({ъ%/w/^^Ia9r#[PWH.Jb>9R-j{Otۮdj1\򤓶޸ qA0/UzNMi}.?(EkDd J  C A? "2`OS{ `!`OS`@!oxMQJ@6b A4ꡠE%iJ)cEMSIO^y" mgw 9@A!,MSi i9`*QAK]QaRsFNڠ0NyńӟR@Ux,ӏl ^DYFG,p(#+E#\Lf14Hgs+Z^_ny3`7=Uӕvx?T|9=M=X՝wV?mo^W-H줞-vXZLҏ]Vv"@FB" ȡY,l;F8Z**١<"`\t!L`2Dd @b  c $A? ?3"`?2\[%-_ 58}`!0[%-_ 5P  xڝRo@@CI T[ JJHE"Ѹ@AIPb@%lt@bBbcB =ǮPTN{޽@P @b<412 ęx/'^^[fc*2Mhޣ/{.h:{ \d8dtRx'+at:ݾ;үƠëO4uz EKĦ`dى] o_bfl%lTK|R7F9"m5?kl]UX'DZ -f ,_1169128866'FJ!CJ!COle ;CompObj<iObjInfo>Equation Native ?_1169128993FJ!CJ!COle FCompObjGiTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  6.3 2 ++8.4 2 ==39.69++70.56==110.25 FMathType 5.0 Equation MathType EFEquation.DSMT49qO,XDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  1.3 2 ==1.69ObjInfoIEquation Native J_1169129010FJ!CJ!COle OCompObjPiObjInfoREquation Native Sv_1169129083@FJ!CJ!C FMathType 5.0 Equation MathType EFEquation.DSMT49qOZdXDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  0.5 2 ++1.2 2 ==0.25++1.44==1.69 FMathType 5.0 Equation MathType EFEquation.DSMT49qOdXDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_EOle YCompObjZiObjInfo\Equation Native ] _A  5.6 2 ==31.36 FMathType 5.0 Equation MathType EFEquation.DSMT49qOddXDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/AP_1169129077FJ!CJ!COle bCompObjciObjInfoeEquation Native f_1169129212FJ!CJ!COle lCompObjmiG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  3.2 2 ++4.4 2 ==10.24++19.36==29.6 FMathType 5.0 Equation MathType EFEquation.DSMT49qObjInfooEquation Native p _1169129243rFJ!CJ!COle uOdXDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  8.1 2 ==65.61 FMathType 5.0 Equation MathType EFEquation.DSMT49qCompObjviObjInfoxEquation Native y1Table:NGOidXDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  7.2 2 ++6.3 2 ==51.84++39.69==91.53޺3nݖsķ)î;CR͎n=fMkf+ԫvS .uL`6vöL5/!iS)eqIAcy/di kR=t̖;t;Bo?mJ>X~e</?1J9RDd @b  c $A? ?3"`?2z@ߵc{x`!pz@ߵc{X! >xڝSkAl6&m BѴH|9&cu5|HxO zOzSt= 7zqy7of 8 &gFf3s{yBNXLQB)}a`mVQՁeN-pAD'_93Rm~>\{}f$cnxv> D(F0+Keg+E]tH3&7T2f15cj"=.^r!I =EYS'~LLTXot[kwx}*d8V(<\4Axz g9ga^/+TJ40hf߼;zA.%7߽k=Tzupjy8.ieCԴsg e F8o7k9/ԸhֶLmV irQ;AMaO DfHyE :CA"r3dYv]N':G$,A¾ N|iוʨ?hs7|!^|ߤw] Dd 8@b  c $A? ?3"`?2V^Y&vu2U`!*^Y&vu:v xڝRkAlmM궠ICmC"x\׺j i$=Yb|4Id3^|':K s gΐ.(Kt!+BsܻI2#@'|wtIšk tcW6^=}G+mvUҦ2_(cw~A| DȤ 3i锱<q!_K9S e'>%+&*7u2t5tM5{Y1d%vDCy@__΂ A/`Zm۪Wfy)Vo9mD;Q"\n!"B9f봪ԑc h]]T_Ν%|RywZ!k9PYsrgtPWlWf顦0S U4a}C P+C…LjVyA R7s[Lr A?'KB,y7fOQi?ꊗz@_ܩy={D(fd -g>!q_ Z9ķlVJf23H9c^uU/uIm+z?glUq«Ns^RT2zoz;6xM7B^]9$`#F۰C,o tc5^f!ktak5)vr]֦Sw@>#&x>IΫ2^US.yHZI}Kq'2H6@G:΢]6Zhёsv5y~ P+KJDd @b   c $A ? ?3"`?2\DC~T_mNp`!h\DC~T_mN 2 6xڝSkAf6QDI#"m&1F)I$)^ѓz_Ah!^$Zag7}7of#8!&gEO&tv qp-6K00dfDx{2S Tݫv, !̈x\q&2urqXX6˶V3/]$|.l.ڋpFH ښ=KBh qTFT # .A*ePP($8SZdZ9%*q$E,ۜi;ݨȗE'\ =]x*]SǻQ]Dd @b   c $A ? ?3"`?2Yg|,OsKSٗ5`!-g|,OsKSٗ@ xڝRkpoᲁ"вKaYJctQ :JADa/ IM<'I:/yy#1GeD1"At5/#  n\Ұ@:-',Iӥc iw0˼'$,|"b%[ jw݁qz]gޟX (n؛'B1%dh;(1D&H.j̱l R\> 0Ӻg/uImz݇LQ]A9yiNTJfU^NgU{nyUgg*q7Y{o}DeXχ}9-Yښum6/]c|E3[ue3ҵTc_qhdbjl˗e OAqJz_/S.|-)xUAoei*]?7Neodx; w;Xiződcoh/9nկ+QDd @b   c $A ? ?3"`?2cϔqIt˃w`!ocϔqIt˃p =xڝSoQ[P Z&Ui5)q+?[$n؃"4="UIAh< gŃ'7]O&Ʀ^oyΛ |<4r2XHg_NyIaYBO1 QJ1}9`Vz~uXYf8d4'M~ʼnU^KIFFov_hF?Ի{]&tgJWFZ`gxXK_"4WDFKj*2l\K'F@>\eZ߁<>UvOޮO[{bX2@;'#'^(TJ40֛͵zq;߾c.B= )NU!oi^DSF{:8\G:̢yO!"> heading fm2,hf2@& BO1"B text centered,tc$a$FO2F text no indent,tn `RO1BR text single spaced,ts$da$BOAB text quote,tq^rOr hidden text,hid$5$7$8$9DH$]$<OJQJ_HmH sH tH XOrX text hanging indent,th0^`0vOv left margin graphic,lg$$&@./5$7$8$9DH$ OJQJaJHOH text indent,ti^`tO"t heading fm1,hf1'$$$d5$7$8$9D@& H$a$CJOJQJ\aJDOD MTEquationSection B*ph^O^ MTDisplayEquationx5$7$8$9DH$ OJQJaJP@P Header !5$7$8$9DH$ OJQJaJ.O. p5 `6] OQ h6O hOa n!V0@"V List Bullet" & F5$7$8$9DH$ OJQJaJZ6@2Z List Bullet 2# & F5$7$8$9DH$ OJQJaJZ7@BZ List Bullet 3$ & F5$7$8$9DH$ OJQJaJZ8@RZ List Bullet 4% & F5$7$8$9DH$ OJQJaJZ9@bZ List Bullet 5& & F5$7$8$9DH$ OJQJaJV1@rV List Number' & F5$7$8$9DH$ OJQJaJZ:@Z List Number 2( & F5$7$8$9DH$ OJQJaJZ;@Z List Number 3) & F5$7$8$9DH$ OJQJaJZ<@Z List Number 4* & F 5$7$8$9DH$ OJQJaJZ=@Z List Number 5+ & F 5$7$8$9DH$ OJQJaJ.)@. Page Number8B@8 Body Text-x5\P @P Footer. !5$7$8$9DH$ OJQJaJV@V  Footnote Text/5$7$8$9DH$CJOJQJaJ6>@6 Title0$a$ 5>*\VT@V Block Text1$]^a$ 56\]BQ@"B Body Text 32$a$ 6CJ]V`@2V HTML Address35$7$8$9DH$6OJQJ]aJ:P@B: Body Text 2 4@ ]@ DC@RD Body Text Indent 5`6U@a6 Hyperlink >*B*phj@sj ;n Table Grid7:V707  !"#$%&'()*+,-07>EHLQW^chmtw!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZbcdefghknv~,48<@DHPU\_behknj{z     yvunmrqheiZ`[VWU3456789:;<= >!?"@#A$B%C&D'E(F)G*H+I,J-K.L/M0N1O2P3Q4R5S6T7U8V9W:X;Y<Z=[>\?]@^A_B`CaDbEcFdGeHfIgJhKiLjMkNmOnPoQpRqSrT  !"#$%&'()*+,-07>EHLQW^chmtw!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZbcdefghknv~,48<@DHPU\_behknq  !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~jQ!)=VWBijb"#\I  6  V X Y Z [ b'(DE+,-prstuvwQ0@A`PQMjrvz~ ()*+4<DLT\dltu~e ] ^ ! !!!!O""#######;%&&' '(((9)K))))+Q-R--X...)//0c1112]2^2234425(679j:::I;;;&<e<<<<s=t=9>:>>??????#@$@AAAA{B|B5C6CfCgCCD_DD)EeEEEE/FgFhFFFrGsG HbHdHfHgHhHiHjHkHuIIIIIIII~J?KKKKKKKKKLLWMXM,NNNOPPqQQRRrRtRuRvRwRxRyRzR{RTT UUUUXVWWWWXXYYqZrZI[J["\#\%]C]y]^^_._b___`abbbccddeeeeeeeeeeeeeeeee6fff gggggggggggggggggggggggggggggggggggggggggggggggggggggghhhh h hhhhhhh h!h)h*h.h5h6h8h9h:>>??????#@$@AAAA{B|B5C6CfCgCCD_DD)EeEEEE/FgFhFFFrGsG HbHdHfHgHhHiHjHkHuIIIIIIII~J?KKKKKKKKKLLWMXM,NNNPqQQrRtRuRvRwRxRyRzR{RTT UUUUXVWWWXXYYqZrZI[J["\#\%]C]y]^_._b___`abbbcddeeeeeeeee6f ggggiij-0-0-0 -0 -0 -0 -0 -00000000000000000000000000 0 0 0 0 0 000000000 00 0 0000000000000000000000000 0000000000000 000-00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000.000000000000000000000000000000000000000000000000000000000000000000000000000000 0000 0000 0000 0000 0000 0000 00 0 0 0  0  0D 0D0 0  0E 0E0000000000000000000000000000@0@0@0@0@0@0y0/0@0@0@0@0@0@0@0I0A0F@0@0@0@0@0@0@0@0@0@0@0@0I0O0>I0O0<@0@0@0@0y0B0y0B0I0X08@0@0I0\08@0@0@0I0`08@0@0@0I0d0:eI0d09I0d08@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0@0 &{00{00 08I00u515HI00u0k  C\   ~$'Z()L1968:QCsEWFGK PkP{RSUYa[]adil@n2oojp qqrr:>?ABDGIKMRTUWYZ\]_abceghijlmopqsuvxy{~W w0 ##*$$$(+5?DgKsOSrZahmoo ppppqIqqqqr;=@CEFHJLNOPQSVX[^`dfknrtwz|}r<%=?%=?C[]q   13@XZ (@B')AY[13Iac   A Y [ 4-L-N-....//2.20242L2N2<<<<<<x======>>V>X>^>v>x>???!?9?;?j::::::::::::::::::::::::::::::::::::::^ehmx{!!t "4r$3x!tV$di8r$H_-nir$|T>i $r$fL4³@1i$r$ 1=<*I؜Uis@M!@   ,M(  T  C    T o(V #" vb  c :ASmall grid4$g ` F* #" o(Vh R c ,A10%PG& S s H ASmall confettiF*ph T c ,A10% r S` U C 1Ud $'  1` V C /V B /` W C 0Wd$ 0T   $\ #" ` [ C .[ 0 X  .` <` $8 #" < $\H X # jJ` #`B Y c $DjJ` #Z Z 3 ,$8 ,fB \ s *D<` <0 fB ] s *D<L<fB ^B s *D !tB _ s *D"h"#` ` C -`X | (# -B a  <X T d* #" hb B S jJ" )Z  S (a)l  c $d!\ l  c $3"o% 3l  c $+') l  c $"$ l  c $2(b* 2f  S (* *N Lp)%  dZ yp)%  yp)%Hb B #  y%#`  C  ##% f  S  it"m! f  S  %q p)u" f  S  "$ `  C  %L' ZT lxC+ #"  ZB b S D1pp(ZB c S D1p(x( d NPAjJLight vertical *& (` e C *el"< % *fB f s *D7#fB g s *Da$(` h C )h')t C+ )` i C +i -"$# +B   Zp( W)B   PS  (dN HL,P k Bb lB  Hh( Z m 3 #l!h% #Z n 3 "8(4L,P "jb @ o #"  4b p @Z q 3 %l %Z r 3 $Hh $dN | s Bb t  CZ u 3 ! l | !Z v 3  h  b lUk" w #" Hb x # jJT }!` y C yl  ` z C  z@ k  ` { C  {  k"  B |  > U H"B }  z!b a#"  #" Nb B 3 LjJS( `  C  `  C #" `  C xT! B   7aAB   S[<  # g N #'(,  `  C  @#(%M+  `  C  Dk')  `  C *0$, Nb B 3 1/'O*Nb  3 1/''O*`  C "#'(3) B   Z*'"+b "'  #" H  # g "'N  3 "'N ZB  S D"L ' `  C #'  `  C " ' fB  s *D% %A fB  s *D%Ld&, ZB B S DjJ""ZB B S DjJ ' 'b xX)d   #" HR  # jJxh'TB  C D#x#`  C 'HX)d  H  # g #l/$4b @  #"  xZ @  @Bb   g ( g`  C @ h  `  C  o  `  C  w  B   @  B   m s B   , O b /  #"  Bb B  g < `  C (S </ (`  C 'C  '`  C &| X &B     B   ZA / B   { ? Nb 4,  #"  B   L'ZB  S DjJH'`  C L F" `  C ~"%T ~`  C |'4, |H b ( B%  #" `  ! #  !Hb  # jJ 7 `  C \ T `  C T L ! `  C  `  t  # #" !Hb  # jJ\`  C D `  C 0g| `  C ,x `   #  Hb  # jJh G`  C 0 `  C   `  C d , Z  +(   +(Hb  # jJ+`  C  $ `  C @`( `  C d  ` ` ! # ` !`  C L|  `  C ( ! `  C @`  Hb  # jJ8 n ` (!B% # (!B%Hb  # jJ!Bq$`  C (P" $ `  C X!|# `  C  $$`% zb t"+)q  #" TB  C D(b(TB  C D"b(bB   ٺ'+.'3`  C T$U)q TB  C Dt"(B   Z%(T \+4 #" Pb B  g "` +3Q1`  C {6 1^4 {`  C  +@. `  C }h /D 82 }P   "`\-[.P   Z"` 1B1B   0-T1b Y@2<7  #" Bb B  g T @26`  C 3<l6 `  C h |2(4 `  C  X5 7 B   Y3b44  X2\6B   $$66b    #" Vb B # g "` wYf  S z L  zf  S y 5  yf  S x O xV  # "`SummaryInformation(DocumentSummaryInformation88CompObjqOh+'0 0< \ h t  Day 1: Triangles and similarityHunter Ellinger Normal.dot Mary Parker3Microsoft Office Word@F#@~6%@԰C@xDC4V՜.+,0 hp|  4e  Day 1: Triangles and similarity Title  FMicrosoft Office Word Document MSWordDocWord.Document.89q C V  # Z"`mH  # p\d@ *&.E" Vb  # g "`&f  S wi E" wf  S v |z  vf  S u F uV  # 2"`..V  # Z"`mH  # %`  C t*:  tzb t"+)q  #" TB  C D(b(TB  C D"b(bB   ٺ'+.'3`  C mT$U)q mTB   C Dt"(B !  Z%(B S  ?V p !-0 HbHdHkHIIKKKKrR#\^adj(#D%t# tW: ztI; tL k tL k t% tB>t#%t t} $t taP%t QtoH) tkl&tsp` (tw?V Ut!t"^t= 3_t`3t@" tP" th" tlzT! tL#t _Toc25394455 _Hlt25395731 _Hlt25395245j@@jY.Z.T8{[.F8..4j366j=*urn:schemas-microsoft-com:office:smarttags PlaceName=*urn:schemas-microsoft-com:office:smarttags PlaceType9*urn:schemas-microsoft-com:office:smarttagsplace ,il%(`c),9<Y\vy&&PPQQQQQQcceeeeeeeeeeee%f-fggj !pw W[ ilIJ-78fj+.QU Y]qw)3==@% * m"{"(())--4-/.:.\.].111122229 9;;;;&<2<e<q<<<t=u=:>;>>>LAPABBBBCC_DdDGGtH{HIIqItIJJJJwK{KPPrQwQQQDRJR@TDTUUVV'W(Wy]]b_h_bbbbc(ccccdeeeeeeeeeeee6f>fzg~ggggggggghhhh.h4h6h7hiRiSiiiiiiiiiiijjjjj3333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333A\4IdjHjHII~J~JKKLL*N+NOOPP U UWVWVWWYYH[H[B]B]x]x] ^ ^``bbccddeeeeeeeeeeeeee?fJfNf]fgggggggggggggggggggggggghhhh h hhhhhhhhhiiiiiiiiiiiiii i i i iiiii!i"i$i%i,i-i.i/i/i0i7i8i:iX~yVrb;g4G]1kdf21ja'Li`yVH9U "@ 0^`0OJQJo(L                 ^k\        \c        b0        &6 6Drz^x7В~S(Y0)-,K        b                 0         jΆ       j+\~        &        t%(1VkfWF= B ?K udufPCQPaF-S^*O`$5&G&%Q& 'w*d,j:.r/m4050i1^4<8^89