ࡱ> !# G bjbjَ ".]8Rn *******    B\   $  ***** **   *v** *   :, * @ j Newton's Law of Cooling Purpose: To verify Newton's Law of Cooling, which predicts that the difference in temperature between a cooling object and its surroundings is an exponential function of time. Equipment: MBL unit, a temperature probe, MBL Explorer, one piece of aluminum foil, Bunsen burner, and a calorimeter. Theory: Newton's Law of Cooling states that the change in temperature T(t) of a cooling object is proportional to the difference between the ambient temperature Ta and the temperature of the object. This can be stated in terms of the differential equation  EMBED Equation.2  (If this is foreign to you, then ignore it for now.) If the initial temperature of the body is given by  EMBED Equation.2  then the solution of this equation is easily found to be  EMBED Equation.2 . (1) The constant k is called the decay constant and it's inverse  EMBED Equation.2 is called the time constant. It is equation (1) which we will verify. We note that subtracting the ambient temperature from both sides of equation (1), we obtain  EMBED Equation.2  (2) This shows that the difference in temperature between the cooling object and its surroundings is an exponential function of time. So, by plotting  EMBED Equation.2  as a function of time, we can determine k. Note: In this lab the ambient temperature is more than just the room temperature. One also has to account for evaporation effects. So, we will see that the temperature  EMBED Equation.3 is really an asymptotic temperature in our experiment and will be determined during the plotting. Instructions: Press the Go button to start the experiment. Hold the probe by the cable in the air, away from your breath, drafts and other objects that might affect the reading of the ambient room temperature. After a couple of seconds, grasp the body of the probe firmly and steadily with your hand. Observe the Temperature vs. Time curve on the monitor. When the curve begins to level off (about 15 seconds), release the probe and hold it again by the cable. For the second part of the lab you will do a similar experiment except that you will heat the probe in hot water. Pour about a half liter of water in the calorimeter cup and bring it to a boil over the Bunsen burner. In the meantime, cut a piece of aluminum foil and fold it two or three times. Wrap the foil tightly around the thermistor probe. Adjust the temperature parameter to a range between 20 oC and 100 oC. Start the experiment as before. After 3 to 4 seconds, dip the probe with the foil in the boiling water. After the temperature curve begins to level off, remove the probe from the water and move it slowly and steadily to a place far away from the water vapors. Start sampling. The idea is to obtain a curve with a minimum number of wiggles. Se the plot on the next page. Cut and paste the data to Excel and save your file. Data Analysis: Perform the following for your data set: We are interested in the part of the data representing the cooling of the probe. Delete all other irrelevant data. Subtract a constant from the time-axis variable, so that the first data point at the maximum height of the curve corresponds to  EMBED Equation.2  Estimate the asymptotic temperature Ta from your graph. Subtract this temperature from the temperature values T(t). The graph of T(t)-Ta vs. t should resemble a decaying exponential. Fit the graph of your data to an exponential function and determine the decay constant k. The columns in your worksheet should look like that below. The second row is a sample of what should be typed for the formulae based upon the first data row as row 2. The original data is in the first two columns. The adjusted data is obtained using the formulae shown in the third and forth columns. This assumes that the initial time is in cell A2 and the asymptotic temperature is 32. Copy and paste these formulae downward in the third and fourth columns. You can adjust you asymptotic value easily now to get the best exponential fit. Original TimeTemperatureAdjusted TimeT(t)-TaTaA2B2=A2-A$2=B2-E$232 Decay Constant ___________ Asymptotic Temperature ___________ Only turn in your graph with your lab sheet. Do not print out the data!  "CKDEXYZ[Z[nopq& ' : ; < =  Ĺzj1t8 CJEHUj1t8 UVmHjr8 CJEHUjr8 UVmHjr8 CJEHUjr8 UVmHjq8 CJEHUjq8 UVmHjq8 CJEHUjq8 UVmH jCJU 6CJH*6CJCJ5CJ5CJ0BCKL{ q r B C LV & Fh & F$BCKL{ q r B C LVG+9ADEHKS[^_`|}                          C ! " # $ M N   s NSaghmn9?@BCDES]^{|}ݧݧơơ5 56CJH* 56CJ 6CJH*jy8 CJEHUjy8 UVmHCJH*5CJjCJEHUjdQ; UVmH6CJ jCJUju8 CJEHUju8 UVmHCJ;G+9AD$dh$dh & FDEHKS[^_`|}h$dh$$$dh$N$$lr 8#`'5CJj5CJU &P/ =!"#h$%Dd,hB  S A? 2;=mH8.G`D`!=mH8.G`d@|xcdd`` @bD"L1JE `x0 Yjl R A@2 ^ jx|K2B* R.t! A601d++&10\ F\?1&BMh F>Mj`Tu!` 0y{fdbR ,.IͅU3 8 Dd.\  <  C Ab ز*K=vS3f DBn^ ز*K=vS3PNG  IHDR.9gAMAPLTE """)))UUUMMMBBB999|PP֭3f333f3333f3ffffff3f̙3ff333f333333333f33333333f33f3ff3f3f3f3333f33̙33333f333333f3333f3ffffff3f33ff3f3f3f3fff3ffffffffff3ffff̙fff3fffff3fff333f3f3ff3ff33f̙̙3̙ff̙̙̙3f̙3f̙333f3̙333f3ffffff3f̙̙3f̙3f3f333f3333f3fff̙fff3f̙3f3f̙fffffffff!___www˲𠠤X"N pHYs+IDATx* FoI8!`?MWX9VZb\(1.J %ƅ҅K1.v\(D6Zy`_kdlEf}qO}8Rv.NX!=q{lI^7W,UVN_uW (Z=\9,+%M%qxO{EVwpylT42=&]uW1ӚE;č R{ĝZCD Zͯ1@+4=VCaqŴfF@`?\ UT`Fz}Wk6pDJV܆}SЅKZ; 4uVhVBW l~ހPKp:j FP㲣l>%%GjhO>N;U!4\Tn4m p-7!!1B {6()&zlRϿ֤"˫ojwF& ypחm*ϰB[6Ռ } PՊu؎zz6^ĵ#F\v/ƅR.Mߎ;#wqKp=^JڋW {6^ub\8mkx5zYƅ6D>Ugk^U\ݶqJa ĵ)~>ŵ±Ѹr z#V V5 ulU+~כAdõdk-V E5"-\t R%l>Qu^ZhZ檕U2 5p w _H_ᢞpF$K)+1͔$k)uQ+bq3%)xD"V"u].-U!ZL[Al!\SrJNMpM"$ĥfdqZw>Ʌq I6.5uy\j>ڿpza\rriķx6¥XגN~/e;\Շ;z1)ĥe:?ȶƥ.blw\W8?K)@Nu\xZ{Pu8n1;øNaNaqYrj`\tŒq:,4OҲ 1Ƹj:`1&f]BqĸPb\(1.JI\L+'ƅL\b11.&ZP % Y)\L++ƅR?@V_\*eKVRq]U4/]iV2Wo lb;4\D+F+Dt\_/x=4%S=*e8.!܇q/9C)`x>شs.D\am6nQwbX+p"vS8\0UXgz˜r͗po=9ARsMˆx7c-Y4J +=Tpf•1W֝貇]2dzV`VԆCx~K7pT\W FM7όqyY]d\Ҿ>u?S%ҵC]7=Z]4_HHmFK,yva`0(6o70X;qDH:3rs~Zwu 5'51.yJ %ƅB-\}ٓƸSj*BMe\ 5q2.TUC_BqĸP H IENDB` "&@%'()+*-,0./123457689:<;>=?ABCEDFHIJKLMNORoot Entry; Fa >!$@'Data WordDocument:".ObjectPool=A2  >!_940732828FA2 i; Ole PIC LMETA   !#&)+,-./012345679<=@BCDEFGHIKPRSTUVWXYZ[\]^`cdgijklmnoprux}LEHlE z .1  @ &  & MathType "-@Times New Roman%- 2 jTdT 2 jtk 2 Ydtk 2 pk 2 T 2  T 2 " tk Times New Roman-- 2 apTimes New Roman%- 2 j (~ 2 j)~ 2 B(~ 2  (~ 2  )).~~`Symbol- 2 *= 2 - & "Systemn- FMicrosoft Equation 2.0 DS EqCompObj fObjInfo Equation Native t_940732913 F C @. uation Equation.29q XJlJpzJ dT(t)dt=k(T a -T(t)).L{h{ Y .Ole PIC  LMETA CompObj"f1  @@& & MathTypepTimes New Roman8- 2 `4T 2 `TTimes New Roman- 2 `*(~ 2 `n)~ Times New Roman8- 2 ,8Times New Roman- 2 `0 Times New Roman8- 2 M0pSymbol- 2 `Z= & "Systemn- FMicrosoft Equation 2.0 DS Equation Equation.29q ,JlJpzJ T(0)=T 0,ObjInfo$Equation Native %H_940732954F  Ole 'PIC (LMETA *hCompObj8fObjInfo:Lf{L hf{  .1  @& & MathTypePTimes New Roman- 2 4T 2 tk 2 dT 2 T 2  T 2  e Times New Roman]- 2 ap 2 G ap 2 ktb>Times New Roman- 2 *(~ 2 >)~ 2 <(~ 2  )~Symbol- 2 *= 2 + 2 m - Symbol- 2 M -{ Times New Roman]- 2 0p & "Systemn- FMicrosoft Equation 2.0 DS Equation Equation.29q l@JtzJJ T(t)=T a +(T 0 -T a )e -ktL<+Equation Native ;_940733147 'F  Ole >PIC ?L<+   .1  & & MathTypep "-\HSymbol- 2 #tSymbol- 2 `=Times New RomanQ- 2 |1Times New Roman-META A$CompObjJfObjInfoLEquation Native M< 2 k & "Systemn- FMicrosoft Equation 2.0 DS Equation Equation.29q JlJpzJ t=)1kL{ h_940733489"F  Ole NPIC !$OLMETA Qx{  .1  @@& & MathTypePTimes New Roman- 2 4T 2 tk 2 3T 2 T 2  T 2  e Times New Roman%- 2 ap 2 E ap 2 ktb>Times New Roman- 2 *(~ 2 >)~ 2 :(~ 2  )~ 2 .`Symbol- 2 - 2 = 2 k - Symbol- 2 K -{ Times New Roman- 2 }0p & "Systemn- FMicrosoft Equation 2.0 DS EqCompObj#%_fObjInfo&aEquation Native b_940733702 .)FQ Q uation Equation.29q p@JtzJJ T(t)-T a =(T 0 -T a )e -kt .L34@Ole ePIC (+fLMETA h4CompObj*,qf34  .1  &` & MathTypePTimes New Roman- 2 `4T 2 `tk 2 `3T Times New Roman%- 2 apTimes New Roman- 2 `*(~ 2 `>)~Symbol- 2 `- & "Systemn- FMicrosoft Equation 2.0 DS Equation Equation.29q (JlJpzJ T(t)-T a FMicrosoft Equation 3.0 DS EqObjInfo-sEquation Native tD_99518997830Fy  Ole vCompObj/1wfObjInfo2yEquation Native z8_9407347375F`B `B uation Equation.39q4 lIwI T aLD  .1  &``Ole {PIC 47|LMETA ~CompObj68f & MathType Times New Roman - 2 @4tkSymbol- 2 @ =Times New Roman - 2 @Z0 2 @.` & "Systemn- FMicrosoft Equation 2.0 DS Equation Equation.29qObjInfo9Equation Native 41TableGISummaryInformation(< JlJpzJ t=0.iJ Oh+'0   8D ` l x %Motion Analysis with Microsoft Excelft otiRussell Herman ussuss Normal.dotmRussell Herman 4ssMicrosoft Word 8.0h@0@jQUh@yh@ ՜.+,D՜.+,t0 px  Mathematical Sciences '  %Motion Analysis with Microsoft Excel TitleDocumentSummaryInformation8 CompObjj 6> _PID_GUIDAN{7285754D-0539-11D3-B76F-00C04F586463}  FMicrosoft Word Document MSWordDocWord.Document.89q [$@$NormalmH 8`8 Heading 1$$@&CJ<A@<Default Paragraph Font,,Header  !, ,Footer  !.B. Body TextB*CJ:": Number List B*CJmH <2<Subhead HH56B*CJmH 4B4 Table Text B*CJmH  . DDXZZnp&:< !#  ::::::::  fh>@AC,2[j3: NPac%2Russell HermanC:\My Documents\lab11.docRussell HermanC:\My Documents\Phys1\lab11.docRussell HermanC:\My Documents\Phys1\lab11.docRussell HermanC:\My Documents\Phys1\lab11.docRussell HermanC:\My Documents\Phys1\lab11.docRussell HermanC:\My Documents\Phys1\lab11.docRussell Herman)D:\Usrfiles\PhysicsLabs\Phys1\Cooling.docRussell Herman)D:\Usrfiles\PhysicsLabs\Phys1\Cooling.docRussell Herman)D:\Usrfiles\PhysicsLabs\Phys1\Cooling.docRussell Herman9\\WWW_SERV\www-docs\people\hermanr\Labs\Phys1\Cooling.doc17w*{*@hh56>*CJOJQJo(. @hh56>*CJOJQJo(. {17w@BR105 HP LaserJet 4000br105HPBXLBHP LaserJet 4000 Series PCL 6BR105 HP LaserJet 4000W*.XXs p    d(Untitled)*BR105 HP LaserJet 4000W*.XXs p    d(Untitled)*`;D@GTimes New Roman5Symbol3& Arial"qhB5 <:B5!0'$Motion Analysis with Microsoft ExcelRussell HermanRussell Herman