ࡱ> [ {bjbj 7ΐΐ^oo'"'"99999989;49<kALAAAdTԕJLLLLLL$Wp93rd33p'"'"AAPiii3'"A9AJi3Jii;!3A2L9AR860 ٞp90"i6Rpp3333 : Topic M. Trigonometry, Part II. Ratios and Relationships in Right Triangles Trigonometry has many different facts that are all related to each other. This lesson is organized to help you discover some of those relationships and then to use them to solve right triangles. Objectives: Use the three main trigonometric ratios to solve right triangles. Check your results by measurement on a careful diagram. Use the Pythagorean Theorem to solve right triangles. Understand and use various relationships between the sine and cosine values of angles. When a triangle has measured values for the sides, use the Pythagorean theorem to determine whether the values given are consistent with a right triangle. (Note that measured values dont have to exactly fit the Pythagorean theorem to be consistent with a right triangle.) If the sides of a triangle are not consistent with a right triangle, determine whether it is an acute triangle or an obtuse triangle.  The most important trigonometric functions of an angle A, based on the ratios between the sides of a right triangle containing that angle, are: sine of A (usually written as sin A) =  EMBED Equation.DSMT4  cosine of A (usually written as cos A) =  EMBED Equation.DSMT4  tangent of A (usually written as tan A) =  EMBED Equation.DSMT4  Example 1: Using the values shown in the diagram below, compute numerical values of these trigonometric ratios of the angle A. First write the ratio, then the quotient:  sin A =  EMBED Equation.DSMT4  =  EMBED Equation.DSMT4  = cos A =  EMBED Equation.DSMT4  =  EMBED Equation.DSMT4  = tan A =  EMBED Equation.DSMT4  =  EMBED Equation.DSMT4  = Solution:  EMBED Equation.DSMT4  Example 2: Compute the size of angle A in Exercise 1 using the inverse tangent function. Assume the lengths are exact. Then compute the size of angle B. What is the sum of those angle sizes? Solution:  EMBED Equation.DSMT4   EMBED Equation.DSMT4   EMBED Equation.DSMT4  Making use of sine and cosine functions Your calculator handles sin and cos functions just like the tan function. Which function to use depends on which two side-length measurements you know (or want to find out), and where those sides are compared to the angle whose size you know (or want to find out). When one of the sides is the hypotenuse, use the sine if the other side is opposite to the angle, and the cosine if it is adjacent. If neither side is the hypotenuse, use the tangent. Notice that, in the solutions to these examples, we do these steps: Confirm that the triangle is a right triangle, so that we can use these definitions of sine, cosine, and tangent. Identify the parts of the triangle given and wanted. Using those parts, choose the appropriate trig ratio and plug in the values. Solve the trig ratio to find a formula for the unknown quantity. Use a calculator to compute the formula at these values. Round the answer appropriately. Example 3: Find the length y in the figure below.  Note that the angle in the triangle at the bottom right is a right angle. Solution: Since we are given the angle of 35 and the hypotenuse, and are asked to find the side opposite the angle of 35, we use the sine ratio. (Because it includes these three values: angle, the opposite side from that angle, and the hypotenuse.)  EMBED Equation.DSMT4 Example 4: For the figure below, find the length of the base of the triangle.  Note that the angle in the triangle at the bottom right is a right angle.Solution: Since we are given the angle and the hypotenuse, and are asked to find the side adjacent to the 42 angle, we can use the cosine ratio since it is stated in terms of these three values.  EMBED Equation.DSMT4  Example 5: For the figure below, find the length of the hypotenuse.  Note that the angle in the triangle at the bottom right is a right angle.Solution: Since we are given the angle and the side adjacent to it, and are asked to find the hypotenuse, we can use the cosine ratio since it is stated in terms of these three values. [Note that the same ratio is used as in Example 4, but now the hypotenuse is solved for instead of the adjacent side.] EMBED Equation.DSMT4  Example 6. For the figure below, find the size of angles A and B.  Note that the angle in the triangle at the bottom right is a right angle.Solution: Since we are given one side and the hypotenuse, we will first find the angle opposite the given side, so we will use the sine ratio. After we find that angle, we will use the fact that the three angles sum to 180 to find the other angle. EMBED Equation.DSMT4  Further examples of solving triangles, with answers, can be found in the problems in Topic U. Trigonometry, Part VI, on pages 8-16, with answers at the end on page 26. Trigonometric-ratio relationships The right triangle to the right, in which all three angles and all three sides are labeled, will be used throughout the discussion below to illustrate the relationships between the sides, angles, and trigonometric ratios of right triangles. The sides are labeled with the lower-case letter (a, b, or c) matching the uppercase letter (A, B, or C) used for the angle that the side crosses. The hypotenuse of this triangle is side c. The side a is opposite to angle A and is adjacent to angle B. The side b is opposite to angle B and adjacent to angle A. Using the definitions of the trigonometric ratios, we can see that sin A and cos B are the same ratio:  EMBED Equation.DSMT4  In the same way, we can show that cos A is the same ratio as sin B.  EMBED Equation.DSMT4  Since A and B are complementary to each other (that is, they add up to 90(), the above result can be expressed as either of these equations: sin(angle) = cos(90( angle) or cos(angle) = sin(90( angle) Example 7: Verify that both the relationships for complementary angles are true for the angle 37(. sin(37() = 0.6018 cos(90( 37() = cos(53() = 0.6018 cos(37() = 0.7986 sin(90( 37() = sin(53() = 0.7986 RELATIONSHIPS BETWEEN RIGHT-TRIANGLE SIDES The surprising relationship The relationships between sine and cosine ratios that have been shown so far follow from the definitions of the ratios in a straightforward way. However, the most important relationship of this kind is not nearly as obvious. It is indicated by the table below, which gives the sines and cosines of various angles, then lists the square of these values (that is, the value multiplied by itself) for each angle. The surprise is the value of the sum of the squares, (sin A)2 + (cos A)2, which is traditionally written as sin2 A + cos2 A in mathematical work. Example 8: Compute the sum sin2 A + cos2 A for 10(, 20(, 30(, and 40(. Angle A10(20(30(40(50(60(70(80( sine A0.173650.342020.500000.642790.766040.866030.939690.98481 cosine A0.984810.939690.866030.766040.642790.500000.342020.17365(sin A)20.030150.116980.250000.413180.586820.750000.883020.96985(cos A)20.969850.883020.750000.586820.413180.250000.116980.03015 sin2 A + cos2 A 1.000001.000001.000001.00000 Answer: All those sums are 1.00000. It can be shown that this sin2 A + cos2 A = 1 equation is exactly true for all angles (although a proof takes more than checking a few values with a calculator). This Pythagorean Identity is an important and useful mathematical fact in itself, but it can be transformed into an even more useful result by expressing it in terms of the lengths of the sides of a right triangle which has A as one if its angles. Using the labeled right triangle introduced at the beginning of this section, we saw that  EMBED Equation.DSMT4  and  EMBED Equation.DSMT4  This means that the equation sin2 A + cos2 A = 1 can also be stated as  EMBED Equation.DSMT4  which in turn can be stated as  EMBED Equation.DSMT4  which is equivalent to  EMBED Equation.DSMT4  If both sides of this equation are multiplied by the denominator term c 2, the equation  EMBED Equation.DSMT4  is obtained, which can be expressed in words as: The square of the length of the hypotenuse of a right triangle equals the sum of the squares of the lengths of the other two sides. This result is called the Pythagorean Theorem. When it was first proved by ancient Greeks, it was expressed in a geometrical form that uses the term square literally, not algebraically: The area of the square on the hypotenuse of a right triangle is equal to the sum of the areas of the squares on the other two sides. This figure shows a right triangle whose sides measure 28, 45, and 53 mm. The square of 53 is 2809, which is equal to 784 (which is the square of 28) plus 2025 (the square of 45). Exactness The Pythagorean Theorem is exactly true for all triangles containing an angle of exactly 90(, regardless of whether the triangles sides have lengths that can be expressed as integers or exact decimals. The examples above were chosen from among the unusual cases where all three sides of a right triangle can be expressed exactly in the same units, because in that case it is easy to demonstrate the relationship. However, a right triangle with two sides whose lengths are expressed as integers or short decimal fractions will in most cases have a third side whose length cant be exactly expressed in numerical form because its pattern of digits never repeats or ends. This usually does not cause difficulties in practical work for two different reasons: [i] Calculators use so many digits that round-off errors are almost always too small to make a significant difference in the final result. [ii] All physical measurements are approximate to some degree anyway, so that the uncertainty in numerical results is determined by measurement quality rather than by computational precision, as long as the values were never excessively rounded off. The question of how to deal with the lack of exactness of measurement processes is a major topic of this course. The main implication for mathematical theorems and relationships is that when you are working with approximate numbers it is not meaningful to talk about exact equality. Statements like Within the accuracy of the measurements, the measured sides are consistent with a right triangle. are more appropriate. Using the Pythagorean Theorem In many practical situations, two of the three sides of a right triangle can be determined by measurement or by the conditions of the problem. The advantage of the Pythagorean Theorem is that in such cases the third side can be determined without having to determine the angles of the triangle or to calculate any trigonometric ratios. (This was particularly important before calculators made such calculations easy.) Since the theorem is about the squares of the lengths, however, rather than the lengths themselves, it is usually necessary to find a square root at the end of the calculation. (The square root of a number is the value that will give the number as a result when squared for example, 3 is the square root of 9.) All calculators have a key to find square roots; it is usually marked with the mathematical radical symbol  EMBED Equation.DSMT4 . Example 9: How long is the diagonal of a rectangular lot 23.000 meters long and 45.000 meters deep?  Since the field is rectangular, its width and depth are the sides of a right triangle whose hypotenuse is the diagonal distance d that we wish to find. Thus d 2 = 232 + 452 = 529 + 2025 = 2554 meters2 Taking the square root of both sides of this equation gives d =  EMBED Equation.DSMT4   EMBED Equation.DSMT4  50.537 meters (As is usual with square roots, this value is a rounded approximation, since no value with this precision gives exactly 2554 when squared.) Example 10: Here is a case where a side is unknown rather than the hypotenuse. If the lengths of the hypotenuse and of one side are known, finding the length of the other side can be done by subtracting the square of the length of the known side from the square of the length of the hypotenuse. For example, if a 10-foot ladder is placed with its base 4.000 feet from a vertical wall, how high on the wall will the top reach? Let us call the desired height h. The Pythagorean Theorem tells us that h2 + 42 = 102 This is the same as h2 = 102 42 = 100 16 = 84 so that h =  EMBED Equation.DSMT4   EMBED Equation.DSMT4  9.165 feet Limitations of the Pythagorean Theorem Remember that the a2 + b2 = c2 equation only applies to right triangles. It cannot be used to directly find the standoff of a ladder placed against a leaning wall, or the diagonal across a non-rectangular field. Before applying the Pythagorean Theorem to a problem, you must make sure that the sides whose lengths you are using in the equation form a right triangle. Later in the course we will discuss how to use a more powerful (but somewhat more complicated) method that works with all triangles, whether or not they contain a right angle. The Pythagorean Theorem is a special case of this more general Law of Cosines. Using the Pythagorean Theorem to make a right triangle Not all true statements can be turned around: for example, all triangles are figures formed from straight lines, but it is not true that all figures formed from straight lines are triangles. The converse of a true theorem is not always true. But the Pythagorean Theorem works both ways. If the sum of the squares of the lengths of the two smaller sides of a triangle equals the square of the length of the third side, then the angle opposite the third side is a right angle. Because 32 + 42 = 52 (that is, 9 + 16 = 25), a triangle whose sides have the lengths 3, 4, and 5 will thus have a right angle opposite the side whose length is 5. This is also true of any triangle whose sides are in this same proportion, such as 6, 8, and 10 or 30, 40, and 50 (also for lengths in feet, meters, or exotic length units such as cubits or furlongs). This fact was used by the ancient Egyptians in making right triangles for use in construction and surveying. Although the set {3,4,5} contains the smallest-number case, there are infinitely many other Pythagorean triplets of whole numbers. However, most right triangles will not have whole-number side lengths. To test the size of an angle of a triangle, compare the square of the length of the side opposite to it to the sum of the squares of the lengths of the other two sides. If the square of the length equals the sum, the angle is a right angle. If it is less than the sum, the angle is an acute angle (less than 90() If it is greater than the sum, the angle is an obtuse angle (greater than 90() Example 11: Classify (as right, acute, or obtuse) the largest angle in each listed triangle. a. Triangle 1 has sides with lengths 11.2, 6.3, and 8.4 b. Triangle 2 has sides with lengths 1.2, 0.5, and 1.3 c. Triangle 3 has sides with lengths 5.6, 3.2, and 4.4 d. Triangle 4 has sides with lengths 7.2, 6.3, and 8.1 Answers: a.  EMBED Equation.DSMT4  and  EMBED Equation.DSMT4 . Notice that the square of the longest side is larger than the sum of the squares of the shorter sides. Thus the angle is obtuse. b.  EMBED Equation.DSMT4  and  EMBED Equation.DSMT4 . Notice that the square of the longest side is equal to the sum of the squares of the short sides. Thus the angle is a right angle. c.  EMBED Equation.DSMT4  and  EMBED Equation.DSMT4 . Notice that the square of the longest side is larger than the sum of the squares of the shorter sides. Thus the angle is obtuse. d.  EMBED Equation.DSMT4  and  EMBED Equation.DSMT4 . Notice that the square of the longest side is smaller than the sum of the squares of the shorter side. Thus the angle is acute. Exercises: Part I. For Example 1, compute the sine, cosine, and tangent of the indicated angle. For the triangle in Example 1, compute the tangent of both the non-right angles, and then use the inverse tangent function to find both angles. Check your work by finding the sum of those two angles. (What should it be?) In Example 3, find the length of side y. (First find the ratio to use, then solve it to find a formula for the unknown value before you plug any numbers into your calculator.) In Example 4, find the length of the base of the triangle. (First find the ratio to use, then solve it to find a formula for the unknown value before you plug any numbers into your calculator.) In Example 5, find the length of the hypotenuse. (First find the ratio to use, then solve it to find a formula for the unknown value before you plug any numbers into your calculator.) In Example 6, find the sizes of all the angles. In Example 7, verify that both the relationships for complementary angles are true for the angle 37(. Compute the sum sin2 A + cos2 A for 10(, 20(, 30(, and 40(. How long is the diagonal of a rectangular lot 23 meters long and 45 meters deep? If a 10.00-foot ladder is placed with its base 4.00 feet from a vertical wall, how high on the wall will the top reach? Classify (as right, acute, or obtuse) the largest angle in each listed triangle. Triangle 1 has sides with lengths 11.2, 6.3, and 8.4 Triangle 2 has sides with lengths 1.2, 0.5, and 1.3 Classify (as right, acute, or obtuse) the largest angle in each listed triangle. Triangle 3 has sides with lengths 5.6, 3.2, and 4.4 Triangle 4 has sides with lengths 7.2, 6.3, and 8.1 For additional practice, see Topic U, problems on pages 8-16, with answers on page 26. Part II. Solve the following using trig/algebra. After you have solved it, then use a careful diagram to check your work on any problems for which no diagram is given here. In 13-15, for each, first find the ratio to use, then solve it to find a formula for the unknown value before you plug any numbers into your calculator. 13. Find the height h 14. Find the base b 15. How long is the diagonal d?   [Answers to 13: Trig ratio:  EMBED Equation.DSMT4 , Formula:  EMBED Equation.DSMT4 , Rounded answer:  EMBED Equation.DSMT4  ] [Answer to 15: Trig ratio:  EMBED Equation.DSMT4 , Formula:  EMBED Equation.DSMT4 ] In 16-18, find the length of the side whose length is not indicated. Each of these is a right triangle. For each, first find the equation to use, then solve it to find a formula for the unknown value before you plug any numbers into your calculator. [Answers: ] 16. 17. 18.  [Answer to 17: Relationship:  EMBED Equation.DSMT4 , Formula:  EMBED Equation.DSMT4 , Rounded answer:  EMBED Equation.DSMT4 ] 19. For each triangle in 16-18, find the size of the smallest angle. For each, first find the ratio to use, then solve it to find a formula for the unknown value before you plug any numbers into your calculator. [Answers to 19: (from #16) Trig ratio: EMBED Equation.DSMT4  Formula:  EMBED Equation.DSMT4  Rounded answer:  EMBED Equation.DSMT4  (from #17) Trig ratio:  EMBED Equation.DSMT4  Formula:  EMBED Equation.DSMT4  Rounded answer:  EMBED Equation.DSMT4  (from #18) Trig ratio:  EMBED Equation.DSMT4  Formula:  EMBED Equation.DSMT4  Rounded answer:  EMBED Equation.DSMT4 ] In 20-22, find the length of the indicated side. For each, first find the ratio to use, then solve it to find a formula for the unknown value before you plug any numbers into your calculator. 20. Find the height h 21. Find the width w [Answer: ] 22. How long is side c?   [Answer to 21: Trig ratio:  EMBED Equation.DSMT4 , Formula:  EMBED Equation.DSMT4 , Rounded answer:  EMBED Equation.DSMT4 ] 23. Consider Topic F, Example 1. Can it be easily solved using right-triangle trigonometry? If so, solve it. If not, tell how you decided that it cannot be easily solved using right-triangle trigonometry. [Answer: No, because the triangle formed is not a right triangle. The two smaller angles are 90(-68(=22( and 90(-50(=40(. This means that the largest angle is 180(-22(-40(=118(.] 24. Consider Topic F, Example 2. Can it be easily solved using right-triangle trigonometry? If so, solve it. If not, tell how you decided that it cannot be easily solved using right-triangle trigonometry. 25. Consider Topic F, Example 3. Can it be easily solved using right-triangle trigonometry? If so, solve it. If not, tell how you decided that it cannot be easily solved using right-triangle trigonometry. [Answer: No, because the diagram shows that the triangle is not a right triangle. The angle that can be computed from what is given in the problem is 180(-50(-61(=69(, and the other angles cannot be easily computed and neither appears to be 90(.] 26. Consider Topic F, Example 4. Can it be easily solved using right-triangle trigonometry? If so, solve it. If not, tell how you decided that it cannot be easily solved using right-triangle trigonometry. 27. Consider Topic F, Example 5. Can it be easily solved using right-triangle trigonometry? If so, solve it. If not, tell how you decided that it cannot be easily solved using right-triangle trigonometry. [Answer: Yes. Let A = angle of elevation of the sun. Trig ratio:  EMBED Equation.DSMT4 , Formula:  EMBED Equation.DSMT4 , Rounded answer:  EMBED Equation.DSMT4 ] 28. Consider Topic F, Example 6. Can it be easily solved using right-triangle trigonometry? If so, solve it. If not, tell how you decided that it cannot be easily solved using right-triangle trigonometry. 29. Verify that both these equations sin(angle) = cos(90( angle) and cos(angle) = sin(90( angle) are true for some arbitrary angle of your choice between 1 and 89 degrees. angle = ____( sin(angle) = _________ cos(90( angle) = _________ cos(angle) = _________ sin(90( angle) = _________ [Answer: Problem 29: For 39( (but you can use any angle) sin(39()=0.629320391, cos(51()=0.629320391 cos(39()=0.777145961, sin(51()=0.777145961] 30. Verify these Pythagorean Theorem examples. (actual side lengths are given in millimeters)  For problems 31-38, ignore the curvature of the earth and assume that the measurements given are on a flat surface. For each, draw a rough sketch and determine whether it is correct to use right-triangle methods to solve the problem using algebra/trigonometry. Then solve it by right-triangle methods, if appropriate, or, if not, solve it using a careful diagram. For each problem you solve using right-triangle methods, first find the ratio to use, then solve it to find a formula for the unknown value before you plug any numbers into your calculator. 31. How long is the diagonal of a rectangle with width 17.203 meters and length 12.341 meters? [Answer:  EMBED Equation.DSMT4  m] 32. If one location is 45.0 kilometers south and 15.0 kilometers west of another, how far apart are they in a straight line? 33. A plane flies 41.23 miles on a bearing of 36( and then turns and flies on a bearing of 126( for 92.7 miles. After this, what is the straight-line distance of the plane from its starting point? [Answer: distance ( 101.5 miles] 34. A plane flies 127 miles on a bearing of 48( and then turns and flies on a bearing of 138( for 38 miles. After this, what is the straight-line distance of the plane from its starting point? 35. Ship A starts from the port and travels 44.2 miles on a bearing of S 34( W. Ship B starts from the same port and travels 62 miles on a bearing of N 56( W. How far apart are the ships? [Answer: distance ( 76.1 miles] 36. Ship 1 starts from the port and travels 27.3 miles on a bearing of S 13( W. Ship B starts from the same port and travels 19 miles on a bearing of N 77( W. How far apart are the ships? 37. Two lighthouses are located on an east-west line. From lighthouse 1, the bearing of a ship 1.63 miles away is 142(. From lighthouse 2, the bearing of that same ship is 232(. What is the distance between the two lighthouses? [Answer: distance ( 2.65 miles] 38. Two lighthouses are located on an east-west line. From lighthouse A, the bearing of a ship 2.13 miles away is 152(. From lighthouse 5, the bearing of that same ship is 217(. What is the distance between the two lighthouses? 39. The sides of a triangle are measured to be 6.3 meters, 7.5 meters, and 9.8 meters. Are these measurements consistent with a right triangle? If not, does it appear that the largest angle is obtuse or acute? [Answer: Yes, the measured lengths are consistent with a right triangle, since  EMBED Equation.DSMT4 , which equals the measured longest side of 9.8 when it is rounded to the same precision] 40. The sides of a triangle are measured to be 18.4 meters, 25.7 meters, and 15.3 meters. Are these measurements consistent with a right triangle? If not, does it appear that the largest angle is obtuse or acute? 41. A 9.00-foot rod is placed so that it touches the ceiling where it meets the wall. (We assume the wall is perpendicular to both the floor and the ceiling.) The base of the rod is found to be 3.00 feet from the wall. (See illustration to the right.) a. How high is the ceiling? [Answer: 8.49 feet] b. What is the angle between the rod and the floor? [Answer: 70.5(] c. If the rod had been 10.00 feet long, with the same ceiling height, how far from the wall would its end have been under the same circumstances? [Answer: 5.29 feet] 42. A 12.00-foot rod is placed so that it touches the ceiling where it meets the wall. (We assume the wall is perpendicular to both the floor and the ceiling.) The base of the rod is found to be 4.00 feet from the wall. (See illustration to the right.) a. How high is the ceiling? b. What is the angle between the rod and the floor? c. If the rod had been 11.50 feet long, with the same ceiling height, how far from the wall would its end have been under the same circumstances? 43. If the sine of an angle is 0.582, compute the cosine of that same angle by two different methods. [Hint: Use inverse trigonometric functions during one method, and find a square root during the other.] [Answer:  EMBED Equation.DSMT4 ] 44. If the cosine of an angle is 0.247, compute the sine of that same angle by two different methods. [Hint: Use inverse trigonometric functions during one method, and find a square root during the other.] 45. Rather than measuring straight across a board whose actual width is exactly 12 inches, a workman accidentally measures so that one end of his ruler is offset from the point straight across the board by exactly 1 inch (see illustration to the right). [a] How much longer will his measurement be than it should be? [Answer: 0.0416 inches] [b] Consider these two different ways (below) that width measurements could be used. For each way, will this mistake in cutting be so important that you should discard the board and start over? [i] Finding out how wide the board is to choose a correct mounting bracket. [Answer: No, the width is close enough.] [ii] Using the shortest path that you measure across the board for a cut that you want to be perpendicular so that it will line up with other cuts. [Answer: Yes, the angle would be wrong by almost 5(.]  46. The triangle on the right is an equilateral triangle, in which all three sides and angles are equal. The vertical line is an altitude, meeting the side in a right angle. Using this information, but with no knowledge of what the numerical lengths of the side or altitude are, find the sine and cosine of the angle at B. [Answer: Problem 29: For 39( (but you can use any angle) sin(39()=0.629320391, cos(51()=0.629320391 cos(39()=0.777145961, sin(51()=0.777145961]     Mathematics for Measurement by Mary Parker and Hunter Ellinger M. page  PAGE 4 of  NUMPAGES 13 Rev. 10/22/07 Topic M. Trigonometry, Part II. Ratios and Relationships in Right Triangles Mathematics for Measurement by Mary Parker and Hunter Ellinger Topic M. Trigonometry, Part II. Ratios and Relationships in Right Triangles M. page  PAGE 5 of  NUMPAGES 13 a c 22( 47( 33 ft A 33 mm 65 mm 56 mm h 65 300 4.86 15.35 143 113 35( 27 ft b 4 feet h 10 feet 23 meters d 45 meters Area of this square is 282 = 784 mm2 Area of this square is 452 = 2025 mm2 Area of this square is 532 = 2809 mm2 C b 3 feet A B 273 ft 215 ft 31( h 5.8 ft b 50. mm 42( d 30( 50( 4.5 ft h 8 48.5 47.6 9.3 20 12 16 37 35 12 30 16 34 55( 2.15 km w 250 mm 380 mm B path used correct path 3 feet 84 85 13 17 15 117 ft 35( 27 ft y B A a c B #*<OPQ b 9 ĸĬĠĉ|k|Wk|H|k|hgRkh?K CJOJQJaJ'j1aA hgRkh?K CJOJQJUV!jhgRkh?K CJOJQJUhgRkh?K CJOJQJ,jhgRkh?K CJOJQJUmHnHuhgRkhk5CJ\hgRkh5CJ\hgRkhuD5CJ\hgRkhM75CJ\h^4h?K aJh^4huDaJ h^4aJh^4h@aJ h!maJh^4hZ!aJQ ! ) = V W m3$ !  $d%d&d'dNOPQ] ^ a$0 !  $d%d&d'dNOPQ] ^  ! - & FgdM7-xgdM7 -x`gdM7-$xa$ W B i j buue !x]` !x]^ !0x^`0 !0 !  $d%d&d'dNOPQ] ^ 4 !  $d%d&d'dNOPQ] ^ ` % & = > ? @ B i j q %&=>?@Cɼɼɼ{dɼP?ɼ!j< hgRkh?K CJOJQJU'j A hgRkh?K CJOJQJUV,jhgRkh?K CJOJQJUmHnHuhgRkh\CJOJQJ!j#hgRkh?K CJOJQJU'jmaA hgRkh?K CJOJQJUVhgRkh?K CJOJQJaJhgRkh?K CJOJQJ!jhgRkh?K CJOJQJU!jhgRkh?K CJOJQJU'jBaA hgRkh?K CJOJQJUVCD[\]^qrͼᨗ͆raP!j]hgRkh?K CJOJQJU!jghgRkh?K CJOJQJU'j-A hgRkh?K CJOJQJUV!jhgRkh?K CJOJQJU!jhgRkh?K CJOJQJU'jA hgRkh?K CJOJQJUV!j7 hgRkh?K CJOJQJU'jMA hgRkh?K CJOJQJUVhgRkh?K CJOJQJ!jhgRkh?K CJOJQJU"#\I6 VXYZ[x$Ifgdmjl xgdS & Fgd!x$xa$gd\  !] !|    1234@AXYZ[\~l_VhgRkh?K CJj|%hgRkhCJU#jQEI hgRkhCJUVaJj!hgRkhCJU#jGEI hgRkhCJUVaJjhgRkhCJU#j1EI hgRkhCJUVaJhgRkh.8`CJjhgRkh\CJU#jxE hgRkh\CJUVaJjhgRkh\CJU hgRkCJhgRkh\CJ\IJ =RVW캱m`WhgRkh1.CJj}(hmjhCJU#j`EI hmjhCJUVaJjhmjhdCJUhmjh!CJhmjhdCJ$jhmjh'CJUmHnHuhgRkh;nCJhgRkh-CJhWhWCJaJ h'CJ h!CJhgRkhfV;CJhgRkhuDCJhgRkh?K CJh!h?K 5CJ[kdxgd;ngkd.-$$IflF 8#R   t$$6    44 laytmj$x$Ifa$gdmjl x$Ifgdmjl bmr&'()@ABCEF!=G伯䊁neee\hmjh? CJhmjht%CJ$jhmjht%CJUmHnHuhgRkh;nCJ hgRkCJj-hmjhF-CJU#j`H hmjhF-CJUVaJjhmjhdCJUhmjhdCJhmjh'CJhmjh'CJaJhmjhSCJaJhmjhSCJ$jhmjhSCJUmHnHu$b'(DEngxgd;ngkd[2$$IflF; $R   tV%6    44 laytmj$Ifgdmjl x$Ifgdmjl +,-prnggxgd;ngkd 8$$IflF w$ U \ tV%6    44 laytmj$Ifgdmjl x$Ifgdmjl '()*,T`fopqtvIJsaTsKhgRkhFCJj8hmjhF-CJU#jAH hmjhF-CJUVaJjhmjh? CJUhmjhSWCJhmjh? CJaJhmjh? CJ$jhmjhSWCJUmHnHuhgRkh^8CJhgRkh;nCJj2hmjhuCJU#jBH hmjhuCJUVaJjhmjh'CJUhmjh'CJhmjht%CJrstuvwQngxgd;ngkd=$$IflFj $ U \ tV%6    44 laytmj$Ifgdmjl x$Ifgdmjl   X0ABYZ[\_` ǺwleVIlB h=h=j9Bh=h=EHUjq 5I h=CJUVaJ hgRkh=jhgRkh=Uh?K CJOJQJhgRkh?K aJj!>h=h=EHU!jl 5I h=CJOJQJUV hgRkh?K jhgRkh?K UhgRkh?K CJOJQJhgRkh?K CJh!h?K CJ\'jh!h?K CJU\mHnHuhgRkhO`$CJhgRkh+DCJ0@A`PQgd/  !gdM7$a$gd= !  !`gd=  !`  !x` hx]h`-$xa$xgd;n  fg       $ & / 0 4 5 ? @ B D E L M _ ` d f p z } ͰͰͣͰͰͰͣͰͰhgRkh= CJOJQJhgRkhAjCJOJQJhgRkhCJOJQJ jhgRkhm40CJOJQJhgRkhQCJOJQJhgRkhm40CJOJQJhgRkh/CJhgRkh?K CJOJQJ jhgRkh?K CJOJQJ3 M #j#]YQQG  !xx !x0: !@ `x$d%d&d'dNOPQ]^``gdF4 !@ $d%d&d'dNOPQ]gdF3 !$d%d&d'dNOPQ]`gdF """"""###'#(#)#@#A#I#J#T#U#Y#Z#^#_#g#h#t#u#x#y#|#}#################($)$*$+$2$4$t$u$|$~$ֻ֮֞֞֞֞֞֞֞֞֞֞֞֞֕֕֕֕֕֕hgRkh?K CJ jhgRkh?K CJOJQJhgRkhQCJOJQJhgRkhBHCJOJQJhgRkh?K CJH*OJQJhgRkh?K CJOJQJhgRkh?K CJOJQJaJhgRkh?K 5>*CJ\:j#r#v#z#~###########{  !x$IfakdI$$Ifl$0%00%62(4 laFf.G$ !x$Ifa$############$$$$ $($)$*$FfTM$ !x$Ifa$FfJ  !x$If*$+$4$<$D$L$T$\$d$l$t$u$~$$${FfP  !x$If$ !x$Ifa$akdBO$$Ifl$0%00%62(4 la$$$$$$$$$$$$$$${$ !x$Ifa$akdhU$$Ifl$0%00%62(4 laFfzS  !x$If~$$$$$$$$$$$$$$$$$$$$%<%=%E%F%'''1'2'3'4'I'J'a'b'c'd''''󼮼yf%j\h=h~%yCJEHOJQJU!j~N h~%yCJOJQJUV%jXh=h=CJEHOJQJU!j 5I h=CJOJQJUVjh=CJOJQJUh=CJOJQJhgRkh@CJhgRkhBHCJOJQJhgRkh?K CJH*OJQJhgRkh?K CJhgRkh?K CJOJQJ($$$$$$$%'e'''(](^(( $ !a$gd=  !x^`  !xgd !x`gd !x $ !a$  !x`gd@ !FfV  !x$If''''''''''(((((((A(B(Y(Z(ƵxdSxx?'j? !@ x^@ `  !x` !h !` x]` ` !x]gd+ !x  !x]88999999999999999999::::.:/:0:1:4:5:L:M:N:O:^:::::ǽ߽߽ǽ߽߽߰ߜ߰}nbǽhgRkh?K 5CJ\juwhgRkh?K CJEHUj? hgRkh?K CJUVjthgRkh?K CJEHU'jKLA hgRkh?K CJOJQJUVjhgRkh?K CJUhgRkh?K CJH*hgRkh?K 56CJ\]hgRkh.8`CJhgRkh?K CJ-jhgRkh?K 5>*CJU\mHnHu&::::::::::;%;];;;<<2======>??!?"?&?'?AjBBBBB)C/CFCGCICQCyymhgRkh1J5CJ] jhgRkh?K CJhgRkhfPCJhgRkh?K 5CJ\aJhgRkhkCJhgRkh?K 6CJ]hgRkh?K 5CJ]hgRkh?K 6CJhgRkh?K 5CJ\]hgRkh?K 5CJhgRkh?K CJH*hgRkh?K 56CJ\]hgRkh?K CJ)?AjBBBICCC&DeDDDDzmmmmhh0$a$  !^gd  !gdfP6 !Px$d%d&d'dNOPQ]^`P6 !x$d%d&d'dNOPQ]^` !x` QCSCCCCC&D*DeDiDDDDDDDDDDDDDDDDD^EsḚ̙̰p^RhgRkhk5>*CJ#j|hgRkh1J5>*CJEHU,j}E hgRkh1J5>*CJUV\aJ#jyhgRkh1J5>*CJEHU,jb}E hgRkh1J5>*CJUV\aJjhgRkh1J5>*CJUhgRkh<85>*CJhgRkh1J5>*CJhgRkh?K CJhgRkh1JCJhgRkh?K CJ]hgRkhQ5CJ]DsEtE9F:FFGGGGGG#H$HIIII{J|J5K6KfKgK0$a$gdQ0$a$gdQH 0$ & Fa$gdG&0$a$gd6 0$a$gd/0$a$gd1J0$a$sEtExEyEEEEEEEEEEEEF%F7F9F:F>F?FVFWF濭斄xll\lE,j{~E hgRkh/5>*CJUV\aJjhgRkh/5>*CJUhgRkh/5>*CJhgRkhk5>*CJ#jPhgRkh1J5>*CJEHU,j2~E hgRkh1J5>*CJUV\aJ#jDhgRkh1J5>*CJEHU,j!~E hgRkh1J5>*CJUV\aJjhgRkh1J5>*CJUhgRkh1J5>*CJhgRkhk5>*CJaJWFXFYF^F_FvFwFxFyF|FFGGGGGG!G"G9G:G;G*CJEHU,jE hgRkh/5>*CJUV\aJ#jhgRkh/5>*CJEHU,j~E hgRkh/5>*CJUV\aJhgRkhk5>*CJ#jhgRkh/5>*CJEHU,ju~E hgRkh/5>*CJUV\aJhgRkh/5>*CJjhgRkh/5>*CJU#jhgRkh/5>*CJEHUGGGGG*I+I,IIIIzJ{JJ4KfKrKsKKKKKKKKKKKKuiZIZIiZi hgRkhG&5CJH*\]aJhgRkhG&5CJ\]aJhgRkhG&CJ]aJ# jhgRkh5>*CJ]aJhgRkhQ5>*CJaJhgRkhQH5>*CJaJhgRkhu5>*CJaJhgRkh}56>*CJaJhgRkh}5>*CJaJhgRkh1;5>*CJaJhgRkh1;>*CJaJhgRkhG&5>*CJhgRkh?K 5>*CJgKKL_LL)MeMMMM/NgNhNNNrOsO0$a$gdu0$a$gd6 gdO`$  & F !gdD1  !gdD1  & F !gdD1  & F !gdG& & F !xgdG& & F !xxgdG& 0$ & Fa$gdG&KKKKLLL L L^LgLjLLLL(MMMMMM/NgNNNNNNNOqOrO P÷îsesWehgRkh1;5>*CJaJhgRkhu5>*CJaJhgRkhuD5>*CJaJhgRkhuD>*CJaJhgRkh1;>*CJaJhgRkhD1>*CJaJhgRkhO`$CJhgRkhD1CJhgRkhD1CJ]aJhgRkhD1CJaJhgRkhd;CJaJhgRkhG&CJaJhgRkhG&CJ]aJ jhgRkhG&CJ]aJ sO PbPdPfPgPhPiPjPP QYQZQdRRRRRRR#S$Sgd^*  !gdi10$a$gd^*gdi1`gdi1 x`gdi1  xgdfP0$a$gdu P P PPP"P#P$P%P&P)P8P9PEP_P`PbPcPdPePiPjPkP÷{mUmJ?h^*5>*CJaJhgRkhi1CJaJ.jhgRkhi16CJU]aJmHnHuhgRkhi16CJ]aJ(jhgRkhi1CJUaJmHnHuhgRkhD1CJ]aJhgRkhi15CJ\]aJhgRkhi1CJ]aJhgRkhuCJ]aJhgRkhi1CJ\]aJhgRkhD1CJ\]aJ(jhgRkhfPCJUaJmHnHuh50hu5>*CJkPvPxPyP{PPPPPPPPPPPPPPPPPPP̺̣̺xd̺M,jӓI hch^*5>*CJUV\aJ'jhch^*5>*CJEHUaJ,jZ I hch^*5>*CJUV\aJ'jGhch^*5>*CJEHUaJ,jD I hch^*5>*CJUV\aJ#jhch^*5>*CJUaJhch^*5>*CJaJh^*h^*5>*CJaJh^*5>*CJaJh^*56>*CJaJPPPPPPQ QQQ.Q/Q0Q1Q*jphI%hI%5>*EHU&j\J hI%5>*CJUV\aJjh^*hI%5>*EHU&j\J hI%5>*CJUV\aJjh^*h^*5>*Uh^*h^*5>*hch^*5>*CJaJh^*56>*CJaJh50h^*5>*CJaJh^*5>*CJaJ#jhch^*5>*CJUaJ'jhch^*5>*CJEHUaJXQYQZQ[QgQQQVRYRaRcRdRRRRRRRRRRzoZoLoLoAh^*5>*CJaJhgRkhi16CJ]aJ(jhgRkhi1CJUaJmHnHuhgRkhi1CJaJhgRkhD1CJaJh50hi15>*CJh5056>*CJaJh505>*CJaJhgRkhu5>*CJhgRkhfV;5>*CJhgRkhi15>*CJhgRkhD15>*CJ(jhgRkh50CJUaJmHnHuh505>*CJh^*hi15>*RRRRRRRRRRRRRRRRRRSSSS S!S"S屝r[G'jhch^*5>*CJEHUaJ,j9ԓI hch^*5>*CJUV\aJ'jhch^*5>*CJEHUaJ,j I hch^*5>*CJUV\aJ'jhch^*5>*CJEHUaJ,j I hch^*5>*CJUV\aJ#jhch^*5>*CJUaJh^*5>*CJaJhch^*5>*CJaJh^*56>*CJaJ"S#S$S)S/SCSiSSSSST&T'T>T?T@TATQTRTiTʿv_Kvv'jhch^*5>*CJEHUaJ,jI hch^*5>*CJUV\aJ#jhch^*5>*CJUaJhch^*5>*CJaJh^*56>*CJaJh^*5>*CJaJh^*5CJaJh505CJaJhgRkhuCJaJhgRkhi1CJaJhgRkh1.CJaJhgRkhD1CJaJ h^*h^*h50h^*5>*CJaJ$SSTT3UUVVVVVVVV~WW Y YYY[[{\|\^gd^*gdqFgdi1 x`gdi10$a$gd^*xgdi1iTjTkTlTTTTTTTTTTTTTTTTTTõõõõs_õõH4'jhch^*5>*CJEHUaJ,jhI hch^*5>*CJUV\aJ'jhch^*5>*CJEHUaJ,jLI hch^*5>*CJUV\aJ'jhch^*5>*CJEHUaJ,jTԓI hch^*5>*CJUV\aJhch^*5>*CJaJ#jhch^*5>*CJUaJ'jhch^*5>*CJEHUaJ,j I hch^*5>*CJUV\aJTTUU,U-U.U/UKULUcUdUeUfUrUsUUUUUUUUUȴߝr^G,jԓI hch^*5>*CJUV\aJ'jhch^*5>*CJEHUaJ,jI hch^*5>*CJUV\aJ'jhch^*5>*CJEHUaJ,jnI hch^*5>*CJUV\aJ'jhch^*5>*CJEHUaJ,jtԓI hch^*5>*CJUV\aJhch^*5>*CJaJ#jhch^*5>*CJUaJUUUUUUUVVVVVVVVVVVVVVVVzl[zl[PDP9zh506CJ]aJh50h506CJaJh50h50CJaJ hgRkhi156CJ\]aJhgRkhi16CJ]aJhgRkhD16CJ]aJhgRkhD1CJ]aJhgRkh50CJaJhgRkhuCJaJhgRkhi1CJaJhgRkhD1CJaJh50h^*5>*CJaJh^*5>*CJaJ#jhch^*5>*CJUaJ'jhch^*5>*CJEHUaJVVVVVVVVVVVVVVW W W$W%Wɱxl^x^L^5,j-I hch^*5>*CJUV\aJ#jhch^*5>*CJUaJhch^*5>*CJaJh^*56>*CJaJh^*5>*CJaJhgRkh.8`CJaJhgRkhi1CJaJ.jhgRkhi15CJU\aJmHnHu.jhgRkhi16CJU]aJmHnHu.jhgRkh.8`6CJU]aJmHnHu hgRkhi156CJ\]aJhgRkhi16CJ]aJ%W&W'W)W3W4WKWLWMWNWPWaWbWyWzW{W|W~WWW·u^Ju?4hgRkhD1CJaJhgRkh^*CJaJ'jh^*h^*5>*CJEHUaJ,j6֓I h^*h^*5>*CJUV\aJ#jh^*h^*5>*CJUaJh^*h^*5>*CJaJ'jQhch^*5>*CJEHUaJ,j,I hch^*5>*CJUV\aJhch^*5>*CJaJh^*5>*CJaJ#jhch^*5>*CJUaJ'jhch^*5>*CJEHUaJWWWWWWWX%XQXSXTXUX[X\XXXXXXXXXXXXXXXXXYYYY Y Y Y Y8Y?YYYYY߾}rrhgRkhD1CJaJhgRkhTCJaJ jh^*h^*CJaJh^*h^*CJaJh^*6CJaJh^*h^*6CJaJh^*CJaJh50h50CJaJhgRkhuCJaJhgRkhB CJaJhgRkhqFCJaJhgRkhi1CJaJhgRkhi\CJaJ,Y ZZ}ZZZZZZZJ[K[N[O[R[S[V[W[[[[[[[[J\Q\|\}\\\]#]L]N]O]R]X]Y][]a]e]f]]]]]]]̲̲̲̲̲דדדjhch^*CJUaJhch^*CJaJh^*6CJaJhgRkhD1CJaJ jh^*h^*CJaJh^*h^*6CJaJh^*h^*CJaJh^*CJaJh50h50CJaJhgRkhuCJaJhgRkhqFCJaJ0]]]]]]]]]]]]]]^^^^^^ ^ ^6^ȽнȒq`UJ?JhgRkhD1CJaJhgRkhqFCJaJh^*hqFCJaJ!jh^*h^*CJEHUaJ#j7I h^*h^*CJUVaJjh^*h^*CJUaJh^*h^*CJaJ!jhKAh^*CJEHUaJjI h^*CJUVaJhch^*CJaJh^*CJaJjhch^*CJUaJ!jhch^*CJEHUaJjI h^*CJUVaJ^ ^^^__H```````>a@aAaBaCaDa0$a$gdi1  !xgdi1 0$]a$gdfPxgdD10$a$gdncxgdnc !@ xgdi1 !h^h`gd^*gdqFgdi16^=^^^^^^^^ _"_#_+_<_Q_R_[_________0`1`G`H`K`R`f`ƻƯƻ~r~laUah^*hnc6CJaJh^*hncCJaJ hncCJ jhgRkhi1CJhgRkhi1CJhgRkhD1CJaJ jhgRkhi1CJaJ jhgRkhi1CJ\aJhgRkhi1CJ\aJhgRkhi1CJaJhgRkhi1CJ]aJhgRkhqFCJ]aJhgRkhD1CJ]aJhgRkhqFCJaJhgRkhuCJaJf`g``````````````````>a?a@aEaٽxjWH=hgRkhi1CJaJhgRkhi15>*CJ\aJ$jhgRkh*CJaJhgRkhqF5>*CJaJhgRkhD15>*CJaJhgRk5>*CJaJhgRkhnc5CJ hfPCJh50hnc5>*CJaJhnc5>*CJaJ jh^*hnc5>*CJaJh^*hnc5>*CJaJh^*hncCJaJ jh^*hncCJaJDaEaFaGatcucddddkele0f1fgggghhiiakbk:l 5$7$8$9DH$gd+D  !gd+Dgd+D  !xgdi10$a$gdi1EaFaGaPaXaYa-bNbbscucvcwcccccccccccccd}r`O}r!jhch50CJEHUaJ#jI hch50CJUVaJhch50CJaJjhch50CJUaJh50h506CJaJh50h50CJaJhgRkhuDCJaJhgRkhi1CJaJhgRkhqFCJaJhgRkhuCJaJhgRkh= CJaJh7CCJaJhgRkh)CJaJhiCJaJhgRkhD1CJaJdddddd5d7dcd}d~ddddddddddddddddddHeKeReSe\eкЯФ晎ti]iRhch50CJaJh50h506CJaJh50h50CJaJhgRkhCJaJ jhgRkhCJ]aJhgRkh$CJaJhgRkh+CJaJhgRkh1.CJaJhgRkhuDCJaJhgRkh= CJaJhgRkhd;CJaJhgRkhi1CJaJhgRkhqFCJaJhgRkhD1CJaJhgRkhi1CJOJQJaJ \e]eiejekeeeee0f1f2f3f`fbf}f~fffffffggggggg@gBg\g]g^gggƷƷƬƖ||pѬh]|hgRkh)CJaJhiCJaJh50h506CJaJ jhgRkhCJ]aJhgRkhd;CJaJhgRkh1.CJaJhgRkhD1CJaJhgRkh= CJaJ jhgRkhfWCJ]aJhgRkhfWCJaJhgRkh$CJaJh50h50CJaJhch50CJaJ j@hch50CJaJ$ggggggHhIhhhhhhhhhhhhhhhhTiUiiiiiiiXjjjjjjjkڹvĹgjhch50CJUaJhgRkhi1CJaJhgRkh1.CJaJh|[CJaJ j@hch50CJaJhch50CJaJh50h506CJaJh50h50CJaJhgRkhfWCJaJhgRkhD1CJaJhgRkh$CJaJhgRkh= CJaJ jhgRkhCJ]aJ&kkkk_k`kakbkdktkkk9l:l;llDlGlllm·xcXMBM7MhgRkhfV;CJaJhgRkh+CJaJhgRkhi1CJaJhgRkh+DCJaJ(jhgRkhi1CJUaJmHnHuhgRkhgRkCJaJhi1CJaJhgRkhd;CJaJhgRkhfWCJaJhgRkhD1CJaJhgRkh= CJaJh50h50CJaJhch50CJaJjhch50CJUaJ!jhch50CJEHUaJ#jI hch50CJUVaJ:l;l=mnmm[n\n_o{ooBpCp:q r s1$P ]P ^a$gdi1xgdd;xgdi1@ x]@ ^gd.8`@ x]@ `gdd;@ ]@ gdd;@ x]@ ^`gd50@ hx]@ `hgd50@ ]@ gdi1gd+Dmm=m?mXm[mbmcmlmmmnmpmmmmmmmmmmmmEnHnOnPnYnZn[n\n]n_no%oooBpCpDpEppԽԽԽꤏ||ߤqhgRkhD1CJaJh7CCJaJhgRkh+DCJaJ(jhgRkhd;CJUaJmHnHuhgRkh.8`CJaJ jhch50CJaJhch50CJaJh50h506CJaJh50h50CJaJhgRkhd;CJaJhgRkhi1CJaJhgRkh+CJaJ)ppqqqqq5q6q7q8q9q:q*CJaJ jh^*h^*CJaJh^*h^*6CJaJh^*h^*CJaJh50h^*5>*CJaJh^*5>*CJaJh50h505>*CJaJh505>*CJaJh1;5>*CJaJhgRkh+DCJaJhgRkhi1CJaJ(jhgRkhi1CJUaJmHnHuhi1CJaJh50h50CJaJ jh50h50CJaJ8w9wNwOw\w]w^w_wawbwdwewgwhwjwlwwwwwwwwwwwwwww{p{c{pTjhZFhu0J,CJUh~%y0J,CJmHnHuhs hu0J,CJjhs hu0J,CJUhs huCJ huCJ h CJ h\CJ hF-CJhhF-6CJ h\6CJhmjjhmjUh50h^*5>*CJaJh^*5>*CJaJh^*h^*5>*CJaJ jh^*h^*5>*CJaJ^w`wawcwdwfwgwiwjwwExFxxyyyyyyy y!y"y#y$y&y'y$a$gd1;$a$gd,1$a$gd_wwwwwwwwwwwwwwwDxExFxaxxxxxxxxxxxxxљѓ|vpgvava[Upvg h/oCJ huDCJ h^4CJhs h1;CJ h!mCJ h1;CJhh1;6CJh;qhuhF-CJ hnf~CJhgRk0J,CJh!0J,CJhC0J,CJh\0J,CJh^*0J,CJh.8`0J,CJhnf~0J,CJh 0J,CJh~%y0J,CJmHnHujhZFhu0J,CJUhZFhu0J,CJxxyyyy y yyyyyyyy#y&y'y)y*y,y-y.y/y1y2y3y4y:yHyJyRyXy`ybycyfyɾɵuh^h?K OJQJaJh?K 6OJQJ]aJ jhi1OJQJaJhi1OJQJaJ jhi1hi1hi1OJQJ\]aJh?K 6CJ$]hmjh?K h/oh?K CJhZFh1;0J,CJjhZFh1;0J,CJUh~%y0J,CJmHnHuhs h1;0J,CJjhs h1;0J,CJU$'y)y*y.y/y3y4y:y;yy?y@yAyByCyDyEyFyGyHyJyKy. !5$7$8$9DH$. !5$7$8$9DH$gdi1gdi1$$5$7$8$9D@& H$gdi1KyQyRyXyYy_y`ybycyfygykylyqyryxyyy}y~yyyyyy. !5$7$8$9DH$gdi1gdi1 35$7$8$9DH$gdi1. !5$7$8$9DH$fygykylyqyryxyyy}y~yyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyyzz z z zz'zǾظh?K 56CJ\]h?K 5H*\ h?K 5\h?K 56CJH*\]h?K 56CJ\] h?K CJh?K 6CJ] h?K 6]h?K 56\]h?K 6CJ] jhi1OJQJaJhi1OJQJaJhi1h?K 1yyyyyyyyyyyyyyyyyyyyyy zz%z5z6z8z2$a$ 35$7$8$9DH$gdi1'z(z2z3z4z5z6z8z9z;zuz|zzzzzzzzzzzzzzzzzzzzzzۼۼۤە}p}l^h'h'6OJQJaJh' jh'OJQJaJh'OJQJaJh'h? 6OJQJaJh^86OJQJaJh? h^8h? OJQJaJh^8OJQJaJhSWOJQJaJhd;6CJ]h?K 56CJ\]h?K h?K 6]h?K 56CJ\]h?K 56CJH*\] 8z9z;zz?z@zAzBzCzDzEzFzGzHzIzJzKzLzMzNzOzPzQzRzSzTzUz$a$UzVzWzXzYzZz[z\z]z^z_z`zazbzczdzezfzgzhzizjzkzlzmznzozpzqzrzrzsztzuz|z}z~zzzzzzzzzzzzzzz. !5$7$8$9DH$gd' 35$7$8$9DH$gd? gd? . !5$7$8$9DH$gd? . !5$7$8$9DH$gd^8$a$gdd;zzzzzzzzzzzzzzzzzzzz. !5$7$8$9DH$gdi1$$5$7$8$9D@& H$gdi1. !5$7$8$9DH$gd'Hgdi1 35$7$8$9DH$gd'H 35$7$8$9DH$gd'gd'zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz{{{{{ { { { {{{{{{!{"{){ɿ򵨵򵨵hi156OJQJaJ jhi1OJQJaJhi1OJQJaJ jhd;hi1 hd;hi1hi1OJQJ\]aJ jhSOJQJaJhd;hi1h?K hSOJQJaJ=zzzzzzzzzzzzzzzzzzzzzzz{{{{ /5$7$8$9DH$gdi1 35$7$8$9DH$gdi1{{ { {{{{{{!{"{){*{,{-{7{8{@{F{G{N{gdi1$$5$7$8$9D@& H$gdi1 35$7$8$9DH$gdi1$a$gdi1. !5$7$8$9DH$gdi1 /5$7$8$9DH$gdi1){*{,{-{7{8{F{G{N{O{R{S{V{W{Z{[{^{_{b{c{e{j{k{m{n{o{p{v{w{y{z{|{}{{{{{{{{{{ʽh50h^*5>*CJaJh?K 56CJ\] h?K 6] jhdOJQJaJhdOJQJaJhShdhi1OJQJaJ hi1CJhi16CJ] hi16]h?K )N{O{R{S{V{W{Z{[{^{_{b{c{j{k{o{p{v{w{y{z{|{}{{{$a$ 35$7$8$9DH$. !5$7$8$9DH$gd'H /5$7$8$9DH$gdi1gdi1{{{{{{{{{0$a$gd^*$a$6&P1h:p/ =!P"#$% za3x!tV$d( zaH_-n( za|T>( wwwwwwza 1=<*I؜U( wwwwwwwwDd J  C A? "2qkǪ Fr*MD1`!EkǪ Fr*̖` .dxڕRAoAf,mbbt$&mt & rR^ҟQ/ IYo|7of lWdpRd X,g_\3;B "dT] vX&"G94 |h2F@Y~QQY25D(! +slf\]&x-b?Iw"Ƀ\P=/#-ϷG!{wÊ4UuHWj }m|";'dOxƶxk}Bljzh9>\:_X JViԚ ;uBYz#o5çd1/"5U4wpoTg- [ijSf3ƻxfbɵ].xWr#&lb4pֲ$>-Dd J  C A? "2v/ETˍZLzTRS1`!J/ETˍZLzTԖ` .dxڕRn@}N-*D@PDRq1B%v;9W.g*7 aflgp9R \.g_\Ӟ;B5"bsD% ױpyӴMA_L4ߞ5+i]sOP1de;OE|+MVyPh# Q8|;dnrX=e{UAlǡ CsLy8'0RoOUHmL C6cL#wNոXD JVk5 JVÞjzUb_E5= U _Mx\mO㉇|>8ͤ`w7oYz̏\bf^Ovd=d_qvݚ[Ou,SI.F pl2~m3D >CAe^dn0YfatR3YTwiDhףuYAwDYGu ҚEX;{JqDd J  C A? "2{}9kͶCS[aWg1`!O}9kͶCS[a` .dxڕSn@}N- *P7聠FbJ(vEs.C s炐O f׎"80μϼ+ 8-d_.ڳîjmN]ȐEgVݺ`#D |6,DӍvc |QU4𚮹UQe*taOW KF23 Avm&;*JKD@p<#/"-zx  G kO0)WƇfFlj9˴4w}Ě9ـ\#?g4;kVdTnv*ÁlOdrO~e==tT'C ͎pNK,/uf]]uI6APɪ+3sa2Ӟ} [FIk[&=ƨ#q+DSR())5PJR\qv2>? J_% w5+SZU'C]Q,G929+% UDd OJ  C A? "2]R11{Tèsi69 1`!1R11{Tèsi6` 0, dxڕRn@}NPZ DCRQ%nhY5FIlŎO+pgDrOpD $IUnzggf`|@3ђB OZb-umy )T*J+wRwM,xQ"˜'Zՠ]YTnw@ E*U͹-Q5f76 'D%zXawշM aWhA^)aN xMsRƷfZ k+f8#5jϚf}=:`%ocP,^HsYs;U౶.;q9~)CU;q%U/ӘDd lJ  C A? "21~6\[˟g { 1`!1~6\[˟g פxڕRJ@}IEk1 =UAVx3F ZhZi+ړz/ԋ̓'`4 ޜ4 M3hBbJE*-VGє~SL|Wbu6Dd OJ  C A? "2bxܽQPz[9>1`!6xܽQPz[9` 0, dxڕRϏ@f ]1V=ln4&^qDx&K =^?  !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~@21Root Entry6 Fb2L@Data QWordDocument57ObjectPool8E2Lb2L_1106600241F2L2LOle CompObjiObjInfo  #&'()*-012369:;<=@CDEFGJMNOPQRSTUX[\]^_befghilopqruxyz{|}~ FMathType 4.0 Equation MathType EFEquation.DSMT49qh%MU2GxDSMT4WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A    sideEquation Native _1106600258 F2L2LOle  CompObj i opposite to A hypotenuse FMathType 4.0 Equation MathType EFEquation.DSMT49qh%MU2GxDSMT4WinAllBasicCodePagesObjInfo Equation Native _1106600301F2L2LOle Times New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A    side adjacent to A hypotenuse FMathType 4.0 Equation MathTyCompObjiObjInfoEquation Native _1106580492hF2L2Lpe EFEquation.DSMT49qܐ%MU2GxDSMT4WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A    side opposite to A side adjacent to AV FMathType 4.0 Equation MathType EFEquation.DSMT49qD%MU2GxDSMT4WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_EOle !CompObj"iObjInfo$Equation Native %`_A   opposite sidehypotenuse FMathType 4.0 Equation MathType EFEquation.DSMT49q%MU2GxDSMT4WinAllBasicCodePages_1106579533|F2L2LOle +CompObj,iObjInfo.Equation Native / _1106580437F2L2LOle 4CompObj 5iTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A              FMathType 4.0 Equation MathType EFEquation.DSMT49qObjInfo!7Equation Native 8`_1106580525$F2L2LOle >D%MU2GxDSMT4WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A   adjacent sidehypotenuse FMathType 4.0 Equation MathTyCompObj#%?iObjInfo&AEquation Native Bp_1169127448)F2L2Lpe EFEquation.DSMT49qT%MU2GxDSMT4WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A   opposite sideadjacent sideOle HCompObj(*IiObjInfo+KEquation Native Lw FMathType 5.0 Equation MathType EFEquation.DSMT49qO[4XDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  sinA== 3365==0.5077cosA== 5665==0.8615tanA== 3356==0.5893 FMathType 5.0 Equation MathTy_1226261809.F2L2LOle VCompObj-/WiObjInfo0Ype EFEquation.DSMT49q+QDDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  A==tan "-1  3356()==30.51Equation Native Zm_1226261831,63F2L2LOle `CompObj24ai FMathType 5.0 Equation MathType EFEquation.DSMT49q+QDDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  B==tan ObjInfo5cEquation Native dm_12262618418F2L2LOle j"-1  5633()==59.49 FMathType 5.0 Equation MathType EFEquation.DSMT49q+DDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APCompObj79kiObjInfo:mEquation Native n _12262618561Y=F2L2LG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  A++B==90 FMathType 5.0 Equation MathType EFEquation.DSMT49q+JDDSMT5WinAllBasicCodePagesOle sCompObj<>tiObjInfo?vEquation Native wfTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  sin35== oppositehypotenuse== y2727"sin35==27" y2727"sin35==yy==15.486564y==15feet FMathType 5.0 Equation MathType EFEquation.DSMT49q_1220262496JBF2L2LOle CompObjACiObjInfoD#cLXDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  cos42== adjacenthypotenuse== b1171Equation Native _1220263490 TGF2L2LOle CompObjFHi17"cos42==117" b117117"cos42==bb==86.947945b==87feet FMathType 5.0 Equation MathType EFEquation.DSMT49q#­\XDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  cos31== adjacenthObjInfoIEquation Native _1220263489LF2L2LOle ypotenuse== 5.8hh"cos31" 1cos31==h" 5.8h" 1cos31               h== 5.8cos31h==6.766474              h==6.8 feet FMathType 5.0 Equation MathType EFEquation.DSMT49q#!LXDSMT5WinAllBasicCodePagesCompObjKMiObjInfoNEquation Native =_1228212588QF2L2LTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  sinA== oppositehypotenuse== 215273sinA==0.787545787A==sin "-1 (0.7875)==51.956749  H" 5522..00B==180"-9900"-52.0==3388..00 FMathType 5.0 Equation MathType EFEquation.DSMT49qOle CompObjPRiObjInfoSEquation Native f"JDXDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  sinA== side opposite to Ahypotenuse== ac== side adjacent to Bhypotenuse==cosB FMathType 5.0 Equation MathType EFEquation.DSMT49q"J4XDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/AP_1228213361;VF2L2LOle CompObjUWiObjInfoXEquation Native f_1228212754Oc[F2L2LOle CompObjZ\iG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  cosA== side adjacent to Ahypotenuse== bc== side opposite to Bhypotenuse==sinB FMathType 5.0 Equation MathType EFEquation.DSMT49q"DXDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  sinA== ObjInfo]Equation Native _1316945690`F2L2LOle ac FMathType 6.0 Equation MathType EFEquation.DSMT49q,@S DSMT6WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_ECompObj_aiObjInfobEquation Native *_1228212955eF2L2L_A  sinB==cosA== bc FMathType 5.0 Equation MathType EFEquation.DSMT49q"UDXDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APOle CompObjdfiObjInfogEquation Native qG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A   ac() 2 ++ bc() 2  == 1 FMathType 4.0 Equation MathType EFEquation.DSMT49q_1106590948"jF2L2LOle CompObjikiObjInfolEquation Native p_1106590964oF2L2LOle CompObjnpiT%MU2GxDSMT4WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A   a 2 c 2 ++ b 2 c 2  == 1* FMathType 4.0 Equation MathTy   !$'(),/014789:=@ABCDEHKLMNQTUVWX[^_`adghijknqrstwz{|}~pe EFEquation.DSMT49q0%MU2GxDSMT4WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A   a 2 ++b 2 c 2  == 1ObjInfoqEquation Native L_1169147302tF2L2LOle  FMathType 5.0 Equation MathType EFEquation.DSMT49qO:XDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A   da  d2 dCompObjsu iObjInfov Equation Native  V_1073281189yF2L2L++ db  d2 d== dc  d2 FMathType 4.0 Equation MathType EFEquation.DSMT49q %MU2GlxDSMT4WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APOle CompObjxziObjInfo{Equation Native G_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A     FMathType 4.0 Equation MathType EFEquation.DSMT49q %MU2GxDSMT4WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/AP_1073283718w~F2L2LOle CompObj}iObjInfoEquation Native _1073283805F2L2LOle "CompObj#iG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A   2554  FMathType 4.0 Equation MathType EFEquation.DSMT49q %MU2GlxDSMT4WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APObjInfo%Equation Native &_1106594891mF2L2LOle *G_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  E"@ FMathType 4.0 Equation MathType EFEquation.DSMT49q%MU2GxDSMT4WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APCompObj+iObjInfo-Equation Native ._1169128802F2L2LG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A   84  FMathType 5.0 Equation MathType EFEquation.DSMT49qO4XDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APOle 2CompObj3iObjInfo5Equation Native 6*G_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  11.2 2 ==125.44 FMathType 5.0 Equation MathType EFEquation.DSMT49qOn$XDSMT5WinAllBasicCodePages_1169128866'F2L2LOle ;CompObj<iObjInfo>Equation Native ?_1169128993F2L2LOle FCompObjGiTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  6.3 2 ++8.4 2 ==39.69++70.56==110.25 FMathType 5.0 Equation MathTy      !"#$%&'()*+,-./0436578:9;<=>?ACbBEDFGHIJKLMNOPQRSTUVXWZY\[]^`_cadefghijklmnopqrstvuxwzy{|~}'ċ^?ɋ1=i"7-ěoޏyo`|@KіB ORz5wU'T)+J3wVsXNQ&͊G Ԫ{TE5s_$w$d]*f[]&S.OHs'*0W3xi}T5mg0r ( R^=:d|k|RJaMPy@r|LuE9a,~=~7D^Pf{Q}zx|nT9Q*Q1??jƇ=u\FAk<:qȶ:?o [&V.5X,Z}/NknڭV(@?I#r|ql3I~0 FgA1x !0Jc ")9ǘg*yIyxIܬZ6/e;mZ7 B5ټ y'bWDd lJ  C A? "21~6\[˟g 1`!1~6\[˟g פxڕRJ@}IEk1 =UAVx3F ZhZi+ړz/ԋ̓'`4 ޜ4 M3hBbJE*-VGє~SL|Wbu6Dd OJ  C A? "2XKe BX8t41`!,Ke BX8tx 0, dxڕR1oPsdCRX&Wl<GmF4ee ?#[!'w{wǰh (J9c(d|Z)=vMisrU2G,T^q+y 0H$v|VUEK^9H_ *.oqBuB*m4 M3hBbJE*-VGє~SL|Wbu6Dd Tlb   c $A? ?3"`? 2,̷h,F.r N91`!̷h,F.r N6 *MAxڥTOA3V + D QI,ź$.xPV\' &z2Lh<CLٓ݊Λyޛ~-<0;geGv }:C P}:osH@ ?Ɂցڴ;]u=s'HS\ΖOj?_2C&A0/f䢱.{mH[#2fL+-aD<^5:\CeY"q F5"vc7XT ϕXt$1VtBFF ,Igev$ w nDȌ.jBU5D^Qȑ҈ 4M,n*Hrمۘ1(F[Lڡ==3s{xd&Un^ʗBa\7sFZ7Lyw9$Bމ򭅼@򤲑ReA0&Z P h`%Vu,:P:A7J +[zV^Hꥫ5-q벰83}G.PIj'l.k,tՅQ@MerF1xҘ .<<eי; F19kDKĮ[l4B O6ԐqR/0[ ⴤ#CpW jp.۞Y؉]9i1c-˻#rB!zz 5VS l]م3F3V>l=M RϫXlu[S;iW{w9njS(ll2:k^\-\2&+F3Kv~ep}:cLr2L(Mw`:6MDZs> ̄yȬQR}4Uf(=nVagQBt¤Oy86̈!X\z|s: y kT9̇DOG ~4wphےg` o iN͉zRZ],0Ͼrdvp Ps}5+Y Dd 8 b   c $A ? ?3"`? 2ڪ9kCpr!1`!ڪ9kCpr@xڵTkA3iW M~Zz4iDM$qU&Rsj ŃA*](d JgW\[zVNH -q6cI(E$u65֧}(IerZF+f1Mt4Az5FzXqvh_z<鋺 iffĐG .Dw"|9JwVUY8d(wDB_"M>êAǾ{Im~3Fn nL:f⿲ G'U'҃*~NgJ GZCbu>H,S-??G tË x[@Y6IopV熼3) !i%Ԡx5'd0 <rGttEBbC DMZWjVօJ h2z8V!y>TDd @ b  c $A ? ?3"`? 2V^6~Q(1`!V^6~Q@ @dxVMLA~3?TFDC&Th4&"RuhZ !^`1V:*k:Wi;;߹su!- >>)Fl}ɩɸ6IS#21\Y"ms2\=OJҡ(">RKTi^)h4R'q38^8 X1.T<Ɗ|L\'8_^Wo OcKII#~)DB2d4uLp@Cl)\LJ Y;A&(D-"?ƘU/迤 DpD2v򭄺6+tw2s:7*_g,oQ9mH_kbx!s6=e|HsJ6?8ЧPxPVNGQzYZa9*h4RfȃqpBbN]:v\3IdP,w' k!iӜ.I)ŒA"I"[r$#"a>, l;~#l1u\+n+5Uf6zUxw򠭢 .oPR[m}ݖ9`m~$fo};?/i)sKF9rX]ZWocJ wA'|4b]<]0hA H _<|sẃЂ^(O"6ޖ֩&AG$_])UZ٨ Y/Km .mN>`y{{k]'9ً~Go$ {{w֞nDGZ/6oۚBM\rI:>J[~U1;ǣH0*#5'lT_Z^02=B&߀0($} ȓu˓vaSޏs|g1[]~T=y}hmdR^'F.5F8]0Ý)Z3VKխ[I֜5jΊ=NttV\g~zY* Diј~`!ڻ:AŊe5QZ[]2V\$Qe5 =|<=y<5oeR3_9@ t rz`Hf-$ya Hf2n/8^A *q~i;.l$/jPIH*tlY$r^"'R%Bd)2:`mUQӼXLGm}3iL<=6e~VFk4a|NL,jQ)[w?crHNfa%#DϺy&xA^v4+!Nh:2[-Weztn< [b*ʟxEV[EHt$$If!vh5 5 5s#v #v #vs:V l tV%65 5U 5\ytmj+Dd 'b  c $A? ?3"`?2uui q. [ h Q81`!Iui q. [ h  @ % &xڵVoUoڎ];I`U[ɮ?};1(" {Q4D% q'rpΈFBA̼ֆDzyo}2p× *h9zymXsDž4όvi(УQl9B 3* JaD[O `EI67n[1݉ >|M&=CtZƢij*uGm$~ fHɈLL߷|2WѰՖJp\^%N:pɠ02x7Bt>YB n-ѴR4v(]N5?. 㼌8d3洉bsʿ{L2rQ1 \Txμm݇ 2TBjgQlL'ոTs7OE8k8 &>O9a,koڸ`oGLem0* :=7{|A>ցD/$:u:w=,_Y8`@%:N>E"?b]3\bTbܭ_7nLr[^X1"ݬ kkJ֬Tyjˆ;LfN0/Z܃kkn4JK/\RbwXF-~{<-3ܚGp?lPu;n1e>1`!6Lk`^}kmxc&# p:7dxڵUkA36RP-7m`*^5YMJNAz?CzAhߛi-I߼y2J>a͏3hmM6] }c1&B0 m2A}{n -tRb^C? b>ā?CeŖ".v.b1!mb^Qi0 ™RE3KZMlTT~.|8c -:,4٨V dieȊ@²t#(lA#,Uf Gr4$;r@'%'rI!nתٌ=!zհ4}:<5*Vcnl:#{ccX/6;O8:<z-İܩr?eOt2ِ8Fѿfr $Ip_ D% RbWJR.'T5 ZZ3"9QEJI[IR9yZQ! ܴnCJԏh%[f"Z84KC3ٚη9yT\6٢ 2,ذ( @"5 ź8%Ө 2hA@B#!0HT=at[Ɩg"yDGg%EXjn]u#W=l{wZE-r81z~~Wƾ~=C}!,p/MKл pO"?Fw$vDd /b  c $A? ?3"`?2c%' pJ}m4⥂?}B1`!7%' pJ}m4⥂&# 7dxڵUkA3#nPc6ZbS=&d[ƃ) BA,u]դJ%#jiJ/+sMŀDp *WWTe&!캹"CzdzqiΊ.C$֨cS44Xaj$wgHcB֢2,ذ( 9E bKkj; i4&ћ*2 HBeh$L_F(ƗHI|U?žDD莥s\^e3E'A_q"^΄ǡf'놩Tq ۸0 lSd񧤻^ϔ` z=x$$If!v h555555555 #v#v :V l00%6, 55 2 (4kdRF$$Ifl  l P4 $00%6$$$$2 (4 la$$If!vh50%#v0%:V l00%6,50%2(4$$If!v h555555555 #v#v :V l00%6, 55 2 (4kdI$$Ifl  l P4 $00%6$$$$2 (4 la$$If!v h555555555 #v#v :V l00%6, 55 2 (4kdxL$$Ifl  l P4 $00%6$$$$2 (4 la$$If!vh50%#v0%:V l00%6,50%2(4$$If!v h555555555 #v#v :V l00%6, 55 2 (4kdO$$Ifl  l P4 $00%6$$$$2 (4 la$$If!v h555555555 #v#v :V l00%6, 55 2 (4kdR$$Ifl  l P4 $00%6$$$$2 (4 la$$If!vh50%#v0%:V l00%6,50%2(4$$If!v h555555555 #v#v :V l00%6, 55 92 2(2(4kdU$$Ifl  l P4 $&00%6$$$$2 2(2(4 la-Dd lb  c $A? ?3"`?2wLh^O^S2Y1`!KLh^O^.L xڵSkAff61"h*`+ǀd#xܮq FRz/( ^Qt((Ko߼c4@ &g,EO( B0Uh$}'**<"IR r%ޏqךB%Btr'|89Kl=/,_F`[FҼSMxE\+# `]INg`bPg͘wql&7r99x&<:D6h{TV~ڇ!Nz׳Ag[ez#7@vU7;mnz!,}>?KXz{uKkEK*i\ud˙ӄ&Ui6eg-Ē+?\# cGFQӠb0S 5O[! |lKjTUm7;qUcGn-GbX"9CGoO` OcWާbj/f.b_yDd lb @ c $A=? ?3"`?2l/ .Q_\1`!l/ .Ql wexSQ6`>=ACs x]6H0JDDX8; ?D,-EFݍE@!ͼ팠8-"4#("/+U%Get:UZ[Q$ڧL=J0'J-VS%z֠!2,C8[k*[qFA)t O(s.qJխjW̡vl밅|l8¯j!am8 ^@Jde$ꯑ$% V6=Z`4o"Đ 0>@yK }єO嗠 ߥ6궝auC%`k%^2C2BBAAɫh֮ ˴ v6k6ZeNZFaV[Krät[fґJ]+ҴWTRC~9qzR'TjZ6eo{v7F㟞Lp$$L 3Pp-ll%Dh_1`!1cZ>%Dh 8>(+xڥTkAoviHڃRu[~/Ih. x @Ҕ&%dKI&ҿxAADtmC7; _o߼}3Cc Pg6Bt,4gm9~^BV=!B|0  )5[nYV^^H%d=& : aƾ[(D:űe8abօo(ol#(`T1jjh}^miNmL{聾6m"nPdA޵[%~;>~"oWE3ژ_ 2 QSibq&YC]e{4.XtUep7{tZtz'ř&N3ܔ}mgǮb*GAx6SZYV*ƪw` 3 ٱXued,IȩxP_!cSf|J˘~\^|xO3a^2yB~_̈́9OMrƇID>O|^#FAʪVf?lXy|zb_lEh0"( uNf Gz7WA4EeYw-uz6crt5Hnv;Ș]FiC nQƬK3o[n0W -64W\uwD<=M&'8 ]7E(.wW,`*T#eXNy=Ls 8S9\k3La+b+B|.Dd J  C A? "2S?i-}G`Tlf1`!dS?i-}G`T e d2xڕSAkQfvS4Ĵ5X<6 `$a $$ҋPԃٓqllZf73=B0lL@ S^&BH,d23钞2W%E2tm!ULTv#=|6$jE>rOK )f|e.pA7Ba:IZS_-:]w`uZz]ggZ_FꋈE|7A|Hޚϫ~LW7W}Y, TMM~|TIm:sp_9b|yc.pt'XFfW3}~LO- N JJ&(ycw:Π*U;@"t1(*n_HU\╍aWxvî&x%f+{WfCP`7J;%X4vTWUNgH W¯Dd |b  c $A? ?3"`?2fFr0e78 N,Bi1`!:Fr0e78 N,p `0xڕSMkQ=D40TBѩ[p#:MF3e$HI"1taQuή])/pJtRt\L8̛{wB؃zQH-7'!FyFXXQ㗼vX s+׻n:O(t\I ~{)Fp-k^vxccc;ƴN4$7/)@<(R(ZviU>D*2ٷr56UYDe <&*4WY;ۋ*z]_DqB{ز5ۨum]7H(T<׾iTΝ^CWa~.~b>n#pps `Rg{8zm=I\rBp@DXWc4nHxdyc"0̔Z5Z;zpBOQ gʃnoa[uLM"!s"?pDd hTJ  C A? "25(^hl1`!5(^hp@ |XJx]QMK@}ij!Ճ"ZE=~A<4m=X)6E$F Zi4ɟ#xozԣ I:*N2ٷB@NGehDe*PT$EZ$CGbg|+\G#AUyb]`IŧLL;HQVi!@E"z}~s <ViNQZiV74K$})g>,Z!u׼\~BɤàZjA/iPbkUn1WDܸ-ڵ*{אr>h5\<ƒgsv'?gX?O07-,:bfN8~GYX3Nޱ}[f'Is')e['dω&Š*9tQǝ*k cM3Rjߐҗ M;kDd J  C A? "2`OSgr1`!`OS`@!oxMQJ@6b A4ꡠE%iJ)cEMSIO^y" mgw 9@A!,MSi i9`*QAK]QaRsFNڠ0NyńӟR@Ux,ӏl ^DYFG,p(#+E#\Lf14Hgs+Z^_ny3`7=Uӕvx?T|9=M=X՝wV?mo^W-H줞-vXZLҏ]Vv"@FB" ȡY,l;F8Z**١<"`\t!L`2Dd hJ  C A? "2IX֤K]ݴ%t1`!X֤K]ݴ@|x]ROQf 6AB@D遛]il 1YW`MKM[b{xV!+WE1yvgf#BM<Ж,%%9ϰ2,`$[J,G"% D)輮ކ@^qoO^5Wi*hƠSfPY<+O 30yTYW`̋m%s:C/LI.r8cءGاfT-]t T٧f#8qC빁Lkt6 lbT́2;^ڵW^X6:iklWyت-XVvkrr6}9EEw/({ъ%/w/^^Ia9r#[PWH.Jb>9R-j{Otۮdj1\򤓶޸ qA0/UzNMi}.?(EkDd J  C A? "2`OSw1`!`OS`@!oxMQJ@6b A4ꡠE%iJ)cEMSIO^y" mgw 9@A!,MSi i9`*QAK]QaRsFNڠ0NyńӟR@Ux,ӏl ^DYFG,p(#+E#\Lf14Hgs+Z^_ny3`7=Uӕvx?T|9=M=X՝wV?mo^W-H줞-vXZLҏ]Vv"@FB" ȡY,l;F8Z**١<"`\t!L`2Dd @b  c $A? ?3"`?2\[%-_ 58$z1`!0[%-_ 5P  xڝRo@@CI T[ JJHE"Ѹ@AIPb@%lt@bBbcB =ǮPTN{޽@P @b<412 ęx/'^^[fc*2Mhޣ/{.h:{ \d8dtRx'+at:ݾ;үƠëO4uz EKĦ`dى] o_bfl%lTK|R7F9"m5?kl]UX'DZ -f ,޺3nݖsķ)î;CR͎n=fMkf+ԫvS .uL`6vöL5/!iS)eqIAcy/di kR=t̖;t;Bo?mJ>X~e</?1J9RDd @b  c $A? ?3"`?2z@ߵc{x6}1`!pz@ߵc{X! >xڝSkAl6&m BѴH|9&cu5|HxO zOzSt= 7zqy7of 8 &gFf3s{yBNXLQB)}a`mVQՁeN-pAD'_93Rm~>\{}f$cnxv> D(F0+Keg+E]tH3&7T2f15cj"=.^r!I =EYS'~LLTXot[kwx}*d8V(<\4Axz g9ga^/+TJ40hf߼;zA.%7߽k=Tzupjy8.ieCԴsg e F8o7k9/ԸhֶLmV irQ;AMaO DfHyE :CA"r3pe EFEquation.DSMT49qO,XDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  1.3 2 ==1.69ObjInfoIEquation Native J_1169129010F2L2LOle OCompObjPiObjInfoREquation Native Sv_1169129083@F2L2L FMathType 5.0 Equation MathType EFEquation.DSMT49qOZdXDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  0.5 2 ++1.2 2 ==0.25++1.44==1.69 FMathType 5.0 Equation MathType EFEquation.DSMT49qOdXDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_EOle YCompObjZiObjInfo\Equation Native ] _A  5.6 2 ==31.36 FMathType 5.0 Equation MathType EFEquation.DSMT49qOddXDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/AP_1169129077F2L2LOle bCompObjciObjInfoeEquation Native f_1169129212F2L2LOle lCompObjmiG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  3.2 2 ++4.4 2 ==10.24++19.36==29.6 FMathType 5.0 Equation MathType EFEquation.DSMT49qObjInfooEquation Native p _1169129243rF2L2LOle uOdXDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  8.1 2 ==65.61 FMathType 5.0 Equation MathType EFEquation.DSMT49qCompObjviObjInfoxEquation Native y_12344392360F 2L 2LOidXDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  7.2 2 ++6.3 2 ==51.84++39.69==91.53Ole CompObjiObjInfoEquation Native A FMathType 5.0 Equation MathType EFEquation.DSMT49q%DXDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  tan50 "o == h4.5 ft FMathType 5.0 Equation MathType EFEquation.DSMT49qTDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/AP_1234439258F 2L 2LOle CompObjiObjInfoEquation Native ;_1234424830F 2L 2LOle CompObjiG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  h==tan50 "o 4.5 ft FMathType 5.0 Equation MathType EFEquation.DSMT49qdDSMT5WinAllBasicCodePagesObjInfoEquation Native  _1253989407!F 2L 2LOle Times New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  hE"@5.4 ft FMathType 5.0 Equation MathType EFEquation.DSMT49qCompObjiObjInfoEquation Native A_1253989561^F 2L 2L{% XDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  sin30 "o == 50mmd FMathType 5.0 Equation MathTyOle CompObjiObjInfoEquation Native `pe EFEquation.DSMT49q{D XDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  d== 50 mmsin30 "o ==100 mm_1234439423F 2L 2LOle CompObjiObjInfo FMathType 5.0 Equation MathType EFEquation.DSMT49q(tDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  a 2 ++1Equation Native D_1234439443F 2L 2LOle CompObji13 2 ==143 2 FMathType 5.0 Equation MathType EFEquation.DSMT49q!tXDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APObjInfoEquation Native =_1234424889F 2L 2LOle G_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  a== 143 2 "-113 2 FMathType 5.0 Equation MathType EFEquation.DSMT49qdDSMT5WinAllBasicCodePagesCompObjiObjInfoEquation Native _1234439937F 2L 2LTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  aE"@88.1 FMathType 5.0 Equation MathType EFEquation.DSMT49qtXDSMT5WinAllBasicCodePagesOle CompObjiObjInfoEquation Native Times New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  tanA== 65300 FMathType 5.0 Equation MathType EFEquation.DSMT49q_1234439669F 2L 2LOle CompObjiObjInfoEquation Native J_1234424916F 2L 2LOle CompObji.XDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  A==tan "-1  65300() FMathType 5.0 Equation MathType EFEquation.DSMT49qdDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  AE"@12.2 "oObjInfoEquation Native _1234440012F 2L 2LOle CompObjiObjInfoEquation Native $_1234439784F 2L 2L FMathType 5.0 Equation MathType EFEquation.DSMT49qtDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  cosA== 113143Ole CompObjiObjInfoEquation Native O FMathType 5.0 Equation MathType EFEquation.DSMT49q3<XDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  A==cos "-1  113143() FMathType 5.0 Equation MathType EFEquation.DSMT49qdDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/AP_1234424948+F 2L 2LOle CompObjiObjInfoEquation Native _1234440046F 2L 2LOle CompObji   !$%&'(+./014789:=@ABCFIJKLMPSTUVY\]^_befghilopqrstuwxyz{|}G_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  AE"@37.8 "o FMathType 5.0 Equation MathType EFEquation.DSMT49qDSMT5WinAllBasicCodePagesObjInfoEquation Native 3_1234439859F 2L 2LOle  Times New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  sinA== 4.8615.35 FMathType 5.0 Equation MathType EFEquation.DSMT49qCompObj iObjInfoEquation Native ^_1234424968F 2L 2LBtXDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  A==sin "-1  4.8615.35() FMathType 5.0 Equation MathTyOle CompObjiObjInfoEquation Native pe EFEquation.DSMT49qdDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  AE"@18.46 "o_1234441261  F 2L 2LOle CompObj   iObjInfo " FMathType 5.0 Equation MathType EFEquation.DSMT49q*TXDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  sin55 "o == w2.15 kEquation Native #F_1234441260F 2L 2LOle )CompObj*im FMathType 5.0 Equation MathType EFEquation.DSMT49q$lXDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_EObjInfo,Equation Native -@_1234425398&F 2L 2LOle 2_A  w==sin55 "o 2.15 km FMathType 5.0 Equation MathType EFEquation.DSMT49qdDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APCompObj3iObjInfo5Equation Native 6_1234806770F 2L 2LG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  wE"@1.76 km FMathType 5.0 Equation MathType EFEquation.DSMT49q DSMT5WinAllBasicCodePagesOle ;CompObj<iObjInfo>Equation Native ?3Times New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  tanA== 50 ft35ft FMathType 5.0 Equation MathType EFEquation.DSMT49q_1234806802F 2L 2LOle DCompObjEiObjInfo GEquation Native HJ_1234806839#F 2L 2LOle NCompObj"$Oi.XDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  A==tan "-1  5035() FMathType 5.0 Equation MathType EFEquation.DSMT49qLXDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  AE"@55 "oObjInfo%QEquation Native R_1234428854(F 2L 2LOle WCompObj')XiObjInfo*ZEquation Native [,_1234429429-F 2L 2L FMathType 5.0 Equation MathType EFEquation.DSMT49q<DSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  diagonalE"@21.172Ole `CompObj,.aiObjInfo/cEquation Native dR FMathType 5.0 Equation MathType EFEquation.DSMT49q6<DSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A   6.3 2 ++7.5 2 E"@9.795 FMathType 5.0 Equation MathType EFEquation.DSMT49qå<DSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/AP_12344296722F 2L 2LOle jCompObj13kiObjInfo4mEquation Native n1TablecSummaryInformation(7vDocumentSummaryInformation8~8G_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  cos(arcsin(0.582))E"@0.813 1"-0.582 2 E"@0.813Oh+'0 ,dYv]N':G$,A¾ N|iוʨ?hs7|!^|ߤw] Dd 8@b   c $A? ?3"`? 2V^Y&vu21`!*^Y&vu:v xڝRkAlmM궠ICmC"x\׺j i$=Yb|4Id3^|':K s gΐ.(Kt!+BsܻI2#@'|wtIšk tcW6^=}G+mvUҦ2_(cw~A| DȤ 3i锱<q!_K9S e'>%+&*7u2t5tM5{Y1d%vDCy@__΂ A/`Zm۪Wfy)Vo9mD;Q"\n!"B9f봪ԑc h]]T_Ν%|RywZ!k9PYsrgtPWlWf顦0S U4a}C P+C…LjVyA R7s[Lr A?'KB,y7fOQi?ꊗz@_ܩy={D(fd -g>!q_ Z9ķlVJf23H9c^uU/uIm+z?glUq«Ns^RT2zoz;6xM7B^]9$`#F۰C,o tc5^f!ktak5)vr]֦Sw@>#&x>IΫ2^US.yHZI}Kq'2H6@G:΢]6Zhёsv5y~ P+KJDd @b # c $A ? ?3"`?#2\DC~T_mNp1`!h\DC~T_mN 2 6xڝSkAf6QDI#"m&1F)I$)^ѓz_Ah!^$Zag7}7of#8!&gEO&tv qp-6K00dfDx{2S Tݫv, !̈x\q&2urqXX6˶V3/]$|.l.ڋpFH ښ=KBh qTFT # .A*ePP($8SZdZ9%*q$E,ۜi;ݨȗE'\ =]x*]SǻQ]Dd @b $ c $A!? ?3"`?$2Yg|,OsKSٗ5+1`!-g|,OsKSٗ@ xڝRkpoᲁ"вKaYJctQ :JADa/ IM<'I:/yy#1GeD1"At5/#  n\Ұ@:-',Iӥc iw0˼'$,|"b%[ jw݁qz]gޟX (n؛'B1%dh;(1D&H.j̱l R\> 0Ӻg/uImz݇LQ]A9yiNTJfU^NgU{nyUgg*q7Y{o}DeXχ}9-Yښum6/]c|E3[ue3ҵTc_qhdbjl˗e OAqJz_/S.|-)xUAoei*]?7Neodx; w;Xiződcoh/9nկ+QDd @b % c $A"? ?3"`?%2cϔqIt˃w:1`!ocϔqIt˃p =xڝSoQ[P Z&Ui5)q+?[$n؃"4="UIAh< gŃ'7]O&Ʀ^oyΛ |<4r2XHg_NyIaYBO1 QJ1}9`Vz~uXYf8d4'M~ʼnU^KIFFov_hF?Ի{]&tgJWFZ`gxXK_"4WDFKj*2l\K'F@>\eZ߁<>UvOޮO[{bX2@;'#'^(TJ40֛͵zq;߾c.B= )NU!oi^DSF{:8\G:̢y^!i/D!뱍n&h w&pP#r*5XH.YD$X@|"kǨ;76V"^zkUcd $F=sW8kOv@Z]'2Zz+Fu3o2+mQyQUzeOJ%c03T*zәӨWtpμ3Z*y.FEg^rF%~ }^J`f[kC7m4numg8K 6s;S񉤅TBŻ)2M4b^#b!x,f´kw=o>/ #7Ϲ>ų`OLDd @b ' c $A$? ?3"`?'23wN3؛?Y,r1`!j3wN3؛?Y,@ p 8xڕS;oAv !#E  R.E# ;4cK؇A& #Q0 Q"8h@,\pvwfY$}АBHh䠤8宅gyBg"XQ@Vx(\ȵ [r('/Ğ\ S>τ$zWzl-}}~'d }!Nitj-Vx#4QEL3b`pZ/GY#;^%3s'\`[Xl,ˣiBYߵ:Kof} "\PN-;YQԷbtc>7瘒5F7Oѥ|?hrE+~]^ۢ/Sai9̿k,rjDd |lb ) c $A&? ?3"`?)2v)~Y _LY;J1`!v)~Y _LY;n` VxڥSkA3kmdXt[hm&1flV4'm)*ēԳ`ћ7EW f6 Λo{y` @9TZnX-n"'-0`d fkܦS+@ںYܶ&Q%7p)&_j鄦˿ FA)ݟ2eǵ}6/{n/퓸AFaBhw}[6F~e`P!+9Q/ƃܱDd lb * c $A'? ?3"`?*2u UmtTKO1`!u UmtTKO qxڥTAhA3M4%DA6`6"&1Mͪ ]FҜ"*ēUWCN^G;DB`??0H=!䌍<ƇáeGYE|.b00d(oqnlKxjR}ڽc073L_rg 7{ǟ2J0uGw+Y@}s. 1\E|=j Xd nÁ/ȧ8WD8i'C+|JcXixMa G#JܴwOj9YWYx%(XRiRU-l[uHD\: %vvz^_3R5zհfsrvC/o*ƥ渜o EL$ VvŚVzGc_r R\іjZGE`> F8=BV"3dhdLah3X*R%jYR6."`qہ0x x]/*]#MxA4#;m)Dd @@b + c $A(? ?3"`?+2s;9 d#y_O91`!G;9 d#y_ p xڝSkQnk7ݤVEj^dH0)êkHI"1'AKV^=<oz\mv{< ؇4A"b" v]1_ WFXFLpbUeSs ʜ'$:)<X9J5Zn7un[.޾ǒZO.Sl㬳tR$fwuU= + & ~Ae1Ͱd2L>7oDW0HӄdBF1YZM)ˏɿfq¤ gT(aUok"iJr20k5NqؾVm6aB ϓЊۑHZ~8HҚ=,Y4խʗsg/<; 7L(V0X&k^۞-#N|$㌈3Udy.&7f9S]OH,hoV@!ޗ/dn{l0; ^r:dmd5,rq=;?ZHDd b , c $A)? ?3"`?,2=3L~-.-*\.b1`!=3L~-.-*\. Fh~xڝSkSAf7?^ JդTBIE($M=6%}SSFH!֋͋Y<#=>/Zmfg盙%  5 Av4u~ѱM4#N02FA2~͒23|¯Vwm ~uCxآP("V1ZBRf?}Ϟ &x~lMe}EdMrL,o=plIxQ1m{,OI,*v=z^^V{y}%zZCϧ ISd!;Ē7wGf vYXS.vq_xx>]Qy7YoTWV>׬~t|؀N-, s,VU/TosmћaHxBFV+5/_,1ȵ9'XL}:y@N9fZZ9g8\M l1/". q%s*#_4ĕqBMSjdS._$Wdhc+nR;畢sˇ\Wk ٌ7vPwq!'.bz!u{G?Dd Hb - c $A*? ?3"`?-2>.: ybgڀ\1`!.: ybgڀ\@"HxڕRKQ%kM&RA(ԃbB!5Ye]u@bJIS/??£CK`.|;;3 ! ؃|4ނG$:B }mJiC&t#6S?y QdvfU'$z(Vet%>URF(n-m_Wi^6ǛAA2Iz\m.Krн8HUI.Yir:HrJ Ggsy˥sh+^CTwjte9[n QW_4&+բ[? f qm 1s/f'&<{mFeyR I;c[\!AnT?ò958H}JH4Ǣ?Nрoj>a<߬2.dWc8n6*CDd lb . c $A+? ?3"`?.2ݿmÕZ0oXi1`!aݿmÕZ0oXF /xڥSAkAf&kM4UP 6YH0)㪫 $IVbN "bē< ^G$^ov6AC͗oޛb8ˁv F3"'IPwO؊ ?#4FiƄh *m6wiSt !q8~D4BTjZS?c* FWAjc{uv6m!NŸr 1UCEK8\ty~&Č vjT|6Vsy&9fL2?x- aF df'G8v.ٴ664VWyk-l~f{˩w>|~I&z-'?"6}g#kTY1k_j/O>-?Zk2'#*_҃[_cDbVmq0z?cwKBZ̾ۢsK0J5a=g"%s| oӅbE.zq!Qfkj|3Oި)䃩~pM 9y=g rcȠZ{ד…%8J## BJOրq WQߖ}8 \/+D*h4B֨"V&@Oi"Q|tiZ*zьV']!][`\P{z(xo Nt_2Dd @b 0 c $A-? ?3"`?02dQ8J@ٴ1`!8Q8JḊ xڕS=oA}|v@c H؉%*_i,,ٹ62W "() (R? .fv}v.X޼3;GO Kxul\yy "14YWׁ;-ZeS;]p ӑ VvvNG"]2sX)5_Oݴ˗KM?\驲C_6ҔX>``X4RIkdF2>7BEdDB bl_'??cAhVr@iw.v_|_:ȟ.aT p%.Dd9gyGcLMr8jNִgjMdc&9jmMyTs@n%EʠRRJVk+j jnZRꬾIE^eOJ]/L]\.ei I^;+ BZ(7-5V=׷\*cQj=#Ӡ`SM2nrqhydPCP{=Nܴ%Z0gGI&[}lm o"daݛDd @b 2 c $A/? ?3"`?22:fRQf$.1`!:fRQf$ @pxڵTMlQEӃIDM"x-`A\0ɦ&xGc$sƻ</ftK5řBjLj|}ovfv{ {`6匙^Oβcn[~.>mɏ)ơGΐj:(A(BvyGx~ 3N (Ã=Č(ɕ*J-pEi#lr]-v s]6}*6ⰴgARZK7* Ć ֵl|SFoQͳvYgmv6D"Kdӹ xryP+ %S+W0qnT^[:HޫW T3}9/g8Q ZR;f(yqZZIm2Zf)|".5`fİUd# bUj4FhCb .CxZSd&jjOOtFEwq\kY'W;E8JJ_it.ĒCqɊp  WP@R!q̮ώtݛ3vf1 >x }_<]t 1K / gR/QΚ!#^lxUe[=ve%& .Cz/kqMiû_ݏ']oveE>f\:Ij~m!sc{sqb.r? Q5 `Rϙy8(QpxF9?Qeͧ+S9NR\ܭƺݮo݇N~䴑5LGZ}Ҫ;-yttr /ҒQm˨vŔ{u*J10k(M ƂULON#$΃.q\8/ hWxʟyؐK."z6窺QC"!gX̙3Sb.-F_汽TDd <lb 4 c $A1? ?3"`?42`  ̥h#sF8z1`!r`  ̥h#sF8f` @xڥSkA~3IM[ 4di=DIq FREd=xx(^Tn;o}3}c 6Ps"h4 P|x]Dѹ LÈCT"%^Vjn7wl\8 1_..9G8$qpe'iD?_a3fmObΫص S7< x1EAY//B"h<쏃?#W:qWC+fz*^KU2qPb&ʽPiRYOT(>Ĉ>h_R|Sӟ%؎^Y6~QǙ@fzQwzbyr]ndI}&#;wݥIHՆfu-BbfV*^r⣊i%!̊iJƱa0) К:72.:U" -Y d\!ޫ?iA\6T8x+pggp0OTl/!ߺ%Dd b 5 c $A2? ?3"`?52 3 &⑹ozD1`!3 &⑹ozٲ @xڭTkA36I4 (ZHjlSz v󁹤Rȇ46'k)уx zz=QWHaw͛aq4/gDw:QS6-;7rlKCN9eC!˴rCp+WlJ`!3~Ih!qsCŜOk̈\bb\g__8uƒ({8'F̈}p/6Z?!A$ɉ\Zq1cu-.,9ԊcPBe%L; E1.A?gf;--ȱG0W~O5^ M!Q%3G7VؾVkAmvV~'m8NjxGNHi#%SM#PF|JG k8̈aЫ(Q+xW }t2#]f ][`^lKa(]/)Dd $@b 6 c $A3? ?3"`?62h=Fh'_{Y6VID1`!<=Fh'_{Y6VIHD  xڕSo@Cji$*:M,E$l)"5JVB P :vfi%;N% {fpC43!ƃ Q]ro{/,`!@W;3?upBš;/ݷmn_$߃S7EfwZ!}7qqS6I G9Hr4%31'rLN~fidFjm]3jϬ> r2) ל(Ɨ,>kM_UZ*|ݿ BRjsƺ? Ww hsF}5%(ƩQ2)!5+*Uv+-a)9q]+;"/5,*}THťpv[ny}ײ\-f6>oߋH0sDd lb 7 c $A4? ?3"`?72/C\xe "1`!/C\xe | 8>_xڥSkQv׶m@S[$`R<&4J6j)*ċc{Ѓ ѣAqfn`ocvf7o1Ns63 GP`/w$=Dt|aDPZ ĽKxE_Mi~|Is/BIDUB3&"'~gW?f" Vt@`wZ]|e~u@C8V7Іox6#<HBĘoPv>t{ۗ!kmOMNrqJn?Tƈv.m7,H9cW$8ңIJ]/ZRwɱW6:©ZZ0ŠJ=sb˱ eںj:W&0.Ǖ}g= qy|LΕ9Ŵ 4w.6Ŵa4зA}4GE8. uJתU.|`Fo.C^Fzo f ͇ $VHt^zvXU+c̟]-ϟNĄ3<?\H~OfKDd @b 8 c $A5? ?3"`?82_uGF\JBKq1`!i_uGF\JBK  & 7xڕSAf=凁4br=rZ\"ǑP)bx95,31F 26XXp6 &]mL7."y}yagpB &gCO&o-}'˄.,E0F1Z>9G.YEPntzwu F x\{W#V3LV]e6Zx3}KSM&[]$kg&$f3ͬg@?0ǸN+![f r r?1Q7&u*P_Xߔ!4 s`miʒ̳kj~BEX;N2Yc2 r- ,_3ZZݰݼuS4n6yլy^bJ`dW7†VqbKuY§so ŢyEg^r%zP/:ӢFu0NN n!ќ]ro"4;!aI=)a{y}Pڐ-Q6/6PUf;9/t:pBѧ?+:N&&i /ŦEiSK6B$M$űCHҢT+Rn]T7bWmwU#qBEx{@xlD1Cbj !n3)Kΐ/j6P~  ex!+7oڷ@wаp2=Q$P I\n8KLB4BVb"WϭWC/èz8 h3=#fs<\n4D Wm : (y5QlhbDVTdz. ;d=֝&&[0ZAеyk%VhU%qȟ1uX}u}Ӷ˷Dk~0hF㎝cc"BoҥRU*Fi6YJ|Nݮ:gB;ͺ ~p;q)z=R y$PI3]DIIbFh)fP"T1'y 9`VĐA4]Do$8oLC}ppX ١8 1]35 )zKwlIOhukۍRˁQx{~#^DADd @b < c $A9? ?3"`?<2Y!^!LgZn51`!-!^!LgZnz xڕSAkAfvfM`4m)=d1SIeյ$EDc=U=اp+{<%)q.=:`Ia4m_;~Ƨ/4+'"MȮjMiqGgAߴ)9a,cCA>o٩ F,QpXUG0QmTi:|D7u:_H0za3mZs%Ws.2x3J8(O:M#Q'=,/[o9V+5S rHY;ӌt0NHUyaB QDA#W^-"/kUTU@b*ݞƂȮyoYoU+ Dd 0@b = c $A:? ?3"`?=2aho9Z =1`!5ho9Z Z H xڕRkQl$lR==L@)x6Y%LKm\d%9Y$xЋW|;o|3F` @tR 9ʉЖ_RB$VZHa 3vFYhK^ITTe']b{q/yrkp;N?{fo ?n~vt#8_Z`w SLq";g$]Zd\rߵ)<8=R`U#^y9 /x]!#h[tQW;kzޞwSNi}fKӞX=,oYY ݦY~:) &{MBFjbJ0Q"gfܴTRPBҢfOqeahYt/md쥵Q'<.{1`٨~Jx%4ho;̓Dd b > c $A;? ?3"`?>2Pp9 9s2@/ 1`!Pp9 9s2@/b xhxڝSMoRA=w@#Q(%6RRdǧvi,MT(TV6.Ƙ.]ԅʅkrcFyBP7>3w{];MوDV(L'm[tqFuINi{afg閞4'gfv% qK1mW23 9m6DL@6 Title0$a$ 5>*\VT@V Block Text1$]^a$ 56\]BQ@"B Body Text 32$a$ 6CJ]V`@2V HTML Address35$7$8$9DH$6OJQJ]aJ:P@B: Body Text 2 4@ ]@ DCRD Body Text Indent 5`6Ua6 Hyperlink >*B*phj@sj ;n Table Grid7:V707PK![Content_Types].xmlj0Eжr(΢Iw},-j4 wP-t#bΙ{UTU^hd}㨫)*1P' ^W0)T9<l#$yi};~@(Hu* Dנz/0ǰ $ X3aZ,D0j~3߶b~i>3\`?/[G\!-Rk.sԻ..a濭?PK!֧6 _rels/.relsj0 }Q%v/C/}(h"O = C?hv=Ʌ%[xp{۵_Pѣ<1H0ORBdJE4b$q_6LR7`0̞O,En7Lib/SeеPK!kytheme/theme/themeManager.xml M @}w7c(EbˮCAǠҟ7՛K Y, e.|,H,lxɴIsQ}#Ր ֵ+!,^$j=GW)E+& 8PK!Ptheme/theme/theme1.xmlYOo6w toc'vuر-MniP@I}úama[إ4:lЯGRX^6؊>$ !)O^rC$y@/yH*񄴽)޵߻UDb`}"qۋJחX^)I`nEp)liV[]1M<OP6r=zgbIguSebORD۫qu gZo~ٺlAplxpT0+[}`jzAV2Fi@qv֬5\|ʜ̭NleXdsjcs7f W+Ն7`g ȘJj|h(KD- dXiJ؇(x$( :;˹! I_TS 1?E??ZBΪmU/?~xY'y5g&΋/ɋ>GMGeD3Vq%'#q$8K)fw9:ĵ x}rxwr:\TZaG*y8IjbRc|XŻǿI u3KGnD1NIBs RuK>V.EL+M2#'fi ~V vl{u8zH *:(W☕ ~JTe\O*tHGHY}KNP*ݾ˦TѼ9/#A7qZ$*c?qUnwN%Oi4 =3ڗP 1Pm \\9Mؓ2aD];Yt\[x]}Wr|]g- eW )6-rCSj id DЇAΜIqbJ#x꺃 6k#ASh&ʌt(Q%p%m&]caSl=X\P1Mh9MVdDAaVB[݈fJíP|8 քAV^f Hn- "d>znNJ ة>b&2vKyϼD:,AGm\nziÙ.uχYC6OMf3or$5NHT[XF64T,ќM0E)`#5XY`פ;%1U٥m;R>QD DcpU'&LE/pm%]8firS4d 7y\`JnίI R3U~7+׸#m qBiDi*L69mY&iHE=(K&N!V.KeLDĕ{D vEꦚdeNƟe(MN9ߜR6&3(a/DUz<{ˊYȳV)9Z[4^n5!J?Q3eBoCM m<.vpIYfZY_p[=al-Y}Nc͙ŋ4vfavl'SA8|*u{-ߟ0%M07%<ҍPK! ѐ'theme/theme/_rels/themeManager.xml.relsM 0wooӺ&݈Э5 6?$Q ,.aic21h:qm@RN;d`o7gK(M&$R(.1r'JЊT8V"AȻHu}|$b{P8g/]QAsم(#L[PK-![Content_Types].xmlPK-!֧6 +_rels/.relsPK-^8 2 0@P`p2( 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p8XV~_HmH nH sH tH @`@ NormalCJ_HaJmH sH tH @@  Heading 1,h1$@&5\N1N  Heading 2,h2$Xx@&a$:CJd@d  Heading 3,h3$$5$7$8$9D@&H$5:OJQJaJ<1<  Heading 4,h4@&:B@1B  Heading 5,h5 h@&6:\\  Heading 6$$5$7$8$9D@&H$a$5OJQJ\aJ\1\  Heading 7,h7$$ @&^`5:8q8  Heading 8,h8@&R qR  Heading 9,h9 TT@&^T`DA`D Default Paragraph FontVi@V  Table Normal :V 44 la (k (No List XOX text,t&$d5$7$8$9DH$`a$ OJQJaJpp reference,ref0$0xx5$7$8$9DH$^`0a$ OJQJaJ>!"> heading fm2,hf2@& B1"B text centered,tc$a$FO2F text no indent,tn `RO1BR text single spaced,ts$da$BOAB text quote,tq^r/r hidden text,hid$5$7$8$9DH$]$<OJQJ_HmH sH tH XrX text hanging indent,th0^`0vv left margin graphic,lg$$&@./5$7$8$9DH$ OJQJaJHH text indent,ti^`t"t heading fm1,hf1'$$$d5$7$8$9D@& H$a$CJOJQJ\aJDD MTEquationSection B*ph^^ MTDisplayEquationx5$7$8$9DH$ OJQJaJP@P Header !5$7$8$9DH$ OJQJaJ.. p5 `6] OQ h6 ha n!V0"V List Bullet" & F5$7$8$9DH$ OJQJaJZ62Z List Bullet 2# & F5$7$8$9DH$ OJQJaJZ7BZ List Bullet 3$ & F5$7$8$9DH$ OJQJaJZ8RZ List Bullet 4% & F5$7$8$9DH$ OJQJaJZ9bZ List Bullet 5& & F5$7$8$9DH$ OJQJaJV1rV List Number' & F5$7$8$9DH$ OJQJaJZ:Z List Number 2( & F5$7$8$9DH$ OJQJaJZ;Z List Number 3) & F5$7$8$9DH$ OJQJaJZ<Z List Number 4* & F 5$7$8$9DH$ OJQJaJZ=Z List Number 5+ & F 5$7$8$9DH$ OJQJaJ.)@. Page Number8B@8 Body Text-x5\P @P F!kytheme/theme/themeManager.xmlPK-!Ptheme/theme/theme1.xmlPK-! ѐ' theme/theme/_rels/themeManager.xml.relsPK]   !"#$%&'()*+,-07>EHLQW^chmtw!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZbcdefghknv~,48<@DHPU\_behkns{z     yvunmrqheiZ`[VWU3456789:;<= >!?"@#A$B%C&D'E(F)G*H+I,J-K.L/M0N1O2P3Q4R5S6T7U8V9W:X;Y<Z=[>\?]@^A_B`CaDbEcFdGeHfIgJhKiLjMkNmOnPoQpRqSrT  !"#$%&'()*+,-07>EHLQW^chmtw!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZbcdefghknv~,48<@DHPU\_behknq  !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~s&6  C\  ~$'Z()L1968:QCsEWFGK PkPPXQR"SiTTUV%WWY]6^f`Ead\egkmprvu8wwxfy'zz){{>ABDEGJLNPUWXZ\]_`bdefhjklmnoqrstuvwxz{}~W [rj##*$$$(+5?DgKsO$S^Da:l s^w'yKyy8zUzrzzz{N{{{?@CFHIKMOQRSTVY[^acgipy|%=?%=?C[]q   13@XZ (@B')AY[13Iac   A Y [ 4-L-N-....//2.20242L2N2<<<<<<x======>>V>X>^>v>x>???!?9?;?HHHHHHHHHI.I0IL@LQLiLkLLLLLLLLLLM,M.MKMcMeMrMMMMMM O$O&O3OKOMOaOyO{OUUUUUUUVV[[[bcci5i7is::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::^eglwz!!t "4r$3x!tV$di86r$H_-ni6r$|T>i 7$r$fL4³@1i$r$ 1=<*I؜Uis7@6O!@   N(  b  C  "?  ` o(V C"?vb  c :ASmall grid4$g ` F* #" o(Vh R c ,A10%PG& S s H ASmall confettiF*ph T c ,A10% r S` U C 1Ud $'  1` V C /V B /` W C 0Wd$ 0`   $\ C"?` [ C .[ 0 X  .` <` $8 #" < $\H X # jJ` #`B Y c $DjJ` #Z Z 3 ,$8 ,fB \ s *D<` <0 fB ] s *D<L<fB ^B s *D !tB _ s *D"h"#` ` C -`X | (# -B a  <X ` d* C"?hb B S jJ" )Z  S (a)l  c $d!\ l  c $3"o% 3l  c $+') l  c $"$ l  c $2(b* 2f  S (* >b Lp)%  #" ?dZ yp)%  yp)%Hb B #  y%#`  C  ##% f  S  it"m! f  S  %q p)u" f  S  "$ `  C  %L' f` lxC+ C"? ZB b S D1pp(ZB c S D1p(x( d NPAjJLight vertical *& (` e C *el"< % *fB f s *D7#fB g s *Da$(` h C )h')t C+ )` i C +i -"$# +B   Zp( W)B   PS  (xb HL,P k #" ?Bb lB  Hh( Z m 3 #l!h% #Z n 3 "8(4L,P "vn @ o C"? 4b p @Z q 3 %l %Z r 3 $Hh $xb | s #" ?Bb t  CZ u 3 ! l | !Z v 3  h  n lUk" w C"?Hb x # jJT }!` y C yl  ` z C  z@ k  ` { C  {  k"  B |  > U H"B }  z!n a#"  C"?Nb B 3 LjJS( `  C  `  C #" `  C xT! B   7aAB   S[J  # g "?b #'(,  #" ?`  C  @#(%M+  `  C  Dk')  `  C *0$, Nb B 3 1/'O*Nb  3 1/''O*`  C "#'(3) B   Z*'"+n "'  C"?H  # g "'N  3 "'N ZB  S D"L ' `  C #'  `  C " ' fB  s *D% %A fB  s *D%Ld&, ZB B S DjJ""ZB B S DjJ ' 'n xX)d   C"?HR  # jJxh'TB  C D#x#`  C 'HX)d  H  # g #l/$@n @  C"? xZ @  @Bb   g ( g`  C @ h  `  C  o  `  C  w  B   @  B   m s B   , O n /  C"? Bb B  g < `  C (S </ (`  C 'C  '`  C &| X &B     B   ZA / B   { ? Zn 4,  C"? B   L'ZB  S DjJH'`  C L F" `  C ~"%T ~`  C |'4, |T n ( B%  C"?`  ! #  !Hb  # jJ 7 `  C \ T `  C T L ! `  C  `  t  # #" !Hb  # jJ\`  C D `  C 0g| `  C ,x `   #  Hb  # jJh G`  C 0 `  C   `  C d , Z  +(   +(Hb  # jJ+`  C  $ `  C       !"#$%&@`( `  C d  ` ` ! # ` !`  C L|  `  C ( ! `  C @`  Hb  # jJ8 n ` (!B% # (!B%Hb  # jJ!Bq$`  C (P" $ `  C X!|# `  C  $$`% n t"+)q  C"?TB  C D(b(TB  C D"b(bB   ٺ'+.'3`  C T$U)q TB  C Dt"(B   Z%(` \+4 C"?Pb B  g "` +3Q1`  C {6 1^4 {`  C  +@. `  C }h /D 82 }P   "`\-[.P   Z"` 1B1B   0-T1n Y@2<7  C"?Bb B  g T @26`  C 3<l6 `  C h |2(4 `  C  X5 7 B   Y3b44  X2\6B   $$66*n    C"?Vb B # g "` wYf  S z L  zf  S y 5  yf  S x O xV  # "` C V  # Z"`mH  # p\xT *&.E" #" ?Vb  # g "`&f  S wi E" wf  S v |z  vf  S u F uV  # 2"`..V  # Z"`mH  # %`  C t*:  tn t"+)q  C"?TB  C D(b(TB  C D"b(bB   ٺ'+.'3`  C mT$U)q mTB   C Dt"(B !  Z%(B S  ?V p !-0 HbHdHZIJJNNNN>Y;d\f jzms(#D%t# tW: ztI; tL k tL k t% tB>t#%t t} $t taP%t QtoH) tkl&tsp` (tw?V Ut!t"^t= 3_t`3t@" tP" th" tlzT! tL#t _Toc25394455 _Hlt25395731 _Hlt25395245s@@so\[..4s366s9*urn:schemas-microsoft-com:office:smarttagsplace=*urn:schemas-microsoft-com:office:smarttags PlaceName=*urn:schemas-microsoft-com:office:smarttags PlaceType (*il%(A\`c),9<Y\vy4=Id&& I1I3IXIWW;>>>LAPABBBBCC_DdDGGHHIIcIjIII`JcJJJKKLLLL4M8MMMNNNN O OUU WWWWXXXXXXYY [[\\]];^<^bbeeggii kkFkLkkk6l@lllo o2o6o^o^o`o`oaoaocodofogoiojoooppqq$q%q'q(q`qaqqqqqqqqqqq9r:rrrrrrrrrrrss-s1s8s?sAsEswsxssssss3333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333A\4IdI1IX~yVrb;g4G]1kdf21ja'Li`yVr "@ 0^`0OJQJo(L                 ^k\        \c        b0        &6 6Drz^x7В~S(Y0)-,K        b                 0         jΆ       j+\~        &        t%(1VkfWF|[= B ?K udufPCQ*|aF-S^*O`$I%5&G&%Q& 'w*d,j:.r/m4050i1^4<8^89