
Paper 130-28

1

Web Communication Effectiveness:
Design and Methods to Get the Best Out of ODS, SAS®, and SAS/GRAPH®

LeRoy Bessler, Bessler Consulting & Research
Fox Point, Milwaukee, Wisconsin, USA, bessler@execpc.com

Abstract

Web Presence is no guarantee of Web Accessibility or Web Usability.
Communication effectiveness on the Web requires you to: (a) get your
message found (you want those search engines to find your web pages);
(b) deliver your message quickly (download time is the Number One
web user concern); (c) assure that the receiver sees the same message
that you, the sender, saw when you created it (this is NOT automatic,
since unexpected things can happen with, e.g., colors and fonts); and
(d) have the meaning of your message understood (superfluous
dimensionality and other paraphernalia routinely introduced for graphs
or tables can actually obstruct or delay, rather than enhance or
accelerate, communication and comprehension). This is a tutorial about
best technical practices, key design ideas, and The Power of Simplicity
for publishing information on the Web. This tutorial is suitable for all
skill levels. Design principles and ideas are software independent.

Introduction

Some TV ads make you remember action and images, but not what was
being promoted. The time and attention of the “audience” for your web
pages are precious, as are your time and effort to create the web pages.
Software and hardware are power tools, but defaults produce lots of sub-
optimal results quickly. With the web, the whole world is watching.

Web pages can be designed to inform and to influence, not to impress,
so that they deliver the messages and the meaning in your data with
images that are easily and quickly interpreted, and that have memorable
significance. Graphs can be constructed to deliver overview impact, to
accelerate decision-making, and—for situations where it is needed—
precise detail, to facilitate reliable decision-making. Tables can be
constructed to designed to accelerate information-finding, rather than to
adhere to the old spreadsheet paradigm of a big pad of ruled paper.

There are three companion papers in these SUGI 28 Proceedings, one
published with Dr. Francesca Pierri. They contain illustrations and
coding details on related topics in visual communication effectiveness
with SAS software: (a) use of images and color; (b) SAS/GRAPH; and
(c) trend charts (for web-based Enterprise Performance Reporting). All
are relevant to web page design and construction. I have tried to
minimize content overlap. Please see those papers for more information.
This presentation includes web page demos, also available via email
request. This paper contains a few web pages, but no demo descriptions.

The Power of Simplicity

Simple Downloads Faster. Dilbert (Scott Adams’ cartoon character)
said, “I made a study of Internet use in the workplace. The time spent
waiting for web pages to load has wiped out all the productivity gains of
The Information Age.” The Number One usability concern of web users
is download time.

Simple is Safer. While writing this paper, I received a Critical Windows
Update notice from Microsoft Corp, about a security vulnerability that
involved possible attacks on web users’ computers from web sites that
use a fancy way to produce web pages. Software built with mature and
simple technology tends to be reliable. Changes and enhancements may
come with new defects, and new vulnerabilities. The possible is not
automatically necessary, nor what is always desirable.

Simple is Accepted. Many web users—even if they have a web browser
with all the latest bells and whistles—deliberately disable special
features. Just because you want to communicate with them, they are
under no obligation to accept your terms. If your web pages don’t
display for these web users, it’s your fault, not theirs.

Simple Is Focused and Communicates Better. Simple web pages
accelerate understanding, inference, and decisions. (See Figures here and
supporting code in the Appendix, and References 1, 3, 4, and 5.)

Web Communication and Web Accessibility

Communication Is the Mission

Unless it’s for entertainment, the main mission of a web page is
communication of information, not decoration. Even if it is for
electronic commerce.

Communication Is Effective When:

● the Receiver Gets/Finds the Message From the Sender;
● the Receiver Gets the Same Message As was Sent; and
● the Receiver Gets the Message Quickly (enough).

Failures in communication are always a failure of the sender.

Get Your Web Site Found: Achieve Genuine Web Presence

Some web sites have a captive audience. It may be a web site on the
corporate, university, or other organizational intranet. It may be a web
site that serves a purchaser/supplier or other business-to-business
electronic commerce relationship.

But not all web applications have a captive audience. And we live in an
era when everyone (with sufficient time, or sufficient money to hire
someone’s time) deems it essential to establish “a web presence”.

An easy thing you can do to get discovered on the web is to use the
TITLE= option on the BODY= parameter (which identifies your web
page body file). Here’s the code:

ods html body="yourpagename.html"
(title="this text identifies your content");

Here are its various uses, where No. 1 may be the most important to you:

1. captured by search engines
2. default text for Internet Explorer Favorite or Netscape Bookmark
3. web page browse History list entry
4. title bar for the browser window

If the web page uses frames (e.g., an ODS Table-of-Contents-based
presentation of information), then it is the TITLE= assignment for the
frame file that appears in the browser window title bar, and presumably
serves the other uses listed above.

Search Engines Look at META Tags—Use Them

Here is skeleton ODS code to use META tags:

ods html . . .
metatext=' name="keywords"
contents="word1, word2, ..." '

There are a huge number of possible kinds of META tags, identified by
different assignments to the NAME= parameter. (If needing to use
METATEXT= for web control functions, the functional parameters are
assigned with CONTENTS= and the type of control is identified with
HTTP-EQUIV= rather than NAME=.)

Probably the best resource for more information about META tags is
www.vancouver-webpages.com/META/. If you go to this web site, not
only can you explore the documentation it provides about META tags,
but also you should click VIEW and then SOURCE to look at how the
web site uses META tags for its own web pages. (The home page for
this web site uses frames. You can also inspect the source for each frame
by use of the right mouse button and its View Source option.)

Despite the richness of possible uses for META tags, ODS currently
supports only a maximum of 258 characters across all tag definitions.
HTML takes an unlimited number of META tags. (Some of the
possibilities are: keywords, description, author, copyright, publisher.)

SUGI 28 Data Presentation

2

For how to define multiple tags in the ODS METATEXT parameter,
send me an email. If you need to exceed the 258-character limit, I may
be able to provide an automatic ODS postprocessor. The HTML META
tag does support an unlimited number of NAME= CONTENTS= pairs.

Web Resources for Search Engines

For tips on how to get your web site found, see:
www.searchenginewatch.com.

For tips on how to make your own searches more effective, see:
www.searchengineshowdown.com.

Their Web Window to the World (and Your Web Pages)

The most recent report I have seen said that the commonest resolution
on PCs is still only 800 X 600. If it increases, or has increased, it is at, or
will be, probably no more than 1024 X 768. A non-trivial fraction is
used by the web browser (and a little bit is used by Windows itself). The
remainder is called “live space”. Use it wisely. The most conservative
design would be for a resolution of 640 X 480.

Your Web Page Viewers Don't Really Want to Scroll

Try to design and build your web pages for FULL view on the smallest
probable screen that will display it. The live space varies for PC vs.
Mac, Netscape vs. Internet Explorer. For more information about live
space, see also Reference 2.

Vertical scrolling is tolerable, but not preferred. If your web page
absolutely requires scrolling, put the most important information at the
top of the page, and the least important at the bottom.

Horizontal scrolling not only is disliked by most web viewers, but also
can frustrate effective viewing. Requirement for scrolling in both
directions on the same page is unacceptable. However, there are
exceptions. A large complex map cannot be displayed on the screen of
any desktop or laptop PC, no matter how big the screen. A very large
dense plot would be another exception. For a good example of the latter,
see “Visualizing Patterns with Scrollable Web Graphics” by Eric C.
Brinsfield and Caroline C. Bahler, in Proceedings of the Twenty-Seventh
SAS Users Group International Conference, SAS Institute Inc. (Cary,
N.C.), 2002.

Focus Your Web Page

Normally deliver only one table, graph, or composite per web page, if
possible. If you can fit multiples on one screen, this suggestion does not
apply. However, a scrollable multi-image, multi-element page can
confuse the viewer. Also, if you click on a hyperlink whose target is
really just part of a long page, and then print what you think is a small
package of information about that topic, it is not a welcome experience
to find 10 or 20 pages of output on your printer, with most of it being
irrelevant to your interest.

Avoid Anti-Focus When Using an ODS Table of Contents

While testing an early edition of a custom ODS Table of Contents Style
for Reference 4, I had a confusing experience. I clicked on the last entry
in the TOC index. What appeared at the top of my screen was a different
entry. I was puzzled by this until I realized I was looking at the second-
from-last entry in the TOC, but had, in fact, been taken to the entry of
my interest, which was at the bottom of my screen. I had my 20-inch
monitor display set to resolution 1600X1200. Since I believe in simple
focused graphs and tables, the entries presented by the TOC were small
and compact, and my screen held more than one TOC entry at a time.

One Table of Contents item per web page prevents confusion. And the
web user of your package of information organized, managed, and
presented via a TOC can print one item at a time.

When you build a Table of Contents package of web pages with ODS,
you first define the FRAME file and the CONTENTS file. Between that
definition and the ODS HTML CLOSE statement, you put all your code
to create the elements to be indexed by the TOC. You are not required to
create a specifically named BODY file for each element to be supported
by the TOC, even if created by using different PROCs. In some cases,
you could be using BY processing for convenience and concision, or

other repetitive processing. On the ODS HTML statement, you can use
the NEWFILE= parameter to force the different elements into separate
web pages. The default value is NONE, which dumps everything into
one big BODY file—usually not good. Other options include OUTPUT
(new file for each output object created by a PROC), PAGE (new file for
each page created by a PROC, but this does not pay attention to page
size), and PROC (new file for each PROC Step code block). To achieve
separation for BY processing, which is a single PROC invocation, you
need to use either PAGE, or the new option BYGROUP. Figure 1 shows
the ODS Default Style Table of Contents. Figure 2 shows a
recommended custom TOC. Code for both is in the Appendix.

Navigation Alternatives

For SUGI 27, Francesca Pierri and I comprehensively demonstrated the
range of web publishing and web linking possibilities using ODS, SAS,
and SAS/GRAPH. See Reference 4. We compared the SAS/GRAPH
WEBFRAME driver, the ODS Table of Contents, and what we call our
“CrossLink Method”. The Table of Contents provided by the ODS
Default Style needed, and got, various functional and appearance
customizations. What you see here in this paper is an extension of that
work. The WEBFRAME driver provides a thumbnail index (rather than
the text index of a Table of Contents, but supports only graphic output—
any table must be created with PROC GPRINT or GSLIDE, which are
not necessarily convenient or best for that purpose). CrossLinks take you
beyond the wide range of drill-down possibilities in SAS/GRAPH and in
ODS tables. We use the LINK= option for FOOTNOTE or TITLE
statements supported by ODS. As of Release 8.2, LINK= cannot be used
in SAS/GRAPH output, even if the graph is web-packaged with ODS.
We circumvented that by appending a tiny empty table with PROC
PRINT below graphic output on the web page. With our CrossLink
method, you do not need to sacrifice screen width to support navigation
between web pages that are not linked by drill-down. The presentation
includes demos of the default Table of Contents, the custom Table of
Contents, the CrossLink Method, and a web application (from
Reference 3) that is a hybrid of Table of Contents and CrossLink.

Do Your Web Pages Actually Work As You Intend?

The World Wide Web Consortium provides a facility to validate your
web pages (and to evaluate conformance with their own standards) at
validator.w3.org.

Do not assume that your web pages, which work as desired with Internet
Explorer, will work the same way with Netscape, or that they will work
the same with all versions of a particular browser. Unless you have a
captive browser-specific audience, avoid browser-specific web design.

Can They See Your Web Pages?

The power of the web is in its universality.
Access by everyone, regardless of disability, is an essential aspect.

 - Tim Berners-Lee

Resources on Accessibility for Impaired Users

● See the Web Accessibility Initiative at www.w3.org/WAI/.
● For ODS, go to www.sas.com/service/techtips/ts_qa/ods508.htm.
● If interested in using native html, see “SAS User Documentation:
 Web Page Design Made Easy” by Bruce Gilsen & Scott Hoenig,
 in Proceedings of the Twenty-Seventh SAS Users Group
 International Conference, SAS Institute Inc. (Cary, N.C.), 2002.

To have your web pages evaluated for compliance with standards for
accessibility by people with disabilities, go to bobby.watchfire.com.

ALT Text: Enhancing Accessibility for Impaired, and All, Users

Those (usually small) boxes of text that pop up when you rest your
mouse on an image, or on the place on the web page where an image is
destined to appear when it completes download, are called ALT text.
“ALT” is short for “Alternative”, as in “Alternative to the Image”.

It is a recommended practice for web page developers to provide ALT
text for all images. It has two benefits. Vision-impaired users can use
web-page-reading software that converts the ALT text to audible speech.
From ALT text, unimpaired web users can find out something about the

SUGI 28 Data Presentation

3

image file that they are waiting to download until the picture is fully
painted. Some viewers may skip the wait and move on to some linked
web page, or may focus on a different aspect of the current web page.
Furthermore, with ALT text you do not need to sacrifice any live space
on the web page to provide a “hard label” for the image. You can be as
concise, or as verbose, as you like with ALT text.

In HTML, ALT= is a parameter that can be used with the IMG tag.
In ODS, ALT= is a parameter that can be used with the PREHTML=
and POSTHTML= options of the STYLE statement.

It is also possible to provide ALT text with SAS/GRAPH for various
parts of a graphic image, regardless of whether or not they are
hyperlinked to other web pages. It can be assigned with the HTML
parameter available for commonly used graphic PROCs. It can also be
assigned with the HTML variable available for many Annotate
functions. Here is an example of how you assign ALT text, after you
have determined where to use the HTML (and/or HTML_LEGEND, if
your graph has a legend) parameter in your SAS/GRAPH PROC:

html= (or html_legend=)
 ' alt="describe this area/point"
 href="OtherPageName.html" '

You need not use href= (i.e., to assign a hyperlink) in order to use alt=.

In Reference 2, there is an example of using Annotate to imbed an image
in a graph and to assign ALT text for (and a hyperlink from) the image.
Also in Reference 2 is an explanation of how you can use Microsoft
Word to add ALT text to any image file that you might already have.

For some graphs, such as a high-point-density or multi-line trend plot, it
may be impossible to annotate with precise values. If your web page
viewers are not expected to need a printable record, ALT text can avoid
forcing them to download a separate companion look-up table (which
might be too large to fit on the same web page as the graph).

Communicate with Color (Find details in Reference 2.)

1. The commonest color blindness cannot distinguish red and green.

2. Color contrast between text and background is essential.

3. If using several different shades (i.e., degrees of lightness) for a
constant hue, no more than five shades can be reliably distinguished.
Depending on the application, you may be able to augment the palette
with White or Black.

4. Always use “browser-safe” (a.k.a. “web-safe”) colors.

5. Use RGB color codes, not “SAS Predefined Color Names”, and not
color names from the SAS HTML Color Registry.

For details and illustrations of all the above, please see Reference 2.
For Point 2, also see Figure 3 and supporting code in the Appendix.

● Use Color to Communicate, Not to Decorate.
● Color does not improve a bad design.

Communicate with Text and Fonts

Pulitzer’s First Rule: “Make it brief so they will read it.”

Please keep text horizontal. That’s the way we like to read. And that’s
the way our eyes are oriented if not sleeping. Do not permit software to
stack the letters of a report column label. Do not direct software to apply
a rotated label to the vertical axis of a graph just because it will fit
nicely. It should be possible to create a sufficiently informative title or
subtitle for any graph so that axis labels would be superfluous.

No Blinking: It’s annoying. And it frustrates web-page-reading software
for the visually impaired.

Make your web page title your headline. If you are using the web
page to persuade and/or reveal, don’t be reluctant to tell the viewer what
you know (or you think) it implies and/or shows.

Use Sparse Text to make the web page talk. Be sure every letter or
number must be there. Superfluity detracts from the real message.

Use high contrast (well exemplified by Black with White or Yellow).
On light backgrounds, colored text or line must be sufficiently thick.
Never use Black on Dark or Medium Blue, Yellow on White, etc. For a

utility to check readability of combinations of text and background
color, please see Figure 3 and supporting code in the Appendix.

CHOOSE your background. The ODS default web page background
of gray is boring, and does not enhance readability of foreground text.
My recommendation: use one solid color. Textures and backgrounds
vary the contrast with foreground text, impairing readability, besides
being unnecessary and sometimes actually annoying. The presence of
fancy backgrounds on web pages too often is simply a case of confusing
the possible with the necessary.

For emphasis, first consider use of Bold, or Italic, not color. Do not use
Underline. On the web, Underline is a standard highlight for hyperlink
text. If using ALL CAPS for emphasis, use it SPARINGLY. ALL CAPS
is hard and slow to read. To convince yourself, prepare and read a long
paragraph in ALL CAPS, and compare that with Mixed Case.

When creating graphs for your web pages, check your SAS log for a
note that the SIMULATE font has been substituted for your requested
font. (Still as of SAS Version 8.2, you are NOT always notified.) Fix the
problem, if you can. A common error is a misspelled font name, in
which case the SAS log seems to always notify you of substitution. For a
sample of this unwanted and undesirable font (or any other
SAS/GRAPH font specifiable below with name=), use:

proc gfont name=SIMULATE nobuild
 SHOWROMAN HEX H=2; run; quit;

Wherever you use f=NONE, or fail to specify f= where applicable, in
your SAS/GRAPH program, the device driver uses its default font. If,
when using a default font, you specify a height other than one cell (i.e.,
not h=1), then SIMULATE will be used, but you will not be notified.
Furthermore, be aware that some drivers (e.g., the EMF driver) do not
have a default font—SIMULATE is used without notification.
GOPTIONS SIMFONT= assigns the default font. The software as
shipped has this set to SIMULATE. You might wish to override it.

Generate Font Samples. Using PROC GFONT as above, you can
easily produce samples of any SAS/GRAPH software font. You will find
things that you did not know are there, but which can be used by
defining a text string (in a SAS/GRAPH application) with hexadecimal
codes—e.g., '03'X yields a solid square. Unfortunately, PROC
GFONT does not work with Windows TrueType fonts. I have a font
utility in development just for that purpose. I call it BFONT. But to
create samples of only keyboard characters, I have provided code in
the Appendix. See example output in Figure 4.

Explore Those Fonts. Just as SAS/GRAPH software fonts have more
content than letters and numbers, so do the Windows TrueType fonts.
Short of using the aforementioned BFONT, you can interactively
explore their content with the Insert Symbol window in MS Word. It
will display all 256 characters available in each font. Also, look at the
more exotic fonts like Webdings, Wingdings, Wingdings 2, etc. You
may have some useful application for them. Not a serious use, but for
fun, here is a rebus where the icons are Webdings and the plus signs are
Times New Roman Bold (the map is 28 point, all others are 20 point):

 + + + +
= “SUG International Kickback Party”, an annual SUGI highlight.

Set SAS/GRAPH defaults with FTEXT, HTEXT, CTEXT. Some
features of certain SAS/GRAPH charts are not controllable with F=, H=,
C=. For them, the above three GOPTIONS parameters for default text
font, default text height, and default text color are your only recourse.

Even in your graphs, use Windows TrueType fonts. Good fonts
include Matthew Carter’s creations designed for readability on the
screen and the web, Verdana (sans serif—useful for small letters and
numbers) and Georgia (serif—useful for titles and prominent footnotes).
Besides these two fonts, I have a fondness for Rockwell. All its
characters are thickly drawn along their entire contour. I find it very easy
to read. In Figures 2-4, all titles are rendered with Rockwell, and all
table text and Table of Contents entries are rendered with Verdana.
Unfortunately, not all PC’s have the Rockwell font. Designing for the
web is not the same as designing for a hardcopy paper.

SUGI 28 Data Presentation

4

Fonts and Sizing

Georgia is best for large print.
Verdana is best for small print.

Sizing fonts on a graph or in a table:

● Title large
● Main body medium, or small if space constraints
● Footnote large if substantive message
● Small footnotes only if not really expected to be read

NOTE: Any font size assignment will display bigger on a Mac.

Do They See What You See?

Can You Preserve Text Appearance? NO

Fonts used inside graphs on a web page are embedded in the graph file
that is part of the web page. So, the appearance of graph text is the same
for all web viewers, and the same as that for the graph creator, except for
screen resolution differences.

However, text outside graphs on a web page is affected by ODS, by the
web browser, and, potentially, by the web browser user. If you define
text font sizes to ODS with point sizes, ODS converts those point sizes
to HTML sizes 1-7. There are many more than seven possible point
sizes. At the user end, the web browser converts those HTML font sizes
back into point sizes. Since the ODS-to-HTML conversion was many-
to-few, it is improbable that the web browser reversal choice will restore
the particular point sizes you chose. To add to the ambiguity, the web
browser user has the option to influence how the browser will perform
the conversion. Here is how. Open a web page. Click on View, then Text
Size. You will see five choices: Largest, Larger, Medium, Smaller,
Smallest. Medium is the default. These choices enable the viewer to
control the size of the text parts of the web page. Such control can be an
aid to visually impaired web users, or can condense the length of web
pages for web users who—understandably—dislike scrolling.

Tip: In ODS you can define font sizes with the HTML numbers 1-7,
rather than point sizes. Presuming that most web users do not alter the
Text Size from the default (many, if not most, web users may not even
realize that they have the power), you can increase the probability that
“They Will See What You See” if you use those HTML font sizes, and
IF they have the same web browser as you have. But there is still the
problem of possible font substitution, described below.

You Can and Should Control Font Substitution

For the non-graphic, non-image parts of your web page, the web page
viewer’s PC may not have fonts you specify in your ODS Style. When
specifying fonts in your Style, you should list alternatives. The web
browser will use the first font in your list that it finds on the computer.

For web page elements you want rendered with serif fonts, use these:
“Georgia, Times New Roman, Times”.

For sans serif fonts, use these: “Verdana, Arial, Helvetica”.

These three choices in each case are best for, respectively:
modern Windows, old Windows, Mac/UNIX.

Font Inconsistency Within the Same Web Page

You can assign the same font and the same point size for embedded
graphic fonts as for the fonts you specify in your ODS Style for the non-
graphic part of page. Despite this, you cannot expect such text to look
identical. There are multiple reasons.

The first of them is obvious from the discussion above.

Another factor is that the graphic fonts are being rendered in the graphic
file by SAS code, not being retrieved from a local disk font library by
the web browser on the web page viewer’s computer. That text outside
of the graph is rendered at the web page viewer’s computer.

FORCE Font Embedding for Graphs When Using ODS

When putting SAS graphs in your web page, always use ODS HTML
options GTITLE and GFOOTNOTE. This forces the TITLE and
FOOTNOTE statements to be built inside your graph. This will embed
the fonts in your graph. Some Windows TrueType fonts are available on
almost any PC, others are less commonly available. Even if you use an
“exotic” TrueType font, your choice will be available on every web
browser user’s computer because its rendering will be inside your graph.

As of Version 8.2 of SAS, the NOGTITLE and NOGFOOTNOTE
options have undesirable consequences. With these options, your
graph titles and footnotes are placed outside of the graph area, and
outside of the graph file that is put on the web page. This means that
they are rendered with the fonts that you have specified (or taken
defaults for) in your ODS Style. In principle, that sounds like an
advantage. Unfortunately, SAS/GRAPH reserves space in the graph
display area for the titles and footnotes that are NOT put there. This
creates strange voids at the top and bottom of the graph display area,
especially bad if you have multiple title and/or footnote lines. Not only
does this look strange, but also it unnecessarily compresses the graph.
As far as I know, there is no relief in sight for this situation in Version 9.

Font Embedding for Tables and Text:
With the SAS System Always Possible, But Not Always Easy

If you have energy and patience, you can, in fact, use SAS to create
tables and text for your web pages with embedded fonts. The key is to
use SAS/GRAPH to create tables and text panels (slides).

You can use PROC GPRINT for Tables. Whenever making a table with
SAS/GRAPH, to assure alignment of decimal positions and decimal
points in columns of numbers, you must use fixed-pitch (a.k.a. “fixed-
width” or “Uniform”) fonts. All the non-symbol SAS fonts have a
Uniform version, with suffix U on the font name. The fixed-pitch
TrueType fonts are Courier New (predecessor was Courier) and Lucida
Console. You can also access the fixed-pitch “SAS Monospace” font in
the same way as TrueType fonts.

You can use PROC GSLIDE for text. There is no support for automatic
word wrap across lines. This is not a word processing tool. But, for
simple blocks of text, formatting with TITLE, NOTE, and FOOTNOTE
statements is easy. You can use any font you have available (SAS or
Windows TrueType). Most of the SAS fonts suitable for bona fide text
(as opposed to only graphs or tables) have bold versions and/or italic
versions (suffix B and/or I). TrueType fonts can be used with Bold or
Italic, by specifying, e.g., f='Georgia/Bold'. For TITLEs, NOTEs, and
FOOTNOTEs you also have access to the BOX option. Do not use the
UNDERLINE option. On the web, UNDERLINE is a standard highlight
for hyperlink text.

Furthermore, simple tables can be rendered with PROC GSLIDE,
perhaps more easily than with PROC GPRINT. But, in neither case can
you create (the ODS frill of) a table grid.

Finally, you can use the SAS/GRAPH Annotate facility to do almost
anything with text, though it is not necessarily easy and quick.

Putting Active Images on Your Web Pages

When it comes to technology, there is a tendency to confuse the possible
with the necessary, and new options with progress. If you have a valid
communication objective that requires active parts on your web pages,
that’s a different situation. But fancy web publishing tools use facilities
that may be totally unavailable for some web browser users, or may be
deliberately disabled—intentionally—by some who have the option to
use them. A paramount design objective should be web pages that
work as intended for as many web users as possible. There is one
active web page feature that will work for everyone in your web
publishing audience—Animation. But you should have a communication
purpose—one valid animation use is a map to show population
distribution change over time. It requires an animated GIF. These have
been around a long time. You can build your own with SAS/GRAPH. (I
can send you sample code, or you can find some in Reference 3.

SUGI 28 Data Presentation

5

Communication-Effective Graphs & Tables

3D is for Three Variables. If the pie chart and bar chart illustrations of
3D versus 2D in Reference 1, which demonstrate outright distortion of
data significance and needless complexity, do not persuade you that 3D
is inappropriate for two-variable charts, there is nothing I can say.
3D maps are anti-communicative (PROC GMAP's PRISM and BLOCK
maps have solids for high response areas hiding those for low response
areas), or are impractical (the PROC GMAP SURFACE map).

Focus on the Data. Axis lines, tick marks, axis labels that are obvious
from the graph title, etc. should be stripped out. They add nothing. They
are a distraction, not an aid to communication. “Let the data talk.”

About Tables: Set Your Data Free

Get your data out of jail—no cells. Usually just say “No” to grids.
Though there may be situations that warrant a grid, the fact is that this is
just a software imitation of the big pad of ruled paper from the days of
manual hardcopy spreadsheets. Tables do not inherently need grids (or
decorative backgrounds). As shown previously in Reference 3, you can
easily improve the appearance of ODS-packaged tables if you use:

proc template;
edit styles.Default as styles.SimplerTable;
style output from container /
frame=void /* no walls around the table */
rules=none /* no walls between labels and data */
cellspacing=0; /* no walls between the data */
end; run;

For more examples of minimalist, communication-effective graphs and
tables for web pages, please see Figure 2, References 1, 3, 4, and 5, and
the pie chart on this page. Compare Figure 2 with the alternative of the
results of using the ODS Default Style in Figure 1. The use of a colored
background and a frame for the table in Figure 2 is not necessarily
recommended, but is included to demonstrate options supported by the
macro provided in the Appendix to build custom Styles. The macros in
the Appendix are an extension of work published in References 3-5.

Show Them What’s Important. Rank data in bar charts and pie charts,
as demonstrated in Reference 1. On maps, you can supply rank as an
annotation. Ranking provides focus, and simplifies communication.

Let Part Stand for the Whole. For tabular data, the subsetted ranking
report is very effective. (Below is one formatted with Microsoft Word,
rather than as a web page.) This report can be done with a SAS macro,
previously published elsewhere by me. Its control is the cutoff count
(here, set to 10). Its functions, besides producing the ranked table,
include dynamically determining the total item count, the grand total of
the measurement, and the percent of the total represented by the items
listed. The titles retrieve that information as macro variables. Concise
tables of key information are always communication-effective. In the
scarce screen territory available on a web page, a short table is always
very useful.

Top 10 of 51* States Sent 66.4%
of SUGI Attendees to San Francisco
(Total SUGI Attendance = 3350)

California 736
North Carolina 447
Texas 178
New York 173
New Jersey 141
Pennsylvania 127
Ohio 110
Illinois 109
Virginia 103
Maryland 99

*51 includes District of Columbia

Use Sparse Annotation. (See References 3 and 5.) Whenever sufficient,
annotate y-values only for the critical points of a plot line, and label only
corresponding (invisible) x-axis tick marks. For a crowded or crossing
multi-line plot, put critical values in the legend. Critical points are start,
end, maximum, minimum, and points where the rate of growth or
decline persistently changes.

When There Is a Very Dominant Share, Use the Pac-Man Pie Chart.
A two-part pie chart may seem trivial or silly. But, when the share of
interest to your message is tiny or huge, the image is very “impactful”
and, therefore, memorable. If needed, supply details for “Other” with a
table below the chart, or, on the web, with flyover text and/or drill-
down. Unless required for communication, do not blunt the message by
splitting the large wedge into little ones that may be as small as, or
smaller than, the wedge whose smallness you are emphasizing.

Acknowledgements

My thanks to Chevell Parker, Bari Lawhorn, and others who have helped
me to increase my understanding of ODS.

Recent Related Work By the Author

1. “Easy, Elegant, and Effective SAS Graphs: Inform and Influence with
Your Data”, elsewhere in these SUGI 28 Proceedings.

2. “The Power of Pictures and Paint: Using Image Files and Color with
ODS, SAS, and SAS/GRAPH”, in SUGI 28 Proceedings.

3. With Francesca Pierri, “Tell Them What's Important:
Communication-Effective Web-and-Email-Based Software-Intelligent
Enterprise Performance Reporting”, in SUGI 28 Proceedings.

4. With Francesca Pierri, “Show Your Graphs and Tables at Their Best
on the Web with ODS”, Proceedings of the Twenty-Seventh Annual SAS
Users Group International Conference, SAS Institute (Cary, NC), 2002.

5. With Francesca Pierri, “%TREND: A Macro to Produce Maximally
Informative Trend Charts with SAS/GRAPH, SAS, and ODS for the
Web or Hardcopy”, Proceedings of the Twenty-Seventh Annual SAS
Users Group International Conference, SAS Institute (Cary, NC), 2002.

Notices

SAS/GRAPH and SAS are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® denotes USA
registration. Other product and brand names are trademarks or registered
trademarks of their respective owners.

Author Information

Your comments, questions, suggestions, and requests are welcome.

LeRoy Bessler PhD
Bessler Consulting and Research
PO Box 96. Milwaukee, WI 53201-0096, USA
Phone: 1 414 351 6748
Email: bessler@execpc.com

LeRoy Bessler does general SAS application development, and
communication-effective design and construction of reports, tables,
graphs, and maps for the web and other media. He has expertise in
Software-Intelligent application development, which yields solutions
that are reliable, reusable, maintainable, and extendable.

Simple Web Pages: faster, more reliable, more accessible,
more focused, and more communication-effective.

SUGI 28 Data Presentation

6

Figure 1. Table of Contents and Scrollable Web Page Using ODS Default Style (See code in the Appendix.)

Figure 2. Custom Table of Contents and Custom Separate Web Pages (See code, including macros used, in the Appendix.)

SUGI 28 Data Presentation

7

Figure 3. Utility to Check the Readability of Combinations of Text and Background Color (See code in the Appendix.)

Figure 4. Utility to Demonstrate Windows True Type Fonts (See code in the Appendix. To display all 256 characters, use BFONT.)

SUGI 28 Data Presentation

8

Appendix.
Style Template Macros and Invoking Code Used for Figures

NOTES: The effect of some of the macro parameters is best understood
by reading the comments inside the PROC TEMPLATE code. Below,
my use of ellipsis (. . .) signifies that title text or some should-be-
obvious code has been omitted. The macros have been tested, but no
guarantee can be provided. You must verify them for your own uses.

%macro CustomBaseStyleBuild(
StyleName=LeRBsugi28CustomStyle,
PROCoutputSeparators=NO, /* YES to put horizontal rule between
 successive PROC outputs in the same web page, but
 NO EFFECT if using NEWFILE = PROC. */
PROCoutputSepLineThickness=1, /* 2 for thicker, 3 is ODS Default */
WebPageBackgroundRGBcolor=CXFFFF99,

/* CXFFFF99 is light (not lightest) Browser-Safe yellow */
TitleFootnoteBackgroundRGBcolor=CXFFFF99,
TitleFootnoteBackgrdTransparency=NO, /* YES to let web page
background show through */
TitleFootnoteRGBcolor=CX000000, /* Browser-Safe black */
TitleFootnoteFont=Rockwell,
TitleFootnoteSize=4,
TableBackgroundRGBcolor=CXFFFF99,
TableContentRGBcolor=CX000000, /* data and heading color */
TableHeadingFont=Verdana,
TableHeadingSize=3,
TableDataFont=Verdana,
TableDataSize=3,
TableFrame=box, /* use TableFrame=void to remove frame */
TableFrameRGBcolor=CX9999FF, /* light Browser-Safe blue */
TableGrid=NO, /* use YES to turn on grid between data cells */
TableSpacing=5); /* the SAS-shipped default is 7.
 This is the space between cell data and cell boundary. */

proc template;
edit styles.Default as styles.&StyleName;
 /* Create a modified style based on the ODS STYLES.DEFAULT.
 Anything not referenced or overridden here
 will be controlled by the ODS Default Style. */
style fonts /
 'TitleFont' = ("&TitleFootnoteFont, Times New Roman, Times",
&TitleFootnoteSize) /* "system" titles and footnotes */
 'HeadingFont' = ("&TableHeadingFont, Times New Roman, Times",
&TableHeadingSize) /* column & row headings

(including obs numbers and id var values) */
 'DataFont' = ("&TableDataFont, Arial, Helvetica", &TableDataSize)
 /* table data. DataFont added by LeRB. Not in Default style. */
 'DocFont' = ("Comic Sans MS, Courier",4);
 /* default for unassigned fonts. Conspicuous font chosen here to be
 obvious whenever used by ODS. Then a way can be found
 to assign a preferred font, rather than use default. */
style color_list /
 'LeRBred' = CXFF0000 /* Browser-Safe red */
 'LeRBblue' = CX0000FF /* Browser-Safe blue */
 'LeRBmagenta' = CXFF00FF /* Browser-Safe magenta */
 'WebPageBackgroundColor' = &WebPageBackgroundRGBcolor
 'TitleFootnoteBackgroundColor'

= &TitleFootnoteBackgroundRGBcolor
 'TitleFootnoteColor' = &TitleFootnoteRGBcolor
 'TableBackgroundColor' = &TableBackgroundRGBcolor
 'TableContentColor' = &TableContentRGBcolor
 'TableFrameColor' = &TableFrameRGBcolor;
style colors /
 'systitlefg' = color_list('TitleFootnoteColor')
 /* "system" titles & footnotes */
 'systitlebg' = color_list('TitleFootnoteBackgroundColor')
 /* background for "system" title/footnote areas
 However, if transparency selected, this color is ignored. */
 'headerfg' = color_list('TableContentColor')
 /* override fgA2, table row & column labels */
 'headerbg' = color_list('TableBackgroundColor')
 /* background for table row & column labels */
 'datafg' = color_list('TableContentColor')

 /* table data */
 'databg' = color_list('TableBackgroundColor')
 /* background for table data */
 'docfg' = color_list('LeRBmagenta')
 /* default for unassigned foreground colors. Conspicuous color
 chosen here to be obvious whenever used by ODS. Then a way
 can be found to assign preferred color, rather than use default. */
 'docbg' = color_list('WebPageBackgroundColor')
 /* background for web page and ??? */
 'tableborder' = color_list('TableFrameColor')
 /* table frame AND table rules */
 'TableGrid' = color_list('TableFrameColor')
 /* (TableGrid is an LeRB replacement
 for where tablebg is used by ODS default style)
 table grid besides rules if any,
 when cellspacing > 0 AND
 style table does not assign background= */
 'link2' = color_list('LeRBblue') /* standard for unvisited links */
 'link1' = color_list('LeRBred'); /* standard for visited links */
style SysTitleAndFooterContainer from Container /
 cellpadding = 0 /* compact the title/footnote area */
 cellspacing = 0 /* no grid in title/footnote area */
%if %upcase(&TitleFootnoteBackgrdTransparency) = YES %then %do;

background = _undef_;
style systemtitle / background = _undef_;
style systemfooter / background = _undef_;
 /* Three instances of background = _undef_ above
 make the title and footnote areas transparent.
 I.e., they let the web page background show through.
 If this option is selected, the systitlebg color is actually ignored. */
%end;
%else %do;
 ; /* needed to end this STYLE statement */
%end;

style Output from Container /
 /* next three lines control table grid and table border */
 rules = NONE /* override GROUPS.

NO line between table labels & data. */
%if %upcase(&TableGrid) eq NO
%then %do;
 frame = &TableFrame /* BOX for on, VOID for off */
 cellspacing = 0 /* override 1. This is the space between cells.

When set to zero, the table grid is invisible. */
%end;
%else %do;
 frame = VOID
%end;
 /* next line controls separation of rows and columns */
 cellpadding = &TableSpacing /* override 7 */
 /* Because the table grid (rules=) is turned off above,
 the next line has no practical effect.
 It is included for completeness,
 in case you decide to turn the grid on.
 rules=ALL, rather than rules=GROUP (the default),
 would turn on a full table grid. */
 background = colors('TableGrid')
 /* table grid (LeRB replacement for tablebg),
 if cellspacing > 0
 AND style table does not assign background=.
 NOT the background of the table on the web page.*/
 bordercolor = colors('tableborder')
 /* table frame and table rules/grid */
 borderwidth = 1;
 /* table frame thickness, same as default */

style Data from Cell / font = fonts('DataFont');
 /* Added to override default use of DocFont */

%if %upcase(&PROCoutputSeparators) = NO %then %do;
style Body / pagebreakhtml = _undef_;
 /* suppress rule between successive PROC outputs */
%end;
%else %do;

SUGI 28 Data Presentation

9

style html / 'ThinLineAfterSpace' =
 " <hr size=&PROCoutputSepLineThickness>";
style Body / pagebreakhtml = html('ThinLineAfterSpace');
 /* one space and thin line between successive PROC outputs */
%end;

end; run; quit;

%mend CustomBaseStyleBuild;

%macro TableOfContentsStyleBuild(
StyleName=LeRBsugi28CustomTOCStyle,
BaseStyle=LeRBsugi28CustomStyle,
Bullet=NO, /* suppress bullets (text shifts left)
 YES gives bullet bigger than ODS default style, with a space after */
PROClabelNumbers=NO, /* suppress numbers for PROC labels,

but ODS reserves the space */
TOCbackgroundRGBcolor=CXFFCC99, /* Web-Safe light orange */
TOCmouseoverRGBcolor=CX009900, /* Web-Safe dark green */
TOCtitleANDprocRGBcolor=CX996633, /* Web-Safe brown */
TOCbulletRGBcolor=CXFF00FF, /* Web-Safe magenta */
TOCtitleFont=Rockwell,
TOCtitleSize=4,
TOCentryFont=Verdana,
TOCentrySize=3,
TOCproclabelANDmouseoverFont=Georgia,
TOCprocLabelSize=3,
TOCtitletext=%str(), /* put text in parenthesis to override default title */
TOCwidthPercentOfWebPage=25); /* Always adjust this.
 ODS default is 23%. Minimize space for TOC to maximize the
 remainder, but probably want to avoid line breaks in TOC entries.
 If too narrow, there may be no apparent line breaks in the TOC,
 but may be an extra blank line after some entries.*/

proc template;
 edit Styles.&BaseStyle as Styles.&StyleName;
 /* Anything not referenced or overridden here will be controlled
 by Style.&BaseStyle, and its "ancestor styles", if any. */

style fonts /
 'TOCtitleFont' = ("&TOCTitleFont, Times New Roman, Times",
&TOCtitleSize)
 'TOCentryFont' = ("&TOCentryFont, Arial, Helvetica",
&TOCentrySize)
 'TOCproclabelANDmouseoverFont' =
 ("&TOCproclabelANDmouseoverFont, Times New Roman, Times",
&TOCprocLabelSize);

style color_list /
 'LeRBcyan' = CXFF0000 /* Web-Safe cyan */
 'TOCbackgroundColor' = &TOCbackgroundRGBcolor
 'TOCmouseoverColor' = &TOCmouseoverRGBcolor
 'TOCtitleANDprocColor' = &TOCtitleANDprocRGBcolor
 'TOCbulletColor’ = &TOCbulletRGBcolor;

style colors /

 'contentfg' = color_list('TOCmouseoverColor')
 /* mouse-over color of TOC title.
 mouse-over color of TOC PROC name,
 if PROCLABEL not suppressed.
 mouse-over color of TOC index items. */

 'contentbg' = color_list('TOCbackgroundColor')

/* background for TOC area */

 'conentryfg' = color_list('TOCbulletColor')

/* TOC link bullet */

 'confolderfg' = color_list('LeRBcyan')
 /* no one can explain what confolderfg is used for */

 'contitlefg' = color_list('TOCtitleANDprocColor');
 /* TOC title */

 /* Also, TOC PROC name and/or TOC index number,
 if PROCLABEL and/or index number not suppressed */

%if %length(&TOCtitletext) ne 0 %then %do;
style Text / 'Content Title' = "&TOCtitletext";

/* override default title "Table of Contents" */
%end;

style Index / font = fonts('TOCproclabelANDmouseoverFont');
 /* override inheritance from container, which defaults to docfont.
 This font face and size used for PROC labels and their numbers,
 which may be suppressed. This font face always used for mouseover,
 but size of index entries & TOC title does not change to this size. */

style IndexTitle from Index /
 font = fonts('TOCtitleFont') /* override Default */
 posthtml = html('posthtml flyover'); /* remove rule below TOC title*/

style Frame from Document /
 framespacing = 0 /* make separator between TOC & body thinner */
 frameborderwidth = 4 /* this is ODS style default.

I have found no apparent effect on text or tables,
but it may affect margins for images. */

 contentsize = &TOCwidthPercentofWebPage.%; /* ODS default 23%.
Adjust this to prevent line breaks in your TOC entries,
which have lengths unique to your application. Keep it
as narrow as possible, to maximize screen width use. */

style Contents from Document / pagebreakhtml = _undef_;

/* remove useless extra white space between TOC entries */

%if %upcase(&PROClabelNumbers) eq NO %then %do;
style IndexProcName from Index / bullet = none;
 /* Suppress numbers before PROC labels in TOC.
 But horizontal space for them is retained. */
%end;

%if %upcase(&Bullet) eq YES %then %do;
style html / 'prehtml flyover CustomBullet' =

%nrstr ("• ");
style IndexItem / prehtml = html ('prehtml flyover CustomBullet');
%end;

style ContentItem from IndexItem / font = fonts('TOCentryFont')
%if %upcase(&Bullet) eq NO %then %do;
 /* Next line removes the bullet in front of TOC index items */
 prehtml=_undef_ posthtml=_undef_
%end;
 /* Remaining lines are a V8.2 fix needed
 to get mouse-over color to work on TOC index items. */
 listentryanchor = yes
 pretext='' posttext='';

end; run; quit;
%mend TableOfContentsStyleBuild;

Create Figure 1: Default Table of Contents and Default Body

ods listing close; ods noresults; goptions reset=all;
ods html path = "c:\WebDesign\WebPages" (url=none)
 frame = "StartDefaultTOCandBodyDemo.html"
 contents = "DefaultStyleTOC.html"
 body = "DefaultStyleBody.html"
 style = Styles.Default;
title1 "Students Whose Names Begin with 'A'"; footnote;
proc print noobs label
 data=sashelp.class(where=(Name =: 'A')); run;
 . . .
title1 "Students With Other Names"; footnote;
proc print noobs label data=sashelp.class
 (where=(substr(Name,1,1) not in ('A' 'J' 'R'))); run;
ods html close; ods listing;

SUGI 28 Data Presentation

10

Create Figure 2: Custom Table of Contents and Custom Body

%CustomBaseStyleBuild(StyleName=LeRBsugi28CustomBase,
 TableBackgroundRGBcolor=CX99FF99, /* light Web-Safe green */
 TitleFootnoteBackgrdTransparency=YES); run;
%TableOfContentsStyleBuild(StyleName=LeRBsugi28CustomTOC,
 TOCwidthPercentOfWebPage=27,
 BaseStyle=LeRBsugi28CustomBase); run;

ods listing close; ods noresults; goptions reset=all;
ods html path = "c:\WebDesign\WebPages" (url=none)
 frame = "StartCustomTOCandBodyDemo.html" (title=" . . . ")
 contents = "LeRBsugi28CustomTOC.html" (title=" . . . ")
 body = "CustBody.html" (title=" . . . ")
 style = Styles.LeRBsugi28CustomTOC
 newfile = PROC;
ods proclabel ' '; /* suppress the PROC label in TOC */
* ods proclabel 'Your Text for First PROC Label';
 /* with no proclabel statement here,
 the default in the TOC is "The Print Procedure" */
title1 "Students Whose Names Begin with 'A'"; footnote;
proc print noobs label contents="Students Named A..."
 data=sashelp.class(where=(Name =: 'A')); run;
 . . .
ods proclabel ' ';
title1 "Students With Other Names"; footnote;
proc print noobs label contents="Other Names"
 data=sashelp.class
 (where=(substr(Name,1,1) not in ('A' 'J' 'R'))); run;
ods html close; ods listing;

Create Figure 3:
Readability of Text Foreground Color with Background Color

data FontCharacters; label FontCharacters='00'X;
infile cards; input @1 FontCharacters $51.;
cards;
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
a b c d e f g h i j k l m n o p q r s t u v w x y z
1 2 3 4 5 6 7 8 9 0 " ' & ? $ @ # * - + = ! () / \
The quick brown fox jumped over a lazy dog.
; run;

%macro ColorTable(TextColor=,BackgroundColor=);
ods proclabel ' ';
title1 " . . . &TextColor . . . on &BackgroundColor . . . ";
proc print data=FontCharacters noobs label
 style(data)=[foreground=&TextColor
 background=&BackgroundColor]
 contents="&TextColor on &BackgroundColor";
run;
%mend ColorTable;

%CustomBaseStyleBuild(StyleName=LeRBsugi28BaseForColorDemo,
 TableHeadingSize=1, TableFrame=void, TableSpacing=1,
 WebPageBackgroundRGBcolor=CXFFFFFF, /* Web-Safe white */
 TableBackgroundRGBcolor=CXFFFFFF,
 TitleFootnoteBackgrdTransparency=YES,
 PROCoutputSeparators=YES)
run;
%TableOfContentsStyleBuild(Stylename=LeRBsugi28ColorsTOC,
 BaseStyle=LeRBsugi28BaseForColorDemo,
 TOCwidthPercentOfWebPage=29,
 TOCbackgroundRGBcolor=CXFFFFFF,
 TOCtitletext=%str(Color Choices for Demo))
run;

ods listing close; ods noresults; goptions reset=all;
ods html path = "c:\WebDesign\WebPages" (url=none)
 frame = "StartColorReadabilityDemo.html" (title=" . . . ")
 contents = "LeRBsugi28ColorsTOC.html" (title=" . . . ")
 body = "ColBody.html" (title=" . . . ")
 style = Styles.LeRBsugi28ColorsTOC
 newfile = NONE; /* one continuous scrollable web page body file */

%ColorTable(TextColor=CX000000,BackgroundColor=CXFFFFFF);
run;
 . . .
%ColorTable(TextColor=CX0000FF,BackgroundColor=CXFFFFFF);
run;
ods html close; ods listing;

Create Figure 4:
Samples of Windows TrueType Fonts (keyboard characters only)

NOTES: PROC GFONT is not usable for this. To produce samples for
the full set of 256 characters, you need a tool like my BFONT utility.

%macro FontTable(font=,size=4,bold=NO);
ods proclabel ' ';
title1 "Demo of &font Font "
%if %upcase(&bold) eq YES %then %do;
 "(with weight=Bold) "
%end;
 "at HTML size &size";
title3 'Actual size depends on your web browser text size setting.';
title4 'To determine or change it, click View and then Text Size.';
title5 'Choices are Largest, Larger, Medium (default), Smaller,
Smallest.';
proc print data=FontCharacters noobs label
 style(data)=[font_face="&font"
%if %upcase(&bold) eq YES %then %do;
 font_weight=BOLD
%end;
 font_size=&size]
 contents=
%if %upcase(&bold) eq YES %then %do;
 "&font Bold";
%end;
%else %do;
 "&font";
%end;
run;
%mend FontTable;

%CustomBaseStyleBuild(StyleName=LeRBsugi28BaseForFontDemo,
 TableHeadingSize=1, TableFrame=void, TableSpacing=1,
 WebPageBackgroundRGBcolor=CXFFFFFF, /* Web-Safe white */
 TableBackgroundRGBcolor=CXFFFFFF,
 TitleFootnoteBackgrdTransparency=YES)
run;
%TableOfContentsStyleBuild(Stylename=LeRBsugi28FontsTOC,
 BaseStyle= LeRBsugi28BaseForFontDemo,
 TOCwidthPercentOfWebPage=35,
 TOCbackgroundRGBcolor=CXFFFF99, /* Web-Safe light yellow */
 TOCtitletext=%str(Font Choices for Demo))
run;

ods listing close; ods noresults; goptions reset=all;
ods html path = "c:\WebDesign\WebPages" (url=none)
 frame = "StartFontComparisonDemo.html" (title=" . . . ")
 contents = "LeRBsugi28FontsTOC.html" (title=" . . . ")
 body = "FontBody.html" (title=" . . . ")
 style = Styles.LeRBsugi28FontsTOC
 newfile = PROC; /* each PROC invocation has its own web page */
%FontTable(font=Georgia); run;
 . . .
%FontTable(font=Times New Roman, bold=YES); run;
ods html close; ods listing;

SUGI 28 Data Presentation

	SUGI 28 Title Page
	SUGI 28 Conference Leaders
	Section Keynotes
	2003 SASware Ballot Results
	Upcoming SUGI Conferences
	Wrapup of SUGI 27
	Advanced Tutorials
	SUGI 28: Multi-platform SAS(r), Multi-platform Code
	SUGI 28: Reducing the CPU Time of Your SAS(r) Jobs by More than 80%: Dream or Reality?
	SUGI 28: Indexing and Compressing SAS(r) Data Sets: How, Why and Why Not
	SUGI 28: Hashing: Generations
	SUGI 28: Version 9 Epiphanies
	SUGI 28: Developing SAS/AF(r) Applications with Form Viewers and Table Viewers
	SUGI 28: Fast and Easy Ways to Advance on Your Beginning SAS(r) Coworkers!
	SUGI 28: Advanced Analytics with Enterprise Guide(r)
	SUGI 28: Categorical Data Analysis with Graphics
	SUGI 28: A Serious Look at Macro Quoting
	SUGI 28: Generating Custom Excel Spreadsheets Using ODS
	SUGI 28: The Power of Pictures and Paint: Using Image Files and Color with ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Web Enabling Your Graphs with HTML, ActiveX, and Java Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: PROC REPORT: Doin' It In STYLE!
	SUGI 28: Fancy MS Word Reports Made Easy: Harnessing the Power of Dynamic Data Exchange
	SUGI 28: Using Different Methods for Accessing Non-SAS(r) Data to Build and Incrementally Update That Data Warehouse
	SUGI 28: SAS/ACCESS(r) to External Databases: Wisdom for the Warehouse User
	SUGI 28: Undocumented and Hard-to-Find SQL Features
	SUGI 28: Tips from the Hood: Challenging Problems and Tips from SAS-L

	Applications Development
	SUGI 28: %WINDOW: Get the Parameters the User Wants and You Need
	SUGI 28: Next Generation Data _NULL_ Report Writing Using ODS OO Features
	SUGI 28: Hot Links: Creating Embedded URLs Using ODS
	SUGI 28: ODS to RTF: Tips and Tricks
	SUGI 28: XML in the DATA Step
	SUGI 28: Using SAS(r) Software to Analyze Web Logs
	SUGI 28: Developing SAS/AF(r) Applications Made Easy
	SUGI 28: The One-Time Methodology: Encapsulating Application Data
	SUGI 28: SAS(r) Helps Those Who Help Themselves: Creating Tools to Aid in Your Application Development
	SUGI 28: 'Watch Your Language!' -- Using SCL Lists to Store Vocabulary
	SUGI 28: Application Refactoring with Design Patterns
	SUGI 28: Using IOM and Visual Basic in SAS(r) Program Development
	SUGI 28: Using AppDev Studio(tm) and Integration Technologies for an Easy and Seamless Interface between Java and Server-Side SAS(r)
	SUGI 28: A Pinch of SAS(r), a Fraction of HTML, and a Touch of JavaScript Serve Up a Grand Recipe
	SUGI 28: Web Enable Your SAS(r) Applications
	SUGI 28: Producing American Community Survey Edit Analysis Reports Dynamically Using SAS/IntrNet(r)
	SUGI 28: Using a Dynamic SAS/IntrNet(r) Application to Create Statistical Comparison Reports and Download as SAS(r) Data Sets
	SUGI 28: 'The California Template' or 'How to Keep from Reinventing the Wheel Using SAS/IntrNet(r), JavaScript, and Process Reengineering'
	SUGI 28: UNIX Meet PC: Version 8 to the Rescue
	SUGI 28: A Table-Driven Solution for Clinical Data Submission
	SUGI 28: A Programming Development Environment for SAS(r) Programs
	SUGI 28: StARScope: A Web-Based SAS(r) Prototype for Clinical Data Visualization
	SUGI 28: Dynamically Building SQL Queries Using Metadata Tables and Macro Processing
	SUGI 28: Make Your SAS/ACCESS(r) Query More Efficient
	SUGI 28: Building Metadata Repository for Data Sets
	SUGI 28: Big Brother for SAS/IntrNet(r) Security and Tracking Agent
	SUGI 28: Advanced CRM Solution Using Java Applications
	SUGI 28: Automotive Warranty Data Analysis on the World Wide Web
	SUGI 28: Developing Data-Driven Applications Using JDBC and Java Servlet/JSP Technologies
	SUGI 28: GoodsHound -- Building Multi-functional Web-Based Applications with SAS/IntrNet(r) and JavaScript
	SUGI 28: Developing Custom Analytic Tasks for SAS(r) Enterprise Guide(r)

	Beginning Tutorials
	SUGI 28: A Beginner's Guide to Incorporating SAS(r) Output into Microsoft Office Applications
	SUGI 28: Mouse Clicking Your Way to Viewing and Manipulating Data with Versions 8 and 9 of the SAS(r) System
	SUGI 28: Connecting the SAS(r) System to the Web: An Introduction to SAS/IntrNet(r) Application Dispatcher
	SUGI 28: Describing and Retrieving Data with SAS(r) Formats
	SUGI 28: Nine Steps to Get Started Using SAS(r) Macros
	SUGI 28: How Regular Expressions Really Work
	SUGI 28: Beyond Debugging: Program Validation
	SUGI 28: Errors, Warnings, and Notes (Oh My): A Practical Guide to Debugging SAS(r) Programs
	SUGI 28: Introduction to the SAS(r) Custom Tag Library
	SUGI 28: DHTML -- GUI on the Cheap
	SUGI 28: Tips for Manipulating Data
	SUGI 28: Data Warehouse Administrator: Step by Step
	SUGI 28: Java Syntax for SAS(r) Programmers
	SUGI 28: Java Servlets and Java Server Pages for SAS(r) Programmers: An Introduction
	SUGI 28: Date Handling in the SAS(r) System
	SUGI 28: SAS(r) System Options Are Your Friends
	SUGI 28: Easy, Elegant, and Effective SAS(r) Graphs: Inform and Influence with Your Data
	SUGI 28: SAS(r) Enterprise Guide(r) -- Getting the Job Done
	SUGI 28: Getting Up to Speed with PROC REPORT
	SUGI 28: SAS(r) Reporting 101: REPORT, TABULATE, ODS, and Microsoft Office

	Coders' Corner
	SUGI 28: Space Odyssey: Concatenate Zip Files into One Master File
	SUGI 28: The URL-y Show: Using SAS(r) LE and the URL Access Method to Retrieve Stock Quotes
	SUGI 28: So Many Files, So Little Time (or Inclination) to Type Their Names: Spreadsheets by the Hundreds
	SUGI 28: Splitting a Large SAS(r) Data Set
	SUGI 28: Comparative Efficiency of SQL and Base Code When Reading from Database Tables and Existing Data Sets
	SUGI 28: Automatically Combining the Data from a Variety of DBMSs with ODBC and PROC SQL
	SUGI 28: Automatic Data File Retrieval from Different Database Engines
	SUGI 28: UNLOADing Data from Informix
	SUGI 28: Return Code from Macro; Passing Parameter by Reference
	SUGI 28: If Only 'Page 1 of 1000'
	SUGI 28: Don't Dither About Your Data, Let SAS/GRAPH(r) Trending Box Plots Drive Decision Making
	SUGI 28: A Handy Use of the %LINE Annotate Macro
	SUGI 28: A Drill-Down Diet: An Example of a Dynamic Detail Access on the Web Using SAS/GRAPH(r) and ODS
	SUGI 28: Make Your Life and Little Easier: A Collection of SAS Macro Utilities
	SUGI 28: More _Infile_ Magic
	SUGI 28: The Power of Recursive SAS(r) Macros -- How Can a Simple Macro Do So Much?
	SUGI 28: Continuous or Not: How One Can Tell
	SUGI 28: Identifying Continuity in Longitudinal Data
	SUGI 28: Determining the Dimensionality of Data: A SAS(r) Macro for Parallel Analysis
	SUGI 28: Using a SAS(r) Macro to Document the Database
	SUGI 28: An Automated MS Powerpoint Presentation Using SAS(r)
	SUGI 28: A Macro Using SAS(r) ODS to Summarize Client Information from Multiple Procedures
	SUGI 28: Multiple Graphs on One Page: The Easy Way (PDF) and the Hard Way (RTF)
	SUGI 28: Taking Control of Macro Variables
	SUGI 28: PROC SQL vs. Merge -- The Miller Lite Question of 2002 and Beyond
	SUGI 28: An Efficient Approach to Combine SAS(r) Data Sets with Voluminous Variables That Need Name and Other Changes
	SUGI 28: Danger: MERGE Ahead! Warning: BY Variable with Multiple Lengths!
	SUGI 28: The DOW (Not that DOW!!!) and the LOCF in Clinical Trials
	SUGI 28: MACRO Function with Error Handling to Automatically Generate Global Macro Date Variables
	SUGI 28: Report? Make It Easy -- An Example of Creating Dynamic Reports into Excel
	SUGI 28: Another Shot at the Holy Grail: Using SAS(r) to Create Highly-Customized Excel Workbooks
	SUGI 28: Combining Summary Level Data with Individual Records
	SUGI 28: RETAINing Information to Identify Entity Characteristics
	SUGI 28: Randomized Rounding
	SUGI 28: Logicals from Libraries: Using Storage as a Bridge between Sessions
	SUGI 28: %Fun &With %SYSFUNC
	SUGI 28: Creating Display Manager Abbreviations and Keyboard Macros for the Enhanced Editor
	SUGI 28: Build a SAS(r) Development Environment under Windows
	SUGI 28: Using SAS(r) Catalogs to Develop and Manage DATA Step Programs
	SUGI 28: Let's Play a Game: A SAS(r) Program for Creating a Word Search Matrix
	SUGI 28: SAS/CONNECT(r): The Ultimate in Distributed Processing
	SUGI 28: Run Time Comparison Macro
	SUGI 28: Parallel Processing on the Cheap: Using Unix Pipes to Run SAS(r) Programs in Parallel
	SUGI 28: Date Parameters for Interval Reporting
	SUGI 28: Keep Those Formats Rolling: A Macro to Manage the FMTSEARCH= Option
	SUGI 28: A Simplified and Efficient Way to Map Variables of a Clinical Data Warehouse
	SUGI 28: Renaming All Variables in a SAS(r) Data Set Using the Information from PROC SQL's Dictionary Tables
	SUGI 28: The BEST. Message in the SAS(r) Log

	Data Mining Techniques
	SUGI 28: Modeling Customer Lifetime Value Using Survival Analysis - An Application in the Telecommunications Industry
	SUGI 28: A Simple Bayesian Approach in Mining the Touch Point Data
	SUGI 28: Shopping for Voters: Using Association Rules to Discover Relationships in Election Survey Data
	SUGI 28: Monitoring, Analyzing, and Optimizing Waterflood Responses
	SUGI 28: Multistage Cross-Sell Model of Employers in the Financial Industry
	SUGI 28: The Use of Geographic Information Systems to Investigate Environmental Pollutants in Relationship to Medical Treatment

	Data Presentation
	SUGI 28: Dynamic Behavior from Static Web Applications
	SUGI 28: SAS(r) and the Internet for Programmers
	SUGI 28: Web Communication Effectiveness: Design and Methods to Get the Best Out of ODS, SAS(r), and SAS/GRAPH(r)
	SUGI 28: Regulatory Overview of Using SAS/IntrNet(r) to Collect Data from Thousands of Users
	SUGI 28: Using Formats and Other Techniques to Complete PROC REPORT Tables
	SUGI 28: Custom Map Displays Created with SAS/GRAPH(r) Procedures and the Annotate Facility
	SUGI 28: What's in a Map? A Macro-driven Drill-down Geo-graphical Representation System
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: SAS/IntrNet(r) and Census Mapping: How Low Would You Like to Get
	SUGI 28: Exporting SAS/GRAPH(r) Output: Concepts and Ideas
	SUGI 28: Innovative Graph for Comparing Central Tendencies and Spread at a Glance
	SUGI 28: A Plot and a Table Per Page Times Hundreds in a Single PDF File
	SUGI 28: Why Data _Null_ When You Can RTF Faster?
	SUGI 28: Business Intelligence Applications with JMP(r) Software
	SUGI 28: ODS or DDE for Data Presentation -- A Preliminary Comparison of Output from Different Sources
	SUGI 28: ODS PDF: It's Not Just for Printing Anymore!
	SUGI 28: It's All in the Presentation
	SUGI 28: ODS LAYOUT: Arranging ODS Output as You See Fit
	SUGI 28: Creating Drill-Down Graphs Using SAS/GRAPH(r) and the Output Delivery System
	SUGI 28: Efficient Reporting with Large Numbers of Variables: A SAS(r) Method

	Data Warehousing and Enterprise Solutions
	SUGI 28: Scaling SAS(r) Data Access to Oracle RDBMS
	SUGI 28: Using SAS(r) Strategically: A Case Study
	SUGI 28: Understanding SAS/Warehouse Administrator(r)
	SUGI 28: How to Access PC File Data Objects Directly from UNIX
	SUGI 28: SAS(r) in the Office -- IT Works
	SUGI 28: Multi-Center Study Data Management With A Distributed Application
	SUGI 28: Performance Tuning SAS/ACCESS(r) for DB2
	SUGI 28: Using Information Effectively to Make More Profitable Decisions: The Ten Letter Solution for Finance
	SUGI 28: The Value of ETL and Data Quality
	SUGI 28: The Horror of Bad Data Quality
	SUGI 28: 'How Do I Love Thee? Let Me Count the Ways.' SAS(r) Software as a Part of the Corporate Information Factory
	SUGI 28: Finding Time: SAS(r) and Data Warehouse Solutions for Determining Last Day of the Month
	SUGI 28: New Ways and Means to Summarize Files
	SUGI 28: Better Decisions Through Better Data
	SUGI 28: Deploying Enterprise Solutions: The Business and Technical Issues Faced by SAS(r) Technologists
	SUGI 28: Ring Charts
	SUGI 28: Next Generation Warehousing with Version 9
	SUGI 28: Why SAS(r) is the Best Place to Put Your Clinical Data
	SUGI 28: Transactional Records Access Clearinghouse: SAS(r) Based Warehouse and Mining Tools Keeps Tabs on U.S. Government

	Emerging Technologies
	SUGI 28: XML? We do that!
	SUGI 28: Extending SAS(r) Data Services via XML and Java
	SUGI 28: SAS Metadata, Authorization and Management Services -- Working Together for You
	SUGI 28: Future Trends and New Developments in Data Management
	SUGI 28: Flip the Bow Tie: Pushing Business Intelligence to Operational Applications
	SUGI 28: A Successful Implementation of a Complicated Web-based Application Through webAF(tm) and SAS(r) Integration Technologies
	SUGI 28: An Integrated View of the Customer
	SUGI 28: Rapid Analytic Application Deployment
	SUGI 28: Managing Clinical Trials Data with a SAS-Based Web Portal
	SUGI 28: PROLAP -- A Programmatic Approach to Online Analytical Processing
	SUGI 28: The Use of Scripting Languages, Database Technology, and SAS/IntrNet(r) to Revolutionize the Research Process
	SUGI 28: The SUGI Survey: A Case Study of Deploying a Web-Enabled SAS(r) Application to a Handheld
	SUGI 28: SAS(r) Enterprise Guide(r) Future Directions -- Analytic Business Intelligence with SAS
	SUGI 28: New Technologies for Delivering Data to Internal and External Clients

	Hands-on Workshops
	SUGI 28: Getting PC SAS(r) to Do What You Want, When You Want, How You Want
	SUGI 28: How SAS(r) Thinks or Why the DATA Step Does What It Does
	SUGI 28: PROC DATASETS: Managing Data Efficiently
	SUGI 28: Managing SAS(r) Libraries to Improve Your Programming Environment
	SUGI 28: Macro Power
	SUGI 28: XML Primer for SAS(r) Programmers
	SUGI 28: Creating Dynamic Web Based Reporting
	SUGI 28: SAS(r) with Style: Creating Your Own ODS Style Template
	SUGI 28: So You're Still Not Using PROC REPORT. Why Not?
	SUGI 28: The Simplicity and Power of the TABULATE Procedure
	SUGI 28: Introduction to JMP(r)
	SUGI 28: Making the Most of Version 9 Features
	SUGI 28: A Gentle Introduction to SAS/GRAPH(r) Software

	Posters
	SUGI 28: An Approach to Displaying Predicted Survival Data Based on the Level of a Continuous Covariate
	SUGI 28: Accelerating the Construction of Data Entry Applications in UNIX Systems for Epidemiology and Healthcare Policy Researches
	SUGI 28: Developing SAS(r) Ready Analyzable Data Systems: A Java Web Application for Creation and Management of SAS(r) Relational Databases
	SUGI 28: Linkage of Patient Registries and Clinical Data Sets without Patient Identifiers
	SUGI 28: Spectral Decomposition of Performance Variables for Dynamic System Characterization of Web Servers
	SUGI 28: What's in a Map? A Macro-Driven Drill-Down Geo-graphical Representation System
	SUGI 28: Analysis of Method Comparison Studies Using SAS(r)
	SUGI 28: P-Value Generation Simplified with a Single SAS(r) Macro
	SUGI 28: ODS in an Instant!
	SUGI 28: The Use of Formats, Concatenate, and Sum for Reporting on "Check All That Apply" Variables
	SUGI 28: An Interactive Table for the Web Using SAS(r) and JavaScript
	SUGI 28: Posting Project Status to the Web Through SAS(r) Programming
	SUGI 28: Teaching Statistical Methods Courses with Case Studies and JMP(r)
	SUGI 28: “From Data to Analysis, Results and Reports” -- A Researcher’s Dilemma but A Programmer’s Challenge
	SUGI 28: Filling Report Templates with the SAS(r) System and DDE
	SUGI 28: Creating Tables or Listings with a Zero-Record SAS(r) Data Set -- Basic Program Structure and Three Simple Techniques
	SUGI 28: Creating Multiple Graphs to Link from a Dynamic Map Using SAS(r) ODS, SAS/GRAPH(r), PROC GMAP, and MACRO
	SUGI 28: Scheduling Time with SAS(r): Project Proposal Examples
	SUGI 28: Using SAS(r) Software and Visual Basic for Applications to Produce Microsoft Graph Charts
	SUGI 28: Tell Them What's Important: Communication-Effective Web- and E-mail-Based Software-intelligent Enterprise Performance Reporting
	SUGI 28: A SAS(r) Market Basket Analysis Macro: The Poor Man's Recommendation Engine
	SUGI 28: Using SAS(r) to Automatically Generate Reports in Any Special Formats
	SUGI 28: MVS Point-and-Click Access to IMS Data with SAS/ACCESS(r)
	SUGI 28: Usage Statistics for Your Web Site: Leveraging the Flexibility of SAS(r) and Webhound
	SUGI 28: Applied Population Genetics Using SAS(r) Software
	SUGI 28: PROC FORMAT Supports PROC BOXPLOT to Handle Twofold Grouped Data
	SUGI 28: Developing a Marketing Geographic Segmentation System Using SAS(r) Software
	SUGI 28: 'I'll Have What She's Having' -- Serving-up MetaData to Academic Research Teams
	SUGI 28: Security Control System with SAS(r) Application Dispatcher
	SUGI 28: %MONDRIAAN: Presenting 3D Information in 2D
	SUGI 28: Advantages of Using a Web Based Reporting System Over Using SAS/CONNECT(r)
	SUGI 28: Working with RGB and HLS Color Coding Systems in SAS(r) Software
	SUGI 28: A SAS/IML(r) Program for Mapping QTL in Line Crosses
	SUGI 28: An Automated Reporting Macro to Create Cell Index -- An Enhanced Revisit
	SUGI 28: Metadata Application on Clinical Trial Data in Drug Development
	SUGI 28: Enhancement of Survival Graphs

	Professional Development and User Support
	SUGI 28: Practical Tips to Customize a SAS(r) Session
	SUGI 28: SAS(r) Programming Conventions
	SUGI 28: Programming Standards, Style Sheets, and Peer Reviews: A Practical Guide
	SUGI 28: SAS(r) High-speed Automated Reporting Queue (SHARQ)
	SUGI 28: Where to Go from Here: Learning More about SAS(r)
	SUGI 28: An Overview of SAS Certification and the Test Development Process
	SUGI 28: Ten Things I Wish I Knew Before I Became an Independent SAS(r) Software Consultant
	SUGI 28: SAS-L: A Very Powerful Free Resource for SAS(r) Users Worldwide
	SUGI 28: Ask and Ye Shall Receive: Getting the Most from SAS-L
	SUGI 28: Tinker, Tailor, Soldier, Spy: The Many Roles of the SAS(r) Consultant
	SUGI 28: Not All Fish Eat Worms: A SAS(r) Programmer's Guide to MS Excel and Other Fish Stories
	SUGI 28: Show-and-Tell: How to Use MS Office Products to Help with SAS(r) Applications

	Statistics and Data Analysis
	SUGI 28: Case Studies in Time Series
	SUGI 28: An Introduction to the Analysis of Mixed Models
	SUGI 28: Survival Analysis Using Cox Proportional Hazards Modeling for Single and Multiple Event Time Data
	SUGI 28: Let the Data Speak: New Regression Diagnostics Based on Cumulative Residuals
	SUGI 28: Using the SAS(r) System to Construct and Operate Control Charts with Randomized Control Limits
	SUGI 28: Logistic Regression Modeling -- JMPStart(tm) Your Analysis with a Tree
	SUGI 28: STEPWISE Methods in Using SAS(r) PROC LOGISTIC and SAS(r) Enterprise Miner(tm) for Prediction
	SUGI 28: An Introduction to Genomics and SAS(r) Scientific Discovery Solutions
	SUGI 28: How to Use the SAS(r) System as a Powerful Tool in Biomathematics
	SUGI 28: Cutpoint Determination Methods in Survival Analysis Using SAS(r)
	SUGI 28: Complex Sampling Designs Meet the Flaming Turkey of Glory
	SUGI 28: Multilevel Designs and Their Analyses
	SUGI 28: Estimating Standard Errors for CLASS Variables in Generalized Linear Models Using PROC IML
	SUGI 28: SAS/STAT(r) Version 9: Progressing into the Future
	SUGI 28: Fast and Easy Ways to Annoy a SAS(r) Programmer: A Statistician's Revenge!
	SUGI 28: Application of the LOESS Procedure for Monitoring and Detecting Critical Movements in the US Automobile Market
	SUGI 28: Smoothing with SAS(r) PROC MIXED
	SUGI 28: Beyond PROC LIFETEST: Alternative Linear Rank Tests for Comparing Survival Distributions
	SUGI 28: Estimation of Prevalence Ratios When PROC GENMOD Does Not Converge
	SUGI 28: An Alternative to PROC MI for Large Samples
	SUGI 28: Known Nonsense
	SUGI 28: Analysis of Data from Recurrent Events
	SUGI 28: Reliability, Exploratory and Confirmatory Factor Analysis for the Scale of Athletic Priorities
	SUGI 28: SAS(r) Macros and Tools for Working with Weighted Logistic Regression Models That Use Survey Data
	SUGI 28: Optimization with the SAS(r) System: What It Is, What's New, and Why You Should Be Using It

	Systems Architecture
	SUGI 28: Accelerating Performance of SAS(r) Applications via Rapid Extraction and Multiprocessing
	SUGI 28: Using a HOLAP Solution to Analyze Large Volumes of Data via the Web
	SUGI 28: Developing Client/Server Applications to Maximize SAS 9 Parallel Capabilities
	SUGI 28: SAS(r) Application Performance Monitoring for UNIX
	SUGI 28: Multi-Lingual Computing with the 9.1 SAS(r) Unicode Server
	SUGI 28: An Inside Look at Version 9 and 9.1 Threaded Base SAS(r) Procedures
	SUGI 28: SAS(r), Linux/UNIX and X-Windows Systems
	SUGI 28: Early Experiences with SAS(r) Release 9 on an OS390 Platform
	SUGI 28: SAS(r) System on Network Appliance
	SUGI 28: SAS(r) Performance Optimizations on Intel Architecture
	SUGI 28: The Bleeding Edge -- The Effects of Hardware and Software Migration on the SAS(r) System
	SUGI 28: PROC MIGRATE: How to Migrate Your Data and Know You?ve Done It Right!
	SUGI 28: SAS 9.1 on Solaris 9 Performance and Optimization Tips
	SUGI 28: Using the SAS(r) V9 Application Response Measurement System to Provide Metrics to HP-UX Workload Manager
	SUGI 28: A Case Study of the Tools, Techniques, and High Level Model Used to Tune AIX Version 5L for the SAS(r) System

