ࡱ> ?A<=> ;Objbj ;ZFq  dy2bEEEEE6B 7<7aaaaaaa$cfaL7D66L7L7a  EEaAAAL7 EEaAL7aAA6^iaE0WBL>_ab02b_gX?g8iagia4L7L7AL7L7L7L7L7aaAL7L7L72bL7L7L7L7gL7L7L7L7L7L7L7L7L7 :  Base 2 and Complementary Arithmetic We are solving problems in number contexts We are exploring binary mathematical contexts We are exploring the properties of numbers Exercise 1: Making Up And what makes 9? 1) 2 (2) 3 (3) 7 4) 1 (5) 5 (6) 0 7) 6 (8) 4 (9) 8 And what makes 99? 10) 20 (11) 50 (12) 10 13) 12 (14) 84 (15) 67 16) 33 (17) 54 (18) 23 And what makes 999? 19) 222 (20) 444 (21) 888 22) 123 (23) 321 (24) 246 25) 454 (26) 015 (27) 007 And what makes 9999? 28) 1234 (29) 6789 (30) 5555 31) 2468 (32) 3579 (33) 1717 34) 0018 (35) 0020 (36) 3142 And what makes 99999? 37) 12345 (38) 56789 (39) 11111 40) 02468 (41) 03030 (42) 97631 43) 00200 (44) 50 (45) 351 What do you notice about making numbers up to 9? I notice  Exercise 2: Make a Complement The complement of a number xxx is and what makes 999? The complement of 123 is 876. Note 1 + 8 =9 and 2 + 7 = 9 and 3 + 6 = 9. The complement of 46 is 53. Note 4 + 5 = 9 and 6 + 3 = 9. Work out the complements of these numbers 1) 234 (2) 222 (3) 252 4) 1234 (5) 5555 (6) 0000 7) 18 (8) 45 (9) 99 What do you notice about finding complements? I notice  Work out the complements of these numbers 10) 222 (11) 44 (12) 8 13) 101 (14) 32123 (15) 0006 16) 45 (17) 9999999 (18) 121212121 Do you notice anything more? I notice  The number 246 is made up of 200 + 40 + 6. This can be written in expanded form as 2 x 100 + 4 x 10 + 6 x 1, and is part of learning about place value. Writing numbers like this should be something you have already learned and practised. Write these numbers showing the place values in expanded form. 19) 34 (20) 789 (21) 5555 Write these numbers showing the place values in expanded form. The different characters are being used for different digits (so think of (( as a two digit number, were each digit is different) 22) (( (23) ((( (24) (((( What is the complement of each of these numbers? 25) 34 (26) (( (27) 789 28) ((( (29) 5555 (30) (((( Exercise 3: Complementary Subtraction This is a cool trick. You are going to learn how to subtract two numbers by adding. The problem 57 21 is easily seen to have the answer 36. There is no carry or renaming to be done so the tens digits are subtracted and the unit digits are subtracted. In the tens place 50 20 = 30 and in the units or ones place 7 1 = 6. The problem 51 27 requires a bit more thinking and understanding of how numbers work. Fifty-one (51) can be renamed forty-eleven (40 + 11). This is a good choice for this problem but is not the only choice available. The answer is now 40 20 = 20 in the tens place and 11 7 = 4 in the ones or units place. The answer is 20 + 7 = 27. BUT like most ideas in mathematics there is another way. 1) In the first problem 57 21 we calculate the complement of 21. The complement of 21 is 78. Now add 57 and 78. We add 50 + 70 to get 120 and then 7 + 8 to get 15. The answer is 120 + 15 = 135 What do you notice about 135 and the answer to 57 21? I notice  2) In the second problem 51 27 we do the same procedure. It is just as easy. The complement of 27 is 72. We add 51 + 72 and get 120 + 3 = 123. What do you notice about 123 and the answer to 51 27? I notice  You might have noticed that the answer is always 100 bigger and 1 smaller than the real answer. Now for a really good question! 3. Why is it that the complement answer is always 100 bigger and 1 smaller than the actual answer to a 2-digit subtraction problem? I think it is because Exercise 4: More Complementary Subtraction Complementary subtraction works with many digit numbers. In this exercise we use base 10 numbers 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. In a later exercise we use base 2 numbers 0, 1 and see it is very simple to do. Computers use complementary base 2 addition to subtract. First lets practice our complementary addition in base 10. Here is a 3 digit subtraction problem solved using complementary arithmetic. 521 257 = 521 + 742 -1000 + 1 = 12 x 100 + 6 x 10 + 3 x 1 - 10 x 100 + 1 x 1 = 264 Your turn. Complete these 3 digit subtractions using complementary arithmetic. 1) 631 243 2) 876 387 3) 315 076 Make a comment about complementary subtraction. Do you notice anything? Humm  Now try and solve these problems in the same way. Make sure you add 0 place holders when you need. That is why the 0 is in the hundreds place in (3) above. 4) 83 57 5) 8765 1875 6) 227 78 7) 2709 883 8) 66666 777 Can you think of a reason why humans use base ten? Is it the only base we have ever used? Martians have one finger on each hand and use base 2. Venusians have 3 fingers on one hand and 4 on the other. What base would they use? Answer here Earthling Exercise 5: Martian Maths 12 + 12 = 102 A very very old mathematicians joke reads There are 3 types of mathematicians; those that can count and those that cant. After you have done this activity you will understand a similar joke that says There are 10 types of mathematicians; those that can count and those that cant. Counting can be done in a very large number of ways. The simplest is based on the number two. Martians count this way. All of the Martians I have met had one finger on each hand and one toe on each foot. They are very good at pointing. A Martian only uses 0s and 1s when counting. The following table shows the start of counting using Martian numbering. See if you can finish the pattern. Look carefully. HumanMartianHumanMartianZero000001410000115200010163000111710001400100185001011960011020721801000229231024112512011001311011 Explain the Martian counting system in your own words. My words! 1) Invent a way to make sure that numbers written in Martian (like 101) do not get confused with numbers written in Earthling (like 101). Discuss your convention with your teacher. 2) Explain the joke about 10 types of mathematician 3) If each finger on your hand is a new column of a Martian number, how many can you count to, Earthling, using the Martian System? (a) on one hand? (b) on two hands? (c) what is the largest number you can count to using your body bits? Exercise 6: Complements in Base 2 This is the easiest of all exercises. You could be a Martian and get these right. The complement of 0 is 1 and the complement of 1 is 0 in base 2. All we do to find the complement of a number in base 2 is to flip all the digits between 0 and 1. The complement of 00101011 is 11010100. You are more likely to loose track of where you are up to than get the flipping thing wrong. Try these problems. 1) 101 (2) 111 (3) 1010 4) 0110 (5) 01010101 (6) 11111111 7) 01100110 (8) 11000011 (9) 00000001 This is so easy that a little electronic circuit was made up to do this job. The circuit is called an inverter. It looks like this. The little o means the output is opposite of the input. These circuits come in sixes on the 4049 chip.  Logic ChartInOut0110In electronic circuits a 0 means off or no voltage and a 1 means on or 9 Volts in many circuits. To flip or invert an 8 bit binary number like 01101100 we use 8 inverters all working in parallel or processed at the same time. It looks like this. Experience Task Make sure the power is OFF. Find an old computer and open it up. Look for the highways of 8 and 16 tracks running around the circuit board. These look like highways joining little townships of computer chips. These highways are the parallel tracks that convey all the information in and around the main processor. The highways you are looking at probably connect hard disks or CD drives to the main circuit board. Look for a hex-inverter chip in Dick Smith Electronics. Exercise 7: Computers, Adding Another little electronic device computers use is called an AND gate. The AND gate is represented by the symbol as shown and behaves with this logic. Logic ChartInput AInput BCarryOutput0000010110011110   This all looks quite complicated. A little explanation and all will be well. In Base 2 arithmetic the basic addition facts are 0 + 0 = 00 0 + 1 = 01 1 + 0 = 01 and 1 + 1 = 10. Look at the Logic Chart and note how the adder circuit mimics this arithmetic. Making 8 adder chips work in parallel (see Exercise 6) makes a circuit that can work with numbers up to 111111112 in size. If you did Exercise 5 you will be able to see that this is the number 255 in base 10 which is not very big at all. But it is a start. Modern computers use 64 or 128 bit adding. How big are these base two numbers? Try adding these 4-bit numbers in base 2 1) 1110 + 0001 (2) 1100 + 0010 (3) 1001 + 0110 Add the corresponding parts just as you do in the decimal system. When you have 1 + 1 you need to carry just as you do in the decimal system. Try adding these 4-bit numbers with one carry in each. 4) 1110 + 0010 (5) 1100 + 0100 (6) 1001 + 0001 Here are some mega problems with lots of carries. 7) 1100110011 + 0011111111 (8) 00001111 + 00001111 (9) 1111 + 1111 Note: Many of these problems show what happens to a computer when you run out of room overload error. Task: Make up some of your own base 2 addition problems and work out the answers. Exercise 8: Computers, Multiplying Look at the following base 10 multiplication problems. 4 x 6 = 6 + 6 + 6 + 6 3 x 20 = 20 + 20 + 20 Write a statement about what you see.  If you can see that multiplying is just a better and more efficient way of adding then you are exactly correct. Multiplying can be thought of as repeated addition. This is exactly how computers multiply. 4 x 6 becomes 6 (once) 12 (twice) 18 (thrice) 24 (four-times).stop, display the answer. Inside is a little counting circuit that counts the number of times and stops when it gets to 4. Here is an algorithm or programme that will multiply two numbers. Start Check TableABCCount661241263 10 Get first number (4) 20 Store in memory Count 30 Get second number (6) 40 Store in memory A 50 Store in memory B 60 Add memory A and memory B and store in memory C 70 Move C to A 80 Decrease Count by 1 90 Is count equal to 1 (NOGoto 60, YES Goto 100) 100 Display C End TASK A The Check Table lets you think through the logic in steps just as a computer would do very quickly. Your task is to finish the chart. Start from the beginning. TASK B Make a new check table and solve these problems. 1) 3 x 7 (2) 8 x 9 (3) 1012 x 112 Exercise 9: Computers, Dividing Dividing two numbers is one of the slowest operations that a computers does. This is because it is a multi-step procedure and takes longer. How do you think a computer would divide 12 by 3. My answer  Here is a programme or algorithm that a computer could use to do 12 divided by 3. Check Logic TableABCDCount123618096151NO66122NO3693NO04YESStart 10 Get first number Numerator 20 Store in A 30 Get second number Denominator 40 Store in B 50 Set Count to 0 60 Find complement of B 70 Store in C 80 Add A to C and store in D 90 Take off 10 and add 1 to D and store in A 100 Increase Count by 1 110 Test if A = 0 (NO Goto 80, YESGoto 120) 120 Display Count as the answer. End TASK A Work through the programme and see if you can repeat Check Logic Table correctly. TASK B Make a new check table and solve these problems. 1) 20 divided by 4 (2) 75 15 (3) 10002 102  Exercise 10: Computers, Powers and other Functions Computers can only do the operation of addition and they only do this using binary numbers. They can also find the complement of a number. How does a computer do these mathematical operations?AdditionUses addition ability of computerSubtractionUses complementary additionMultiplicationUses repeated additionDivisionUses repeated subtraction and countsPowersUses repeated addition repeatedly The computer does all of this in binary and at about half of the speed of the main processing chip oscillator. This is more than 200Mhz or 100 million calculations per second. Modern computers use several processors running together and are at least 10 times faster again. TASK Choose one of the following topics and investigate more about it on the internet and in your school library. Make up a colourful A3 poster recording what you find out. Include pictures, diagrams and questions. Your teacher will be able to use this for wall displays in the classroom and you may be asked to present you project to other students. LIST (select one) History of computers Binary arithmetic Cost of memory chips yesterday and today Types of computers Computers in Spacecraft The Shuttle Computers Systems Writing a programme to sort three numbers from smallest to largest Write a program to show how a computer would work out 23. Create a check logic table to show that it works properly Other Topiccheck with teacher. Computers Can Only Add Answers Exercise 1 1) 7 (2) 6 (3) 2 4) 8 (5) 4 (6) 9 7) 3 (8) 5 (9) 1 10) 79 (11) 49 (12) 89 13) 87 (14) 15 (15) 32 16) 66 (17) 45 (18) 76 19) 777 (20) 555 (21) 111 22) 876 (23) 678 (24) 753 25) 545 (26) 984 (27) 992 28) 8765 (29) 3210 (30) 4444 31) 7531 (32) 6420 (33) 8282 34) 81 (35) 9979 (36) 6857 37) 87654 (38) 43210 (39) 88888 40) 97531 (41) 96969 (42) 02368 43) 99799 (44) 49 (45) 648 I notice There are patterns in the digits of some numbers - like 18 become 81. Overall, each digit can be considered on its own without looking at the other digits. Exercise 2 1) 765 (2) 777 (3) 747 4) 8765 (5) 4444 (6) 9999 7) 81 (8) 54 (9) 00 10) 777 (11) 55 (12) 1 13) 898 (14) 67876 (15) 9993 16) 54 (17) 0000000 (18) 878787878 I notice There is not much extra to notice than was the case for exercise 1 19) 3 ( 10 + 4 ( 1 (20) 7 ( 100 + 8 ( 10 +9 ( 1 21) 5 ( 1000 + 5 ( 100 + 5 ( 10 + 5 ( 1 22) ( ( 10 + ( ( 1 (23) ( ( 100 + ( ( 10 + (( 1 24) ( ( 1000 + ( ( 100 + ( ( 10 + ( ( 1 25) 65 (26) (9 - () ( 10 + (9 - () ( 1 (27) 210 For these next questions, square brackets have been invented to show what is happening in each column of the number, and to keep each column apart. 28) [9 - (][9 - (][9 - (] (29) 4444 30) [9 - (][9 - (][9 - (][9 - (] Exercise 3 1) You should notice the number is 99 more than the answer (100 bigger and 1 smaller). 2) You should notice the number is 99 more than the answer (100 bigger and 1 smaller). 3) The reason is not obvious. In the 1st problem 57 -21 we create the following chain. 57 - 21 becomes 57 + 99 21 = 57 + 100 21 - 1 = 100 + 57 - 21 - 1 = 100 bigger and 1 smaller than the original problem as suggested in the exercise. Exercise 4 1) 6 ( 100 + 3 ( 10 + 1 ( 1 + 7 ( 100 + 5 ( 10 + 6 ( 1-10 ( 100 + 1 = 388 2) 8 ( 100 + 7 ( 10 + 6 ( 1 + 6 ( 100 + 1 ( 10 + 2 ( 1 - 10 ( 100 + 1 = 489 3) 3 ( 100 + 1 ( 10 + 5 ( 1 + 9 ( 100 + 2 ( 10 + 3 ( 1 10 ( 100 + 1 = 239 I notice Comment will vary, though and important one is that the system only works when subtracting numbers that have the same columns, so for 347 56, the complementary addition is 943, not just 43. Author notes the method is quite easy to do but a bit tedious. 4) 8 ( 10 + 3 ( 1 + 4 ( 10 + 2 ( 1 - 10 ( 10 + 1 = 26 5) 8 ( 10000 + 7 ( 1000 + 6 ( 10 + 5 ( 1 + 8 ( 10000 + 1 ( 1000 + 2 ( 10 + 4 ( 1 - 10 ( 10000 + 1 = 6889 + 1 = 6890 6) 2 ( 100 + 2 ( 10 + 7 ( 1 + 9 ( 100 + 2 ( 10 + 1 ( 1 - 10 ( 100 + 1 = 149 7) 2 ( 1000 + 7 ( 100+0 ( 10 + 9 ( 1 + 9 ( 1000 + 1 ( 100 + 1 ( 10 + 6 ( 1 - 10 ( 1000 + 1 = 1819 + 6 + 1 = 1826 8) 6 ( 10000 + 6 ( 1000 + 6 ( 100 + 6 ( 10 + 6 ( 1 + 9 ( 10000 + 9 ( 1000 + 2 ( 100 + 2 ( 10 + 2 ( 1 - 10 ( 10000 + 1 = 65889 Probably base 3.5 at a rough guess. Exercise 5 The pattern is obvious to Martians, but Earthlings may not have much of a clue. You could try a web search on the binary system, or discuss the place value system for Martian mathematics with your teacher 1) The convention used by mathematicians is to put a subscript after the number, so 1012 shows the number is in base 2, while 1017 means the answer is in base 7. We dont put a number for base ten, as this is the normal base we usually use, so we only have to show when we are NOT using base ten. 2) 2 in Martian is written as 10 3) (a) One hand 31 (one less than 25) = 111112 (b) Two hands 210 - 1 = 1023 = 11111111112 (c) Two hands and two feet and your head is 221 1 = 2097154 = 1111111111111111111112 Exercise 6 1) 010 (2) 000 (3) 0101 (4) 1001 (5) 10101010 6) 00000000 (7) 10011001 (8) 00111100 (9) 11111110 Exercise 7 64 bit gives 264 1 as the biggest number. Try doubling to work out this number or have a look at it on your calculator, or on a computer. 128 bit gives 1128 - 1 1) 1111 (2) 1110 (3) 1111 4) 10000 (5) 10000 (6) 1010 7) 10000110010 (8) 00011110 (9) 11110 Exercise 8 Multiplications can be written as repeated subtractions Task A Check TableABCCount6612412618318624224241 Task B 1) (2) (3) Check TableCheck TableCheck TableABCCountABCCountABCCount3367881691011011010116396168248101010111111093125248327111101123154328406153183408485183212488564211568643648722721 Exercise 9 The computer would repeatedly subtract, so for 12 3 it would repeatedly subtract three and see how many times this happened if the computer could subtract! Instead it will have to repeatedly add the complement of three until it gets to the number 12 and then say how many times it had to do this. ABCDcountABCDcountABCDcount2045250751584159010000010110110101016521160144101101101100111125172451292010011011000110851333011430010110111111145941599401000505 Exercise 10 Project and wall display AC EA AA AM AP In Out 0 1 Input B 1 0 1 0 1 0 1 0 Input A 1 0 1 0 1 0 Output Carry  %&  g h | $ & = > T  6 D D E s ~ ŰŞŗuiuh2k6hn>*OJQJhZhnOJQJhF{V h5hnhnhnOJQJ h&'hn#hu?'5CJ0\mHnHsH tH u)hXBWhn5CJ0\mHnHsH tH u#h;5CJ0\mHnHsH tH u#hF{V5CJ0\mHnHsH tH u,jhF{V5CJ0U\mHnHsH tH u)&Q  7 8 O P  |\ ,gdn Pgdn \ ,-$$d%d&d'dNOPQ]a$gdn$a$gd;P g h |    = > T u v  |\ ,gdn Pgdn \ ,  M N  Pgdnhkd$$Ifl&& t0644 laytZ P$IfgdZ   / 0 D E s | } ~  ehkd}$$Ifl&& t0644 laytZ P$IfgdZ Pgdn \ , |\ ,gdn    ! * + , ehkd$$Ifl&& t0644 laytZ P$IfgdZ \ , |\ ,gdn Pgdn  ! , - [vw8<=>DEFGMQRxsITƿƿ hqChnh,hnH*hqChnH*hZhn5OJQJ jhn jhn jhn jYhn jJhn h5hnhZhnOJQJhnOJQJhn=, - [vw8RS78./ Pgdn \ , |\ ,gdn Pgdnejhkdw$$Ifl&& t0644 laytZ P$IfgdZl P^gdn Pgdn Z[ !`hkd$$Ifl&& t0644 laytZ P$IfgdZl P^gdn Pgdn Pgdn !4wuhkdq$$Ifl&& t0644 laytZ P$IfgdZl  Pgdn ()89GHVW P$IfgdZl Pgdn PgdnFGSTefstx Pgdn Pgdnhkd$$Ifl&& t0644 laytZxrs~|wwwwgdnhkdk$$Ifl&& t0644 laytZ P$IfgdZl sy$$&`#$/Ifa$gdZl ? $$&`#$/Ifa$gdZl kd$$IflrjY 88 t 6`0644 laytZ$$&`#$/Ifa$gdZl ? $$&`#$/Ifa$gdZl kd$$IflrjY 88 t 6`0644 laytZ$$&`#$/Ifa$gdZl ? $$&`#$/Ifa$gdZl kd$$IflrjY 88 t 6`0644 laytZ$$&`#$/Ifa$gdZl ? $$&`#$/Ifa$gdZl kd|$$IflrjY 88 t 6`0644 laytZ$$&`#$/Ifa$gdZl ? $$&`#$/Ifa$gdZl kdX$$IflrjY 88 t 6`0644 laytZ$$&`#$/Ifa$gdZl ? $$&`#$/Ifa$gdZl kd4$$IflrjY 88 t 6`0644 laytZ$$&`#$/Ifa$gdZl ? $$&`#$/Ifa$gdZl kd $$IflrjY 88 t 6`0644 laytZ$$&`#$/Ifa$gdZl ? $$&`#$/Ifa$gdZl kd $$IflrjY 88 t 6`0644 laytZ$$&`#$/Ifa$gdZl  ? $$&`#$/Ifa$gdZl kd $$IflrjY 88 t 6`0644 laytZ  $$&`#$/Ifa$gdZl ? $$&`#$/Ifa$gdZl kd $$IflrjY 88 t 6`0644 laytZ$$&`#$/Ifa$gdZl ? $$&`#$/Ifa$gdZl kd $$IflrjY 88 t 6`0644 laytZ #$$$&`#$/Ifa$gdZl $%()? $$&`#$/Ifa$gdZl kd\ $$IflrjY 88 t 6`0644 laytZ)*-.$$&`#$/Ifa$gdZl ./28? $$&`#$/Ifa$gdZl kd8$$IflrjY 88 t 6`0644 laytZ89:;$$&`#$/Ifa$gdZl ;<?@? $$&`#$/Ifa$gdZl kd$$IflrjY 88 t 6`0644 laytZ@ABH$$&`#$/Ifa$gdZl HIJKLMN?:::::gdnkd$$IflrjY 88 t 6`0644 laytZNOPQRSTUVWXYZ[\]$Ifgdnl gdnTUVXZ\]3 y ######$$$кВwZB/hT)Bhn5OJQJ_HaJmHnHsHtH8jhT)Bhn5OJQJU_HaJmHnHsHtH5jhZhnOJQJU_HaJmHnHsHtH/jhnOJQJU_HaJmHnHsHtHhqChn5CJ(\mH sH h'hnOJQJhZhnOJQJhnOJQJhn h],hnhqChn5CJhqChn\mH sH hqChnX 3 !!"sggggg \ , 80^`0gdngdn 0^`0gdnhkd$$Ifl&& t0644 laytZ ""/"J"K"p"q"""#####uhkdI$$Ifl& t0644 la|ytZ$$Ifa$gdZl \ , #####nNN$ \ ,$Ifa$gdZl {kd$$Ifl0H!&8 t0644 la|ytZ$$Ifa$gdZl ####dd$ \ ,$Ifa$gdZl {kdc$$Ifl0H!&8 t0644 la|ytZ###$$$$$$%%`&xxxxxeeeee \ , ^ gdn \ ,{kd$$Ifl0H!&8 t0644 la|ytZ $$&&N''''")#):,;,,,,D-I-/[/o0v011l1m1n1r1s1u11U2b223k4r444(5)5*5.5/515w5x5586n6D7W8\899::::븢븢hZhn5OJQJhT)BhnOJQJhHhnOJQJhT)BhnH*OJQJ/jhnOJQJU_HaJmHnHsHtHhZhnOJQJhnhnOJQJhT)Bhn5OJQJ9`&a&&&N'Z'['Cqkd$$Ifl) t 6`0644 laytZ($ \ ,$&`#$/Ifa$gdZl \ , \ , ^ gdn['c'k'q'x'($ \ ,$&`#$/Ifa$gdZl % \ ,$&`#$/IfgdZl x'y'{'}''T+++($ \ ,$&`#$/Ifa$gdZl kd#$$Ifl\ ^)4 t 6`0644 laytZ'''''+kd$$Ifl\ ^)4 t 6`0644 laytZ($ \ ,$&`#$/Ifa$gdZl '''''+kd$$Ifl\ ^)4 t 6`0644 laytZ($ \ ,$&`#$/Ifa$gdZl '''''+kdE$$Ifl\ ^)4 t 6`0644 laytZ($ \ ,$&`#$/Ifa$gdZl '''''($ \ ,$&`#$/Ifa$gdZl '''''''''THHHHHHH \ ,kd$$Ifl\ ^)4 t 6`0644 laytZ''''3(A(O(b(c(**,*^*_****(+X+Y+++ gdn hgdn  gdn ,gdn \ ,+:,;,,,,,,,,TRhkd$$Ifl&& t0644 laytZ $IfgdZl  gdn 0^`0gdn ,,,--D-E-F-G-H-I-\hkd.$$Ifl&& t0644 laytZ $IfgdZl  gdn gdn I-J---....///+/($ ,$&#$/Ifa$gdZl  ,gdn gdn +/,/./0/2/8/gggg% ,$&#$/IfgdZl qkd$$Ifl t 60644 laytZ8/9/;/=/@/T+++($ ,$&#$/Ifa$gdZl kd;$$Ifl\tTXs t 60644 laytZ@/B/C/F/H/+kd$$Ifl\tTXs t 60644 laytZ($ ,$&#$/Ifa$gdZl H/I/K/L/M/+kd$$Ifl\tTXs t 60644 laytZ($ ,$&#$/Ifa$gdZl M/N/O/P/Q/+kd$$Ifl\tTXs t 60644 laytZ($ ,$&#$/Ifa$gdZl Q/R/S/T/U/($ ,$&#$/Ifa$gdZl U/V/W/X/Y/T+++($ ,$&#$/Ifa$gdZl kdK$$Ifl\tTXs t 60644 laytZY/Z/[/t/+ ,gdnkd$$Ifl\tTXs t 60644 laytZ($ ,$&#$/Ifa$gdZl t/////00)0\0j0n0o0v0111O1P1t1u11"2 gdn \ , ^ gdn Xgdn ,gdn"2#2U2_2`2a2b2c222khkd$$Ifl&& t0644 laytZ $IfgdZl  gdn 222222222dqkdP$$Iflc t 6`0644 laytZ($ $&`#$/Ifa$gdZl 22.kd$$Iflֈ| HHH t 6`0644 laytZ2222222($ $&`#$/Ifa$gdZl 22.kd$$Iflֈ| HHH t 6`0644 laytZ2222222($ $&`#$/Ifa$gdZl 22.kd $$Iflֈ| HHH t 6`0644 laytZ2222223($ $&`#$/Ifa$gdZl 33.kd!$$Iflֈ| HHH t 6`0644 laytZ3333 3 33($ $&`#$/Ifa$gdZl 33.kd"$$Iflֈ| HHH t 6`0644 laytZ3333333($ $&`#$/Ifa$gdZl 33"3@3. gdnkdh#$$Iflֈ| HHH t 6`0644 laytZ@3N3o3}3333334E4f4j4k4r444440515 Xgdn ,gdn \ , gdn152535455565758595:5;5<5=5>5?5@5A5B5C5D5E5F5G5H5I5J5Ff'Ff % \ ,$IfgdZl J5K5L5M5N5O5P5Q5R5S5T5U5V5W5X5Y5Z5[5\5]5^5_5`5a5b5FfA-Ff* \ ,$IfgdZl b5c5d5e5f5g5h5i5j5k5l5m5n5o5p5q5r5s5t5u5v5w5x5 \ ,Ffu5Ff2 \ ,$IfgdZl Ff/x557686n6o6x66}mm$Ifl hkdt7$$Ifl&& t0644 laytZ$$Ifa$gdZl 6666tt$Ifl {kd7$$Ifl0&?@ t0644 laytZ6666tt$Ifl {kd8$$Ifl0&?@ t0644 laytZ6667m]$Ifl  $IfgdZl {kd9$$Ifl0&?@ t0644 laytZ77!7C7m]$Ifl  $IfgdZl {kd9$$Ifl0&?@ t0644 laytZC7D7E7V8W8\899999:0:H:f:yyyyyyy`gdn{kd=:$$Ifl0&?@ t0644 laytZf::;>;?;@;Y;a;b;m;;;;;;;;<<5<6<S< \ , |\ ,gdn \ ,gdn$a$gdngdn^gdn`gdn::;@;A;B;J;K;b;m;==>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>???? ? ? ??????? ?ζίίίίίίίίίΨίΡίΚίΓίΌΌίΌ jhn jhn jhn jYhn jJhn jhnhAhn5CJ(aJ(h#hn5CJ(aJ(hnh+ChPrhn5CJ,hT)BhnOJQJhnOJQJh&hnH*OJQJ7S<p<<<<<<<========>8>B>>>>?8?h? ,gdn |\ ,gdngdn \ , ?!?(?)?*?+?1?2?3?4?I?J?L?M?X?Y?[?\?@@ @ @@@*@+@1@2@8@9@?@@@D@O@#A%AAAAB B BBBBB$B%B-B.B4B5BJBKBTBUB]B^BeBfBoBpBxByBBBBBBBBBBBBBhD3hnH*hAhn5CJ(aJ( jhn jhn jYhn jJhn jhnhn jhnKh??!@C@D@O@@@TAAAADBBBBCC DDDUEEEE^gdn 0^`0gdngdn \ ,BBBBBCCCCCCCCCCCCCCCCCCCDDDDDDDD D D DDDDDDDDDDD D!D#D$D%D&D'D(D-D.D/D0D1D2D3D4D8D9D:D;DD?DADBDCDDDEDFDGDHDMDNDODPDUDVDhd.hnmHsHh#hnmHsHhnmHsH hPhn jhnhnRVDWDXDYDZD[D\D`DaDbDcDdDeDfDgDiDjDkDlDmDnDoDpDqDrDsDtDuDwDxDyDzDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDEEEEEEEE E EEEhn jhnhd.hnmHsHhnmHsHh#hnmHsHUEEEEEEEEEEEE E!E"E#E$E&E'E(E)E*E+E,E-E0E1E3E4E5E6E:E;EE?E@EAEEEFEGEHEIEJEKELEMENEOEPEUEVEZE[E\E]EbEcEdEeEfEgEhEiEmEnEoEpEqErEsEtEwExEyEzE{E|E}E~EEEEEEEEEE jhnhnhnmHsHhd.hnmHsHYEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEF(G)GRGSGAHBHKHLH\H^H_HvHwHH鶱 hnH*hNcPhnH*hD3hnH*h'hnH*h'hnH*hAhn5CJ(aJ( jhnhnhd.hnmHsHhnmHsHFEFFGHMHxHHHH I@IAILIII J(JNJOJZJJ  @gdn  gdn 0^`0gdn^gdn 0^`0gdngdnHHHHHHHAILIZI\IIIOJZJJJJJJK KKKK&K(K4K5KAKBKNKOKILJLULMMMMMMMNNNNNNNNNNNNʿh ;hF{VOJQJhF{VOJQJ hXBWhnh ;hnOJQJhZhnCJOJQJaJhZhnOJQJhqIhn5hj*hnH*hAhn5CJ(aJ(hD3hnH*hn hnH*hNcPhnH*6JJJJJJX2% ,$&#$/IfgdZl qkd:$$Ifl  t 60644 laytZ($ ,$&#$/Ifa$gdZl  @gdnJJJJJ.kd`;$$Ifl\q Xs t 60644 laytZ% ,$&#$/IfgdZl JJJJJ($ ,$&#$/Ifa$gdZl JJJJJT+++($ ,$&#$/Ifa$gdZl kd*<$$Ifl\q Xs t 60644 laytZJJJJJ+kd<$$Ifl\q Xs t 60644 laytZ($ ,$&#$/Ifa$gdZl JJJJJ+kd=$$Ifl\q Xs t 60644 laytZ($ ,$&#$/Ifa$gdZl JJJJJ+kd>$$Ifl\q Xs t 60644 laytZ($ ,$&#$/Ifa$gdZl JJJJJ($ ,$&#$/Ifa$gdZl JJJJJJJJJTHHHHHHH  @gdnkdR?$$Ifl\q Xs t 60644 laytZJJJJJK KKKK'K$Ifl $$Ifa$gdZl  @gdn 'K(K*K,K.KK+++$ ,$Ifa$gdZl kd@$$Iflr (9& &[ &T t0644 laytZ.K4K5K7K9K;KAKBKDKFKHKNKOKQKSKUKWKXKZK\K_KaKbKFfB$$Ifa$gdZl $ ,$Ifa$gdZl bKfKjKoKrKsKuKwKyK{K|KKKKKKKKKKKKKKKFfKFf8G$ ,$Ifa$gdZl KKKKKKKKKKKKKKKKKKKKKKKKKKFf.P$ ,$Ifa$gdZl KKKKKKKKKKKKKKKKKKKKKKKKLFfjY$ ,$Ifa$gdZl FfTLLLLLL L L LLLLLLLLLLLL L!L"L#L$LFfbFf^$ ,$Ifa$gdZl $L%L&L'L*L,L/L1L2L3L4L5L6L7L8L9L:L;L!&GGGGGGGGG t06$$$$44 laytZ$$If!v h5G5G5G5G5G5G5G5G5 G#v G:V l t065 GytZkd '$$Ifl "i >!&GGGGGGGGG t06$$$$44 laytZ$$If!v h5G5G5G5G5G5G5G5G5 G#v G:V l t065 GytZkd)$$Ifl "i >!&GGGGGGGGG t06$$$$44 laytZ$$If!v h5G5G5G5G5G5G5G5G5 G#v G:V l t065 GytZkd,$$Ifl "i >!&GGGGGGGGG t06$$$$44 laytZ$$If!v h5G5G5G5G5G5G5G5G5 G#v G:V l t065 GytZkd@/$$Ifl "i >!&GGGGGGGGG t06$$$$44 laytZ$$If!v h5G5G5G5G5G5G5G5G5 G#v G:V l t065 GytZkd1$$Ifl "i >!&GGGGGGGGG t06$$$$44 laytZ$$If!v h5G5G5G5G5G5G5G5G5 G#v G:V l t065 GytZkd4$$Ifl "i >!&GGGGGGGGG t06$$$$44 laytZ{$$If!vh5&#v&:V l t065&ytZ$$If!vh5?5@#v?#v@:V l t065?5@ytZ$$If!vh5?5@#v?#v@:V l t065?5@ytZ$$If!vh5?5@#v?#v@:V l t065?5@ytZ$$If!vh5?5@#v?#v@:V l t065?5@ytZ$$If!vh5?5@#v?#v@:V l t065?5@ytZ$$If!vh5 #v :V l t 6065ytZ$$If!vh555X5S#v#v#vX#vS:V l t 60655X5sytZ$$If!vh555X5S#v#v#vX#vS:V l t 60655X5sytZ$$If!vh555X5S#v#v#vX#vS:V l t 60655X5sytZ$$If!vh555X5S#v#v#vX#vS:V l t 60655X5sytZ$$If!vh555X5S#v#v#vX#vS:V l t 60655X5sytZ$$If!vh555X5S#v#v#vX#vS:V l t 60655X5sytZ$$If!vh5S 550 55 #vS #v#v0 #v#v :V l t065 5&5[ 5&5T / / ytZ$$If!vh5[5C5b5S55\5=5D5 S5 5 j5 G5 5 S#v[#vC#vb#vS#v#v\#v=#vD#v S#v #v j#v G#v #v S:V l t065u5Q5k5S5&5t5K5I5 S5 &5 t5 G5 F5 S/ / ytZkd A$$Ifl82 T(9"&uQkS&tKIS&tGFS t06888844 laytZ$$If!vh5[5C5b5S55\5=5D5 S5 5 j5 G5 5 S#v[#vC#vb#vS#v#v\#v=#vD#v S#v #v j#v G#v #v S:V l t065u5Q5k5S5&5t5K5I5 S5 &5 t5 G5 F5 S/ / ytZkdE$$Ifl82 T(9"&uQkS&tKIS&tGFS t06888844 laytZ$$If!vh5[5C5b5S55\5=5D5 S5 5 j5 G5 5 S#v[#vC#vb#vS#v#v\#v=#vD#v S#v #v j#v G#v #v S:V l t065u5Q5k5S5&5t5K5I5 S5 &5 t5 G5 F5 S/ / ytZkdI$$Ifl82 T(9"&uQkS&tKIS&tGFS t06888844 laytZ$$If!vh5[5C5b5S55\5=5D5 S5 5 j5 G5 5 S#v[#vC#vb#vS#v#v\#v=#vD#v S#v #v j#v G#v #v S:V l t065u5Q5k5S5&5t5K5I5 S5 &5 t5 G5 F5 S/ / / ytZkdiN$$Ifl82 T(9"&uQkS&tKIS&tGFS t06888844 laytZ$$If!vh5[5C5b5S55\5=5D5 S5 5 j5 G5 5 S#v[#vC#vb#vS#v#v\#v=#vD#v S#v #v j#v G#v #v S:V l t065u5Q5k5S5&5t5K5I5 S5 &5 t5 G5 F5 S/ / / / / ytZkdR$$Ifl82 T(9"&uQkS&tKIS&tGFS t06888844 laytZ$$If!vh5[5C5b5S55\5=5D5 S5 5 j5 G5 5 S#v[#vC#vb#vS#v#v\#v=#vD#v S#v #v j#v G#v #v S:V l t065u5Q5k5S5&5t5K5I5 S5 &5 t5 G5 F5 S/ / / / / ytZkdW$$Ifl82 T(9"&uQkS&tKIS&tGFS t06888844 laytZ$$If!vh5[5C5b5S55\5=5D5 S5 5 j5 G5 5 S#v[#vC#vb#vS#v#v\#v=#vD#v S#v #v j#v G#v #v S:V l t065u5Q5k5S5&5t5K5I5 S5 &5 t5 G5 F5 S/ / / / / ytZkd'\$$Ifl82 T(9"&uQkS&tKIS&tGFS t06888844 laytZ$$If!vh5[5C5b5S55\5=5D5 S5 5 j5 G5 5 S#v[#vC#vb#vS#v#v\#v=#vD#v S#v #v j#v G#v #v S:V l t065u5Q5k5S5&5t5K5I5 S5 &5 t5 G5 F5 S/ / / / / / ytZkd`$$Ifl82 T(9"&uQkS&tKIS&tGFS t06888844 laytZ $$If!vh5[5C5b5S55\5=5D5 S5 5 j5 G5 5 S#v[#vC#vb#vS#v#v\#v=#vD#v S#v #v j#v G#v #v S:V l t065u5Q5k5S5&5t5K5I5 S5 &5 t5 G5 F5 S/ / / / / / / / ytZkdqe$$Ifl82 T(9"&uQkS&tKIS&tGFS t06888844 laytZ$$If!vh5[5C5b5S55\5=5D5 S5 5 j5 G5 5 S#v[#vC#vb#vS#v#v\#v=#vD#v S#v #v j#v G#v #v S:V l t065u5Q5k5S5&5t5K5I5 S5 &5 t5 G5 F5 S/ / / / / / ytZkd9j$$Ifl82 T(9"&uQkS&tKIS&tGFS t06888844 laytZ$$If!vh555555555 5 j5 5 5 5 55h5#v#v#v#v#v#v#v#v#v #v j#v #v #v #v#vh#v:V l t065(555'5?5555  5 5 >5 5  5 5 5>/ / ytZT5kdn$$IfTlz- '#&('? >  > t06DDDD44 laytZT$$If!vh555555555 5 j5 5 5 5 55h5#v#v#v#v#v#v#v#v#v #v j#v #v #v #v#vh#v:V l t065(555'5?5555  5 5 >5 5  5 5 5>/ / ytZT5kd t$$IfTlz- '#&('? >  > t06DDDD44 laytZT$$If!vh555555555 5 j5 5 5 5 55h5#v#v#v#v#v#v#v#v#v #v j#v #v #v #v#vh#v:V l t065(555'5?5555  5 5 >5 5  5 5 5>/ / ytZT5kd1y$$IfTlz- '#&('? >  > t06DDDD44 laytZT$$If!vh555555555 5 j5 5 5 5 55h5#v#v#v#v#v#v#v#v#v #v j#v #v #v #v#vh#v:V l t065(555'5?5555  5 5 >5 5  5 5 5>/ / ytZT5kdW~$$IfTlz- '#&('? >  > t06DDDD44 laytZT$$If!vh555555555 5 j5 5 5 5 55h5#v#v#v#v#v#v#v#v#v #v j#v #v #v #v#vh#v:V l t065(555'5?5555  5 5 >5 5  5 5 5>/ / ytZT5kd}$$IfTlz- '#&('? >  > t06DDDD44 laytZT$$If!vh555555555 5 j5 5 5 5 55h5#v#v#v#v#v#v#v#v#v #v j#v #v #v #v#vh#v:V l t065(555'5?5555  5 5 >5 5  5 5 5>/ / / ytZT5kd$$IfTlz- '#&('? >  > t06DDDD44 laytZT$$If!vh555555555 5 j5 5 5 5 55h5#v#v#v#v#v#v#v#v#v #v j#v #v #v #v#vh#v:V l t065(555'5?5555  5 5 >5 5  5 5 5>/ / / / / ytZT5kd׍$$IfTlz- '#&('? >  > t06DDDD44 laytZT^ 2 0@P`p2( 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p8XV~_HmH nH sH tH @`@ D3NormalCJ_HaJmH sH tH F@F  Heading 1$@&5CJ(\mH sH DA`D Default Paragraph FontVi@V  Table Normal :V 44 la (k (No List \C\ Body Text Indent50^5`0OJQJmH sH nn y Table Grid7:V0_H0U0 &' Hyperlink>*B*PK![Content_Types].xmlj0Eжr(΢Iw},-j4 wP-t#bΙ{UTU^hd}㨫)*1P' ^W0)T9<l#$yi};~@(Hu* Dנz/0ǰ $ X3aZ,D0j~3߶b~i>3\`?/[G\!-Rk.sԻ..a濭?PK!֧6 _rels/.relsj0 }Q%v/C/}(h"O = C?hv=Ʌ%[xp{۵_Pѣ<1H0ORBdJE4b$q_6LR7`0̞O,En7Lib/SeеPK!kytheme/theme/themeManager.xml M @}w7c(EbˮCAǠҟ7՛K Y, e.|,H,lxɴIsQ}#Ր ֵ+!,^$j=GW)E+& 8PK!Ptheme/theme/theme1.xmlYOo6w toc'vuر-MniP@I}úama[إ4:lЯGRX^6؊>$ !)O^rC$y@/yH*񄴽)޵߻UDb`}"qۋJחX^)I`nEp)liV[]1M<OP6r=zgbIguSebORD۫qu gZo~ٺlAplxpT0+[}`jzAV2Fi@qv֬5\|ʜ̭NleXdsjcs7f W+Ն7`g ȘJj|h(KD- dXiJ؇(x$( :;˹! I_TS 1?E??ZBΪmU/?~xY'y5g&΋/ɋ>GMGeD3Vq%'#q$8K)fw9:ĵ x}rxwr:\TZaG*y8IjbRc|XŻǿI u3KGnD1NIBs RuK>V.EL+M2#'fi ~V vl{u8zH *:(W☕ ~JTe\O*tHGHY}KNP*ݾ˦TѼ9/#A7qZ$*c?qUnwN%Oi4 =3ڗP 1Pm \\9Mؓ2aD];Yt\[x]}Wr|]g- eW )6-rCSj id DЇAΜIqbJ#x꺃 6k#ASh&ʌt(Q%p%m&]caSl=X\P1Mh9MVdDAaVB[݈fJíP|8 քAV^f Hn- "d>znNJ ة>b&2vKyϼD:,AGm\nziÙ.uχYC6OMf3or$5NHT[XF64T,ќM0E)`#5XY`פ;%1U٥m;R>QD DcpU'&LE/pm%]8firS4d 7y\`JnίI R3U~7+׸#m qBiDi*L69mY&iHE=(K&N!V.KeLDĕ{D vEꦚdeNƟe(MN9ߜR6&3(a/DUz<{ˊYȳV)9Z[4^n5!J?Q3eBoCM m<.vpIYfZY_p[=al-Y}Nc͙ŋ4vfavl'SA8|*u{-ߟ0%M07%<ҍPK! ѐ'theme/theme/_rels/themeManager.xml.relsM 0wooӺ&݈Э5 6?$Q ,.aic21h:qm@RN;d`o7gK(M&$R(.1r'JЊT8V"AȻHu}|$b{P8g/]QAsم(#L[PK-![Content_Types].xmlPK-!֧6 +_rels/.relsPK-!kytheme/theme/themeManager.xmlPK-!Ptheme/theme/theme1.xmlPK-! ѐ' theme/theme/_rels/themeManager.xml.relsPK]  "%.147:=@CFORUX[^aip;GR  23L6587:9<;K?>A@CBMO "%.147:=@CFORUX[^aips ;G Z T$: ?BVDEEHN;O(.U[P  , !xs $).8;@HN"###`&['x'''''''+,I-+/8/@/H/M/Q/U/Y/t/"2222222233333@315J5b5x56667C7f:S<h?EJJJJJJJJJJ'K.KbKKKL$LFLMM%NkNNNO;O)*+,-/0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTVWXYZ\]^_`abcdefghijklmnopqrstuvwxyz{|}~8ST@ASH(  n  !p&  C"?ZB  S DjJ6$$NR  3 JjJ !>p&Z  3   ?#&(% Z  3  ?#(% n +; D C"? n V,0; 1 #"  +v :Z V,-  V,-TB  C DVN-N-NR  3 J1&,-.t V,- # #" V./TB  C DVN-N-NR  3 J1&,-.t V,- # #" V]01TB   C DVN-N-NR ! 3 J1&,-.t V,- "# #" VU23TB # C DVN-N-NR $ 3 J1&,-.t V,- %# #" f/4f5TB & C DVN-N-NR ' 3 J1&,-.t V,- (# #" f'6^7TB ) C DVN-N-NR * 3 J1&,-.t V,- +# #" f889TB , C DVN-N-NR - 3 J1&,-.t V,- .# #" f90;TB / C DVN-N-NR 0 3 J1&,-Z 2 3  + - Z 3 3    + -  Z 5 3   s1 \3  Z 6 3   . c1L3  Z 7 3  '9 ; Z 8 3   > 9;  Z 9 3  .7 9 Z : 3  > 79 Z ; 3  & /1 Z < 3  / s1 Z > 3   - / Z ? 3  - / Z @ 3  & l3U5 Z A 3  \3 E5 Z B 3  6 U5>7 Z C 3  E5 .7 J2 F # 1 "?` >?  PC"?Hr G # 1  o TB H C D TB I C D A ATB J C D ^ ` K C K >? V (  ` L C  L > V   ` M C M n n TB N C D66Z O 3  V n HT  (S+A S#" ?T  #  (S+ T  #  (S+ t   S  "` () S+  Z   3   ( S+A N R   (S+)  B S  ?;GS#& tAtF TtD` tP8{t OLE_LINK4 OLE_LINK5 OLE_LINK6)D8K@FGRTdfrtW+,=>=Z[xy##((i(j(M+N+|+}+++11=3>3;;;;;;;;;;<<<< <<<<<<<<<!<$<%<(<-<0<1<4<8<;<<<?<A<D<E<H<M<P<U<X<Y<\<`<c<d<g<i<l<m<q<r<s<t<u<w<z<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<==== ======= =!=$=&=)=*=-=0=1=3=6=:===>=A=E=H=I=L=M=P=T=U=V=Y=Z=]=b=e=f=i=m=p=q=t=w=z={=~==================================FFFFFFFFFFFFFFFFFGGGGGG G G G GGGGGGGGG!G"G$G%G'G(G*G0G2G7G9Gs!- ^?]WN''U*c**+,x-.8.o.x.../E/A3X3BUDEFFFFFFFFFFFFFFFFFFFFFFFFFFFGGGGGG G G G GGGGGGGGG!G"G$G%G'G(G*G0G2G7G .uQ_~^6`[H۞4B{Z|N808^8`0o()^`.pLp^p`L.@ @ ^@ `.^`.L^`L.^`.^`.PLP^P`L.hpp^p`OJQJo(hHh@ @ ^@ `OJQJo(hHh^`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHoh^`OJQJo(hHhPP^P`OJQJo(hHh  ^ `OJQJ^Jo(hHoh^`OJQJo(hH88^8`o() ^`hH.  L ^ `LhH.   ^ `hH. xx^x`hH. HLH^H`LhH. ^`hH. ^`hH. L^`LhH.h^`OJQJo(hHh^`OJQJ^Jo(hHohpp^p`OJQJo(hHh@ @ ^@ `OJQJo(hHh^`OJQJ^Jo(hHoh^`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHohPP^P`OJQJo(hH^`o(. ^`hH. pLp^p`LhH. @ @ ^@ `hH. ^`hH. L^`LhH. ^`hH. ^`hH. PLP^P`LhH.^`OJQJo(hH^`OJQJ^Jo(hHopp^p`OJQJo(hH@ @ ^@ `OJQJo(hH^`OJQJ^Jo(hHo^`OJQJo(hH^`OJQJo(hH^`OJQJ^Jo(hHoPP^P`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHohpp^p`OJQJo(hHh@ @ ^@ `OJQJo(hHh^`OJQJ^Jo(hHoh^`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHohPP^P`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHohpp^p`OJQJo(hHh@ @ ^@ `OJQJo(hHh^`OJQJ^Jo(hHoh^`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHohPP^P`OJQJo(hH88^8`o() ^`hH.  L ^ `LhH.   ^ `hH. xx^x`hH. HLH^H`LhH. ^`hH. ^`hH. L^`LhH.88^8`o() ^`hH.  L ^ `LhH.   ^ `hH. xx^x`hH. HLH^H`LhH. ^`hH. ^`hH. L^`LhH.^`o() ^`hH. mLm^m`LhH. = = ^= `hH.   ^ `hH. L^`LhH. ^`hH. }}^}`hH. MLM^M`LhH. vS_ o_4 .uQ^6`[4B{qM5'A,?D7Ge N!'                                                                                  H        u?';F{VPrn+CZFF@1;Gh@UnknownG* Times New Roman5Symbol3. * ArialCNComic Sans MS;Wingdings?= * Courier NewA BCambria Math"hTrfTrfR˳ 9<$ 9<$!nnx24dFF> 2qHX)?h2!xx&eg Adding and Subtracting Strategieshaighst 8         Oh+'0 $0 P \ h t(eg Adding and Subtracting Strategieshaighst Normal.dotm 2Microsoft Office Word@@, sn@BL@BL 9<՜.+,0 hp|  WCE$F 'eg Adding and Subtracting Strategies Title  !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+-./012356789:;@Root Entry F>˟BLBData '1TableJgWordDocument;ZSummaryInformation(,DocumentSummaryInformation84CompObjy  F'Microsoft Office Word 97-2003 Document MSWordDocWord.Document.89q