ࡱ> [ bjbj [ΐΐ_7#pA$Py%y%y%%%%8%4&%=.(."...A1A1A1|=~=~=~=~=~=~=A}D<~=y%A111"A1A1~=$$..L=666A10$l.)%8.|=6A1|=66r<;T$,a%;. ˄%q2;*h==0=;2E3E;;8Ey%$=D6A1A1A1~=~=5jA1A1A1=A1A1A1A1EA1A1A1A1A1A1A1A1A1 ": Using Artificial Neural Networks Analysis for Small Enterprise Default Prediction Modeling: Statistical Evidence from Italian Firms Prof. Carlo Vallini, University of Florence, Italy E-mail:  HYPERLINK "mailto:carlo.vallini@unifi.it" carlo.vallini@unifi.it Prof. Francesco Ciampi, University of Florence, Italy E-mail:  HYPERLINK "mailto:francesco.ciampi@unifi.it"francesco.ciampi@unifi.it Dott. Niccol Gordini, University of Florence, Italy Ph.D. in Management of Firms and Local Systems E-mail: niccolo.gordini@unifi.it ABSTRACT A large number of empirical studies have used univariate and multivariate statistical methods when examining the effectiveness of appropriately selected corporation data in constructing company default prediction models. Having accurate evaluation methods has become increasingly important since the New Basel Capital Accord linked the banks capital requirements to the banks models for company default prediction. Solutions are now urgently needed in view of the current global financial crisis which is having serious effects on the overall word economic system and is making it extremely difficult for banks to grant credit, and for firms to obtain it. The empirical studies mentioned mostly rely on Multivariate Discriminant Analysis (MDA) and Logistic Regression Analysis (LRA); and they mainly focus on large and medium-sized enterprises. Our study applies Artificial Neural Network Analysis (ANNA) to a sample of over 6,000 small Italian firms, with a view to developing and testing default prediction models based on an appropriately selected set of financial-economic ratios. Our results show that: i) when compared to traditional statistical methods (MDA and LRA), ANNA can make a better contribution to decision support systems for Small Enterprise (SE) credit-risk evaluation; and ii) when the decisional function is separately calculated according to size, geographical area and business sector, ANNA prediction accuracy is markedly higher for the smallest-sized firms and for firms operating in Central Italy. Keywords: Small Enterprises, Artificial Neural Networks, Default Prediction Models, Scoring, Rating, Financial Ratios. * Section Introduction is authored by Carlo Vallini; sections The Data Set And The Selection of Variables, Construction and Testing of Prediction Models: MLP Neural Network Analysis compared to MDA and LRA and Conclusions are authored by Francesco Ciampi, while sections Small Firm default prediction modeling and neural networks analysis: a brief review of the literature, Construction and Testing of Prediction Models: Using an Artificial Neural Network Model, Construction and Testing of Prediction Models: MLP Neural Networks Analysis by Size, Geographical Area and Business Category are authored by Niccol Gordini. INTRODUCTION Until a firm was a far simpler entity a valid evaluation of its reliability could be obtained by merely assessing the reliability of the person running the business, usually the owner. An evaluation could be made very quickly, whether it was an intuitive assessment of the entrepreneurs psychological qualities or was based on the firms earnings and cash flows. In the course of time, firms have become increasingly complex systems, which can change dramatically within a short space of time. Ownership and management are now often separate; management structure has become much more articulated; and the different managerial functions can no longer be traced back to a single person. For these reasons, a tendency has developed to evaluate the make-up of the object managed (the firm) rather than that of the subject managing this (the entrepreneur). The characteristics of a firm have, in fact, a great impact on its evolution over time, whatever the entrepreneurs personal abilities may be. When time is short, and evaluations are required for a large number of firms, it is extremely difficult to arrive at a good qualitative analysis of such factors as the managements attitudes and abilities, or of the make-up of a firms competitive opportunities. Consequently, appropriately selected account data combined with suitable statistical methods become the only real option available for the construction of models which can evaluate a firms default risk profile. There is the question, however, of whether such models are really valid, credible tools, and therefore effective and useful. Unfortunately, the reliability of the models used up to now seems to be very limited. It is not yet possible to determine all the effects on the real economy of the present crisis that is causing such turmoil in the global financial system. One of the causes of this crisis was the excessive trust that rating agencies and financial institutions placed in their models for rating and/or scoring firms, individuals, financial products, and investment programs. The need is felt to move forward by looking for more advanced tools and methods which will be able to give early advance warning of the faintest signs that a firm is getting into trouble, financially and/or economically. Tools are wanted which could foresee the development of weaknesses which might make a firm more vulnerable to potential external factors, including completely new situations, which cannot be predicted by simple extrapolation. Tools which can also reduce the characteristic procyclical effect of the in-house default risk evaluation models which are commonly adopted by financial institutions. Since the mid-1960s, a large number of studies (Altman, 1968; Beaver, 1967, 1968; Blum, 1969; Deakin, 1972) have shown that a suitably weighted set of financial and economic ratios can effectively be used to evaluate risk default in firms. Such studies mainly used traditional statistical methods such as multivariate discriminant analysis (MDA) and logistic regression (LRA). In addition, attention was almost invariably focused on large and medium-sized firms. Only a small number of studies pointed out that specific default risk evaluation modeling systems are required to evaluate the risk profiles of smaller-sized firms (Edmister, 1972; Altman, & Sabato, 2005, 2006; Ciampi, & Gordini, 2008; Vallini, Ciampi, Gordini, & Benvenuti, 2008). Small firms are different in that owners and managers are often one and the same, for example; management is more centralized, less articulated; managers are less versed in the complexities of financial administration; and accounts are less transparent (e.g., Ciampi, 1994). Using Artificial Neural Networks Analysis (ANNA) for corporate default risk evaluation modeling (Odom, & Sharda, 1990) would seem to solve problems caused by the implicit limitations of previously adopted methods. To the extent that ANNA could be a suitable tool for evaluating a persons reliability on the basis of such factors as age, education, work and talents. In this paper, we set out the results of a study conducted to test the effectiveness of using ANNA for small firm default prediction based on a set of suitably selected balance sheet ratios, and to draw a comparison with MDA and LRA. SMALL FIRM DEFAULT PREDICTION MODELING AND NEURAL NETWORKS ANALYSIS: A BRIEF REVIEW OF THE LITERATURE The use of multivariate discriminant analysis (MDA) and logistic regression analysis (LRA) for company default prediction modeling based on accounting data (e.g., Altman, 1968, 1993; Altman, Brady, Resti, & Sironi, 2005; Altman, Haldeman, & Narayanan, 1977; Beaver, 1967, 1968; Blum, 1969, 1974; Deakin, 1972; Edmister, 1972; Ohlson, 1980) has not always been considered free from defects. Questions have been raised as to whether these methods are effectively applicable when the prediction variables adopted refer to balance sheet ratios which are not linear, normal, and most importantly are not completely independent of one another (e.g., Ohlson, 1980; Karels, & Prakash, 1987; Odom, & Sharda, 1990). Artificial neural networks analysis (ANNA) is non-parametric and non-linear. It can therefore rise above these problems and may consequently be, theoretically, a better, more accurate classification tool (Lacher, Coats, Sharma, & Fant, 1995; Sharda, & Wilson, 1996; Tam, & Kiang, 1992; Wilson, & Sharda, 1994). Several empirical studies (e.g., Odom, & Sharda, 1990), have already shown ANNA to be more effective than LRA or MDA for company default prediction modeling. Fletcher and Gross (1993) show that ANNA with a Multi-Layer Perceptron (MLP) architecture gives greater accuracy than logistic regression (91.7% compared to 85.4%). Similar results were obtained by Salchenberger, Cinar and Lash (1992) and Zhang, Hu and Patuwo (1999). Coats and Fant (1993) analyze various time periods (from 1 to 3 years) when they compare ANNA with MLP architecture to MDA. They find prediction accuracy of between 81.9% and 95.0% for the former and from 83.7% to 87.9% for MDA. Tam and Kiang (1992) use a set of financial ratios collected from a group of Texan banks. They show that ANNA with MLP architecture is generally more accurate for predictions than are MDA, LRA, k-Nearest Neighbor (k-NN), and the ID3 algorithm. Jo, Han and Lee (1997) compare ANNA, MDA and Case Based Reasoning (CBR). They find correct classification in 83.79% of cases with ANNA, 82.22% with MDA, and 81.52% with CBR. Fanning and Cogger (1994) compare ANNA to MDA, LRA, Multivariate Adaptive Regression Splines (MARS), and the C4.5 algorithm. The prediction accuracy they obtain is 82.4% for ANNA and between 61.8% and 79.45 for the other statistical methods. THE DATASET AND THE SELECTION OF VARIABLES The sample of firms and the set of balance sheet ratios in the present study are the same as those used in another recent research project (Vallini, Ciampi, Gordini & Benvenuti, 2008) aiming to investigate how useful account data combined with traditional statistical methods (MDA and LRA) is for the purpose of the construction of models for the prediction of small firm default. The sample was selected using the case vs. control group method and was made up of 6,113 firms drawn from the CERVED database. This contains the account records collected by the network of local Chambers of Commerce, and covers all limited companies operating in Italy. We chose to define insolvency/default as the beginning of formal legal proceedings for debt (bankruptcy, forced liquidation, etc.). This definition is narrower than that generally applied in bank rating models as these judge default to be the onset of serious financial distress which borrowers cannot solve unaided, and through which the credit and loans granted may be lost. The group of cases was made up of all the Italian firms included the CERVED Database and operating in the manufacturing, building and service industries which became insolvent in 2005 and which had sent in a regular balance sheet as required in 2001. We did not include property companies or financial companies. 3,063 firms fitted our definition. The control group was made up of firms that were solvent (non-defaulting) at the end of 2005. In this connection. we adopted a process of stratified random sampling, with the aim to obtain a sample composition as similar as possible to the group of defaulting firms in regard to three classification criteria: i) size (four sizes of turnover as in Table 1); ii) geographical location (NW, NE, Centre and South); and iii) business sector (manufacturing, building and services). 3,050 non-defaulting firms were selected. Table 1: Sample formation (percentages) Defaulting firmsNon-defaulting firms Geographical AreaNorth West29.129.6North East16.821.5Centre27.623.6South26.525.2Business SectorManufacturing38.436.2Building13.712.6Services47.951.3Size (Turnovers in Euros)Below 0.2 million24.833.20.2-0.7 million25.022.60.7-1.8 million25.219.4Above 1.8 million25.024.8Total number of firms3,0633,050 Table 1 gives the breakdown of our complete sample (6,113 firms). Three-quarters of the firms had turnovers of less than 1.8 million Euro and can therefore be classed as small enterprises (SEs). The initial set of variables we studied as potential risk predictors are listed in Table 2. Table 2: Balance sheet ratios (averages for each group) Defaulting FirmsNon defaulting firmsReturn on equity-2.74.8Return on investment0.04.0Return on sales0.13.7Value added/turnover17.622.0Ebitda/turnover2.17.1Ebitda/cash flow86.3115.0Interest charges/turnover3.42.1Interest charges/ebitda45.822.0Turnover/number of employees199.4206.6Value added/number of employees36.045.9Long term assets/number of employees55.864.2Cash flow/total debts3.010.1Cash Flow/turnover2.46.1Interest charges/bank loans11.911.6Bank loans/turnover20.013.5Net financial position/turnover138.4110.8Total debts/(total debts+equity)90.377.1Financial debits/equity217.096.9Total debts/ebitda1082.9625.1Equity/Long term material assets84.1120.1Current ratio93.7112.3Acid test ratio5.213.1Turnover/net operative assets103.9109.6 For the purposes of selecting those variables which could best predict company default and which also had the lowest possible correlation levels, multicollinearity analysis was carried out, through the VIF (Variance Inflation Factor) Method. This was followed by the variable-reduction process known as the Stepwise Method. These processes enabled us to reduce the significant ratios to ten (Table 3). Table 3: Variables selected via Multicollinearity Analysis and Stepwise Method VariablesP-ValueCASH FLOW/TOTAL DEBTS0.000TOTAL DEBTS/(TOTAL DEBTS+EQUITY)0.000ACID TEST RATIO0.000INTEREST CHARGES/TURNOVER0.000CURRENT RATIO0.000EQUITY/LONG TERM MATERIAL ASSETS0.000ROI0.000NET FINANCIAL POSITION/TURNOVER0.000LONG TERM ASSETS/NUMBER OF EMPLOYEES0.000INTEREST CHARGES/BANK LOANS0.000 CONSTRUCTION AND TESTING OF PREDICTION MODELS The purpose of the present study was to test the potential accuracy of default prediction models constructed using ANNA with MLP architecture and to compare the results with those obtained from more traditional techniques (MDA and LRA). Our analysis was made first on the total sample (aggregate level), then according to size, business sector and location (evaluating the separate marginal distribution of these three classification variables), and finally combining the variables in pairs (location+size, business sector+size, and business sector+location). Using an Artificial Neural Networks Model Multi-Layer Perceptron (MLP) architecture is among the most frequently adopted ANNA structures in corporate default prediction research (Altman, Marco, & Varetto, 1994; Odom, & Sharda, 1990; Zhang, Hu, & Patuwo,1999). Mainstream literature (Cybenko, 1989; Hornik, 1991; Lippmann, 1987; Patuwo, Hu, & Hung, 1993; Zhang, Hu, & Patuwo,1999) agrees that a neural network whose structure has an input layer, a hidden layer, and an output layer is generally sufficient when dealing with classification problems. For the present study, we therefore decided to adopt a neural networks model with a 3-layer (input, hidden and output) MLP structure, with 10 (n1) neurons in the input layer, a variable number of neurons in the hidden layer (n2, with n1>n2, of course), and 1 (n3) neuron in the output layer, which will give us the final result. The 10 input neurons in the structure we used are shown in Table 3. The output layer with its single neuron can have a value of 0 (for firms classified as defaulting) or of 1 (for firms classified as non-defaulting). The number of neurons in the hidden layer (n2) varied depending on the level the analysis was made (on the whole dataset, on different size groups, on diverse geographical areas, on diverse business sectors, combining the classification variables in pairs). MLP Neural Networks Analysis compared to MDA and LRA Table 4 shows the synthesis results calculated on the aggregate sample using ANNA, MDA, and LRA. The 0 Observed state line shows the percentage of correctly classified insolvent firms and the percentage of misclassified insolvent firms (Type 1 error). The line 1 Observed state gives the percentage of misclassified non-defaulting firms (Type II error) and the percentage of correctly classified non-defaulting firms. The last two columns show the global (average) results obtained using the 3 statistical methods, and the average increase in accuracy obtained via ANNA, compared to MDA and LRA. Table 4: Validity test of neural function on defaulting and non-defaulting firms and comparison with discriminant function and logistic function (percentages) Statistical methodObserved statePredicted stateCorrectly (incorrectly) classified firmsImprovement in prediction accuracy obtained through NNA01NNADefaulting firms077.222.868.4 (31.6)Non-defaulting firms140.459.6MDADefaulting firms074.425.665.9 (34.1)3.8Non-defaulting firms142.657.4LRADefaulting firms076.423.667.2 (32.8)1.8Non-defaulting firms142,058,0 The neural function correctly classified over two-thirds of the whole sample (68.4%), with a 22.8% Type 1 error and 40.4% Type 2 error. Overall prediction accuracy using ANNA is higher than with LRA (+1.8%) and with MDA (+3.8%). Using MDA, 74.4% of defaulting firms and 57.4% of non-defaulting firms were accurately predicted. We wish to stress that the structure of our ANNA model was extremely simple and could presumably be improved upon, thereby becoming probably more accurate. The high Type II error values in all three methods (40.4% in NNA, 42.6% in MDA, and 42.0% in LRA) is probably due to the narrowly-defined criteria adopted in terms of determining company default. Formal legal proceedings for debt recovery may happen very late, when a firm has, in effect, been irremediably in a state of crisis for some time. MLP Neural Networks Analysis by Size, Geographical Area and Business Category When ANNA is applied separately for each size group, the synthesis results (Table 5) give a significantly higher level of overall prediction classification accuracy (72.8%) than when the analysis is applied on an aggregate basis (68.4%). The prediction accuracy increases progressively with an increase in company size. 71.3% of the smallest firms are correctly classified, compared to 75.6% of the largest ones. Table 5: Validity test of neural function calculated for each size group (percentages) Size groupPercentage of total sampleCorrectly classified defaulting (non-defaulting) firmsType I (Type II) errorsCorrectly classified firmsSize 129.070.2 (72.4)29.8 (27.6)71.3Size 224.076.9 (66.5)23.1 (33.5)71.7Size 322.086.6 (59.0)13.4 (41.0)72.8Size 425.078.9 (72.3)21.1 (27.7)75.6Total72.8 Size Group 1 has the lowest Type II error (27.6%) and the highest Type I error (29.8%). In Size Group 2, 76.9% of defaulting firms are correctly classified, as are 66.5% of non-defaulting firms. Size Group 3, the smallest of the four groups, shows a further slight increase in prediction accuracy (72.8%), the lowest percentage of Type I error (only 13.4%) but also the highest Type II error percentage (41.0%). 75.6% of firms are correctly classified in Size Group 4, which is over 4 points higher than in Size Group 1. If neural, discriminant and logistic functions are calculated separately for each size group and compared (Table 6), we see that: a) MDA and LRA also have higher rates of overall prediction accuracy when applied per size group, than when calculated on the aggregate sample and, again, this accuracy increases in the larger-sized firms; and Table 6: Comparison of prediction accuracy of neural, discriminant and logistic functions when calculated for each size group (percentages) Size groupCorrectly classified firms through MDACorrectly classified firms through LRACorrectly classified firms through NNAImprovement over MDA obtained through NNA Improvement over LRA obtained through NNASize 164.064.071.311.411.4Size 268.068.771.75.44.4Size 371.469.072.82.05.5Size 472.973.375.63.73.1Total68.868.572.85.86.3 b) even with a simple architecture, ANNA gives higher levels of prediction accuracy in all size groups. Average improvement is 5.8% compared to MDA and 6.3% compared to LRA. The increase is proportionally much higher in Size Group 1 (+11.41% compared to both MDA and LRA), and for Size Group 2 (+5.4% compared to MDA and +4.4% compared to LRA). Consequently, ANNA correct classification percentages are far less variable (regarding size groups) than those obtained using LRA or MDA. Table 7: Validity test of neural function calculated for separate geographical areas (percentages) Geographical areasPercentage of total sampleCorrectly classified defaulting (non-defaulting) firmsType I (Type II) errorsCorrectly classified firmsNW29.080.6 (63.7)19.4 (36.3)72.2NE20.078.1 (64.7)21.9 (35.3)71.4Centre26.077.8 (63.6)22.2 (36.4)70.7South25.073.2 (60.8)26.8 (39.2)67.0Total 70.4 The prediction accuracy of the neural function separately calculated for each geographical area (Table 7) is again higher (70.4%) than that obtained on the aggregate sample (68.4%). Accuracy levels are higher among firms operating in the north (NW 72.2%, NE 71.4%) rather than in Central Italy (70.7%) and far higher than among firms in the South (67.0%). Southern firms have both the highest Type 1 error (26.8%) and the highest Type II error (39.2%). Table 8 compare the three statistical methods applied separately for each geographical area. ANNA gives higher accuracy rates in all the geographical areas. There is an average increase in accuracy of 3.7% compared to MDA and of 2.9% compared to LRA. The highest increases are in firms in Central Italy (+5.8% compared to MDA and +5.4% compared to LRA), while the increase is lower in the North East (+2.3% compared to MDA and +1.1% compared to LRA). In this case, however, ANNA did not achieve significantly lower levels of correct classification variability among the 4 groups. Table 8: Comparison of prediction accuracy of neural, discriminant and logistic functions when calculated for each geographical area (percentages) Geographical areasCorrectly classified firms through MDACorrectly classified firms through LRACorrectly classified firms through NNAImprovement over MDA obtained through NNA Improvement over LRA obtained through NNANW70.070.872.23.12.0NE69.870.671.42.31.1Centre66.867.170.75.85.4South64.965.167.03.22.9Total67.968.470.43.72.9 Table 9: Validity test of neural function calculated for each business sector (percentages) Business sectorsPercentage of total sampleCorrectly classified defaulting (non-defaulting) firmsType I (Type II) errorsCorrectly classified firmsManufacturing40.077.9 (66.5)22.1 (33.5)72.2Building7.074.9 (63.3)25.1 (36.7)69.1Services53.070.1 (65.0)29.9 (35.0)67.5Total69.5 When ANNA is applied to separate business sectors (Table 9), 69.5% of firms are correctly classified, which is lower than with size groups (72.8%) or geographical areas (70.4%), but is higher than when applied on the aggregate sample. The highest percentage of correctly classified firms was in manufacturing (72.2%), which showed the lowest Type I error (22.1%) and the lowest Type II error (33.5%). Construction firms had the highest Type II error (36.7%). The service sector had the highest Type I error (29.9%). When the three functions calculated per business sector are compared (Table 10), we see that: a) overall prediction accuracy is higher than when calculated on the aggregate sample for both the logistic and the discriminant function, as it was with the neural function. Accuracy increases progressively from services, to building and then to manufacturing; and b) ANNA gives higher rates of correct classification in all of the three business sectors. The increase in accuracy is most marked in manufacturing firms (+4.8% compared to both MDA and LRA), but is below the average in the services (+2.1% compared to MDA and 1.4% compared to LRA). Table 10: Comparison of prediction accuracy of neural, discriminant and logistic functions when calculated for each business sector (percentages) Business sectorsCorrectly classified firms through MDACorrectly classified firms through LRACorrectly classified firms through NNAImprovement over MDA obtained through NNA Improvement over LRA obtained through NNAManufacturing68.968.872.24.84.8Building67.466.169.12.54.5Services66.166.667.52.11.4Total67.367.469.53.33.1 The next tables show the results obtained when the three classification variables (size, geographical area and business sector) were applied two by two. When the neural function was calculated combining geographical location and size (Table 11), the overall prediction accuracy was 79.8%, much higher than when it was calculated on the aggregate sample (68.4%), for each business sector (69.5%), for each geographical area (70.4%) and for each size groups (72.8%). The highest prediction rates were found for Size 4 firms operating in the North West (85.0%), in the North East (83.5%) and in the South (83.9%). The highest percentage of misclassified firms was in Size 1 firms in the South (26.6%). The table confirms the results obtained when size and location were examined separately, i.e. accuracy increases the further north a firm is and, within each geographical area, the bigger a company is. MDA and LRA also give higher overall accuracy rates compared to those obtained at the aggregate level, and per single geographical area, size group and business sector. Again, accuracy increases the further north a firm is and, within each geographical area, the bigger a company is. ANNA gives higher accuracy rates for all the size+location combinations. The overall increase in accuracy is 13.8% compared to MDA and 16.3% compared to LRA. Looking at the individual combinations, the highest increase is in Size 3 firms operating in the South (+23.0% compared to MDA and +22.1% compared to LRA) and in Size 1 firms operating in Central Italy (+18.0% compared to MDA and +22.7% compared to LRA). Table 11 Comparison of prediction accuracy of neural, discriminant and logistic functions when calculated combining geographical location and size (percentages) CombinationsPercentage of total sampleCorrectly classified firms through MDACorrectly classified firms through LRACorrectly classified firms through NNAImprovement over MDA obtained through NNA Improvement over LRA obtained through NNANWSize 16.967.464.877.715.319.9Size 26.672.470.579.39.512.5Size 36.773.473.281.511.011.3Size 48.874.973.185.013.516.3Total in NW72.270.681.212.515.0NESize 14.970.472.575.77.54.4Size 24.573.571.479.48.011.2Size 34.673.869.383.413.020.3Size 46.074.772.683.511.815.0Total in NE73.271.580.610.112.7CentreSize 18.565.563.077.318.022.7Size 26.568.665.579.415.721.2Size 35.469.068.880.116.116.4Size 45.672.571.481.011.713.4Total in Centre68.566.679.215.719.0SouthSize 18.764.864.273.413.314.3Size 26.465.463.576.917.621.1Size 35.367.768.283.323.022.1Size 44.671.569.683.917.320.5Total in South66.865.978.317.218.8Total70.168.679.813.816.3 Table 12 shows the synthesis results of the three statistical methods when the decisional functions were calculated combining business sector and size. Again, ANNA gave higher overall accuracy rates (75.0%) in this combination than when it was calculated on the aggregate sample (68.4%) or when the two classification variables were separately applied. Table 12: Comparison of prediction accuracy of neural, discriminant and logistic functions when calculated combining business sector and size (percentages) CombinationsPercentage of total sampleCorrectly classified firms through MDACorrectly classified firms through LRACorrectly classified firms through NNAImprovement over MDA obtained through NNA Improvement over LRA obtained through NNAManufacturingSize 110.366.664.772.28.411.6Size 28.069.068.274.47.89.1Size 39.773.372.977.15.25.8Size 412.075.574.383.610.712.5Total in Manuf.71.470.377.28.19.8BuildingSize 12.361.864.772.317.0011.7Size 21.468.369.074.89.58.4Size 31.371.773.277.47.95.7Size 42.074.773.881.99.611.0Total in Building68.669.776.511.59.8ServicesSize 116.465.263.071.39.413.2Size 214.667.865.873.48.311.6Size 311.068.168.073.68.18.2Size 411.070.070.775.27.46.4Total in Services67.566.473.28.410.2Total69.168.275.08.510.0 Compared to MDA and LRA, ANNA gives higher overall prediction accuracy rates, with an increase of 8.5% and 10.0% respectively. There is an increase of 8.1% and of 9.8% in manufacturing, of 11.5% and 9.8% in construction, and of 8.4% and 10.2% in services. The greatest increases are found for Size 1 construction firms (+17.0% compared to MDA) and for Size 1 service firms (+13.2% compared to LRA). The highest overall prediction accuracy (80.0%) is obtained when the neural function was calculated combining business sector and location (Table 13). Manufacturing firms in the North West show the highest percentage of correctly classified firms (92.3%), while service firms in the South have the highest error rate (30.7%). Prediction accuracy with ANNA is once more confirmed as being greater regarding manufacturing firms and for firms located in the North. Table 13: Comparison of prediction accuracy of neural, discriminant and logistic functions when calculated combining business sector and geographical location (percentages) CombinationsPercentage of total sampleCorrectly classified firms through MDACorrectly classified firms through LRACorrectly classified firms through NNAImprovement over MDA obtained through NNA Improvement over LRA obtained through NNAManufacturingNW12.067.171.392.337.629.5NE8.073.171.289.522.425.7Centre10.070.769.285.721.223.8South10.068.467.581.519.220.7Total in Manuf.69.569.887.425.825.2BuildingNW1.867.168.390.234.432.1NE1.369.470.588.727.825.8Centre2.366.664.384.526.931.4South1.667.469.380.319.115.9Total in Building67.467.685.827.326.9ServicesNW15.268.069.077.313.712.0NE10.770.770.276.58.29.0Centre13.765.664.471.69.111.2South13.464.763.869.37.18.6Total in Services67.166.773.69.710.3Total68.168.080.017.517.6 When ANNA is applied combining business sector and geographical location, the greatest improvements in accuracy are obtained, compared to both MDA (+17.5% overall) and to LRA (+17.6%). Above average increases in accuracy were obtained for manufacturing firms in the North West (+37.6% compared to MDA and +29.5% compared to LRA) and for construction firms operating in Central Italy (+26.9% compared to MDA and +31.4% compared to LRA) and in the North West (+34.4% compared to MDA and +32.1% compared to LRA). CONCLUSIONS Our aim was to test the accuracy of the Artificial Neural Networks Analysis (ANNA) for company default prediction modeling based on an appropriately selected set of financial-economic ratios, with special reference to small firms, and to compare ANNA accuracy rates to those obtained through Multivariate Discriminant Analysis (MDA) and Logistic Regression Analysis (LRA). Our study applied ANNA, MDA and LRA to a sample of over 6,000 Italian firms, differing in size and operating in diverse geographical areas and in diverse business sectors. The empirical results obtained show that, compared to more traditional statistical methods, ANNA with a Multi-Layer Perceptron architecture gave higher default prediction accuracy rates. Table 14 synthesizes the results given by the three methods studied, on the aggregate sample, when dividing the dataset according to size, location and business sector, and when analyzing these divisions in twos (location+size, sector+size and sector+location). Table 14: Comparison of prediction accuracy of neural, discriminant and logistic functions when calculated at the different levels of aggregation (percentages) Level of analysisCorrectly classified firms through MDACorrectly classified firms through LRACorrectly classified firms through NNAImprovement over MDA obtained through NNA Improvement over LRA obtained through NNAAggregate sample65.967.268.43.81.8Size group68.868.572.85.86.3Geographical area67.968.470.43.72.9Business sector67.367.469.53.33.1Geographical area+Size70.168.679.813.816.3Business sector+Size69.168.275.08.510.0Business sector+Geographical area68.168.080.017.517.6 ANNA gave significant increases in prediction accuracy whatever level of aggregation the analysis was made. There was an increase of 2-3% when the analysis was made on the whole dataset, of c.a. 3% when the decisional functions were calculated for separate geographical areas and for separate business sectors, of c.a. 6% for separate size groups, of 10% for the sector+size combination, of 14-16% for location+size, and of over 17% when disaggregating the sample on the basis of the location+sector combination. Since the ANNA model used in our study was extremely simple in structure, it would be interesting to see what advances could be made with a more complex structure. Furthermore, two tendencies were noted. One was geographical: the highest prediction accuracy increases were obtained for firms operating in Central Italy. The second was related to size: increases in accuracy were proportionally higher for firms in the smallest size groups. This second tendency (which, among others, gave the most marked increases in accuracy) brings us to some final observations. For small, and very small firms, the construction of quantitative models for default prediction is especially complicated and the results which can be obtained are usually far less accurate than in the case of larger firms. There are many reasons for this, some of which are: 1) the fact that small firms have fewer legal obligations regarding data disclosure than larger firms. The result is that less information is readily available, and what can be obtained is less reliable and less accurate; 2) the very physiology of the small firm, which increases the outside analysts difficulties in interpreting company data. For example, in small firms the owners and the managers are often to a large degree one and the same,; the management is much less articulated; managers are less versed in the complexities of financial administration; 3) the fact that smaller firms have automatically smaller figures (also their accounts), and even small changes have a more marked effect on ratios and percentages. To the extent that, in terms of what they can reveal about a firm, some ratios are completely ineffective below certain dimensional levels; 4) the fact that in smaller firms, management has wider margins of discretion regarding the figures in the accounting data. This is due to there being fewer obligations regarding data disclosure and, above all, to the slighter pressure, in terms of accountability, from customers, suppliers, lenders, shareholders, financial markets, and so on; 5) the greater impact of external events that change the company structure or behavior, and that may, for example, modify a state of crisis, by allowing a firms weak points to be strengthened (e.g., a financial intervention of the owners, the appointment of new managers, or changes in strategy). To sum up, when a small firm is predicted as being likely to default (or not to default), there is a greater probability that the prediction will be inaccurate because external events will intervene and either save the firm or, alternatively, bring on its unexpected, and sudden, collapse (Vallini, Ciampi, Gordini, & Benvenuti, 2008). Our study confirms that predictions based on financial statement data are generally less accurate regarding smaller firms. However, while with MDA and LRA, there is a decrease of c.a. 9% in accuracy from the largest size group to the smallest, ANNAs correct classification rates (beside being higher) are more similar regarding the different size groups, because the increases in prediction accuracy rates for smaller firms are far higher than the average increases obtained. It remains so true that small firm accounting data provides much weaker signals for the possible development of a firm; as well as that, when the signals indicate a progressive deterioration of the firm, there are much weaker relations between these signals and the default probability. Because ANNA is inductive, non-parametric and non-linear in mechanism, and tries to simulate the workings of the human brain, however, it is better equipped to feel these weak signals and relations than are more traditional statistical methods. We wonder if predictions could be made more accurate by including in ANNA non-numerical input variables, related to the way a firm is run and lives. This would be an ideal, but more scientific, return to earlier evaluation methods. Two variables could be, for instance, included in the evaluation: the entrepreneurial honorability and, more generally, the entrepreneurial dimension (in both a psychological and social sense). The first variable affect how much effort will be made by the entrepreneur to prevent and avoid default, thereby assuring the survival of the firm. The second variable can affect the possibilities of acquiring new resources; as well as it can affect the possibilities of discovering solutions from outside the firm which can be suitable when company weaknesses first come to light. REFERENCES Altman, E. I. (1968). Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. The Journal o f Finance, 23(4), 589-609. Altman, E. I. (1993). Corporate financial distress and bankruptcy (2nd ed.). New York, NY: Wiley. Altman, E. I. (2004). Corporate credit scoring insolvency risk models in a benign credit and Basel II environment. New York, NY: New York University Working Paper. Altman, E. I., Brady, B., Resti, A., & Sironi, A. (2005). The link between default and recovery rates: Theory, empirical evidence, and implications. The Journal of Business, 78(6), pp. 2203-2227. Altman, E. I., Haldeman, R.G., & Narayanan, P. (1977). Zeta-analysis. A new model to identify bankruptcy risk of corporations. Journal of Banking and Finance, 1(1), pp. 29-54. Altman, E. I., Marco, G., & Varetto, F. (1994). Corporate distress diagnosis: Comparisons using linear discriminant analysis and neural networks (the Italian experience). Journal of Banking and Finance, 18(3), pp. 505-529. Altman, E. I., & Sabato, G. (2005). Effects of the new Basel capital accord on bank capital requirements for SMEs. Journal of Financial Services Research, 28(1-3), pp. 15-42. Altman, E. I., & Sabato, G. (2006). Modeling credit risk for SMEs: Evidence form the US market. Abacus, 19(6), pp. 716-723. Altman, E. I., & Saunders, A. (2001). An Analysis and critique of the bis proposal on capital adequacy and ratings. Journal of Banking and Finance, 25(1), pp. 25-46. Barnes, P. (1982). Methodological implications of non-normality distributed financial ratios. Journal of Business Finance and Accounting, 9(1), pp. 51-62. Beaver, W. (1967). Financial ratios predictors of failure. Journal of Accounting Research, Supplement to Volume 4. Beaver, W. (1968). Alternative accounting measures as predictors of failure. The Accounting Review, 43(1), pp. 113-122. Bell, T. B., Ribar, G. S., & Verchio, J. (1990). Neural nets vs. logistic regression: A comparison of each models ability to predict commercial bank failures. Proceedings of the 1990 Deloitte & Touche/University of Kansas Symposium on Auditing Problems, pp. 29-53. Berger, A. N. (2006). Potential competitive effects of Basel II on banks in SME credit markets in the United States. Journal of Financial Services Research, 29(1), pp. 5-36. Berger, A. N., & Frame W. S. (2005). Small business credit scoring and credit availability. Working Paper Series, Bank of Atlanta, Atlanta, Georgia. Berger, A. N., & Udell, G. F. (2006). A more complete conceptual framework about SME finance. Journal of Banking and Finance, 11(30), pp. 2945-2966. Blum, M.P. (1969). The falling company doctrine. Doctoral dissertation, Columbia University, New York, NY. Blum, M. P. (1974). Failing company discriminant analysis. Journal of Accounting Research, 12(1), pp. 1-25. Bofondi, M., & Lotti, F. (2006). Innovation in the retail banking industry: The diffusion of credit scoring. Review of Industrial Organization, 28(4), pp. 343-358. Boritz, J. E., & Kennedy, D. B. (1995). Effectiveness of neural network types for prediction of business failure. Expert System with Application, 9(4), pp. 503-512. Boritz, J. E., Kennedy, D. B., & Albuquerque A. (1995). Predicting corporate failure using a neural network approach. Intelligent Systems in Accounting, Finance and Management, 4(2), pp. 95-111. Ciampi, F. (1994). Squilibri di assetto finanziario nelle P.M.I. Finanziamenti e contributi della Comunit Europea. Studi e Informazioni, Supplement to Issue 3. Ciampi F., & Gordini, N. (2008). Using economic-financial ratios for small enterprise default prediction modeling: An empirical analysis. Proceedings of the 2008 Oxford Business & Economics Conference (Oxford, UK).. Coats, P. K., & Fant, L. F. (1993). Recognizing financial distress patterns using a neural network tool. Financial Management, 22(3), pp. 142-155. Cowan, C. D., & Cowan, A. M. (2006). A survey based approach of financial institution use of credit scoring for Small Business lending. Working Paper, Office of Advocacy, Unites States Small Business Administration, SBAH-04-Q-0021. Crouhy, M., Mark, R., & Galai, D. (2001). Prototype risk rating system. Journal of Banking and Finance, 25(1), pp. 47-95. Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Mathematical Control Signals Systems, 2(4), pp. 303-314. Deakin, E. B. (1972). A discriminant analysis of predictors of business failure. Journal of Accounting Research, 10(1), pp. 167-179. Edmister, R. (1972). An empirical test of financial ratio analysis for small business failure prediction. Journal of Financial and Quantitative Analysis, 7(2), pp. 1477-1493. Fanning, K. M., & Cogger K. O (1994). A comparative analysis of artificial neural networks using financial distress prediction. Intelligent Systems in Accounting, Finance and Management, 3(4), pp. 241-252. Fletcher, D., & Gross, E. (1993). Forecasting with neural networks: an application using bankruptcy data. Information and Management, 24(3), pp. 159-167. Frame, W. S., Srinivasan, A., & Woosley, L. (2001). The effect of credit scoring on Small Business lending. Journal of Money Credit and Banking, 33(3), pp. 813-825. Heitfield, E. (2004). Rating system dynamics and bank-reported default probabilities under the New Basel Capital Accord. Washington D.C.: Federal Reserve. Hornik, K. (1991). Approximation capabilities of multilayer feed forward networks. Neural Networks, 4(2), pp. 251-257. Jo, H., Han, I., & Lee, H. (1997). Bankruptcy prediction using case based reasoning, neural networks, and discriminant analysis. Expert System Application, 13(2), pp. 97-108. Karels, G. V., & Prakash, A. J. (1987). Multivariate normality and forecasting of business bankruptcy. Journal of Business finance & Accounting, 14(4), pp. 573-593. Lacher, R. C., Coats, P. K., Sharma, S. C., & Fant, L. F. (1995). A neural network tool for classifying the financial health of a firm. European Journal of Operation Research, 85(1), pp. 53-65; Lehmann, B. (2003). Is it worth the while? The relevance of qualitative information in credit rating. Working Paper, EFMA 2003 Meeting, Helsinki, Finland. Lippmann, R. (1987). An introduction to computing with neural nets. IEEE ASSP Magazine, 4(2), pp. 2-22. Lussier, R. N. (1995). A non financial business success versus failure prediction model for young firms. Journal of Small Business Management, 33(1), pp. 8-19. Martinelli, E., De Carvalho, A., Rezende, S., & Matias, A. (1999). Rules extractions from banks bankrupt data using connectionist and symbolic learning algorithms. Proceedings of the Computational Finance Conference (New York). McLeay, S., & Omar, A. (2000). The sensitivity of prediction models to the non-normality of bounded an unbounded financial ratios, British Accounting Review, 32(2), pp. 213-230. Odom M., & Sharda R. (1990). A neural network model for bankruptcy prediction. Proceedings of the second IEEE international joint conference on neural networks (Vol. II, pp. 163-168). Ohlson, J. (1980). Financial ratios and the probabilistic prediction of bankruptcy. Journal of Accounting Research, 18(1), pp. 109-131. Patuwo, M., Hu, M. Y., & Hung, M. S. (1993). two-group classification using neural networks. Decision Science, 24(4), pp. 825-845. Riparbelli, A. (1950). Il contributo della ragioneria nellanalisi dei dissesti aziendali. Florence, Italy: Vallecchi. Salchenberger, L. M., Cinar, E. M., & Lash N. A. (1992). Neural networks: A new tool for predicting thrift failures. Decision Sciences, 23(4), pp. 899-916. Sharda, R., & Wilson, R. L. (1996). Neural Network experiments in business-failure forecasting: Predictive performance measurement issues. International Journal of Computational Intelligence and Organizations, 1(2), pp. 107-117. Tam, K. Y., & Kiang, M. Y. (1992). Managerial applications of neural networks: The case of bank bankruptcy. OMEGA, 19(5), pp. 429-445. Vallini, C. (1984). Equilibri, stati patologici e comportamenti di risanamento aziendali. Florence, Italy: Tipografia Coppini. Vallini, C., Ciampi, F., Gordini, N., & Benvenuti, M. (2008). Can credit scoring models effectively predict small enterprise default? Statistical evidence from Italian firms. Proceedings of the 8th Global Conference on Business & Economics (Florence, Italy). Wilson, R. L., & Sharda, R. (1994). Bankruptcy prediction using neural networks. Decision Support System, 11(5), pp. 545-557. Zhang, G., Hu, M. Y, & Patuwo, B. (1999). Artificial neural networks in bankruptcy prediction: General framework and cross-validation analysis. European Journal of Operational Research, 116(1), pp. 16-32.  Nowadays the best default risk evaluation is qualitative analysis based on in-depth knowledge of a firms management and of the specific competitive opportunities available in the companys field of business. Such information is hard to come by, especially if time is short. Two observations can be helpful. One is that company default is generally preceded by a typical pathway of progressive deterioration of the economic and financial indicators which can be calculated from a firms account data (Riparbelli, 1950). Such data is (or at least should be) an up-to-date, true, and sufficiently representative photograph of the company and its management as they stand, and should therefore be always representative of the evolution of a firms crisis. Even when insolvency is triggered by some external event, a firms account data will show the pre-existing weak points allowing the external event to have potentially dire consequences (Vallini, 1984). The second aid lies in the fact that where in-depth knowledge of the single case is lacking, comparisons can be drawn between the calculated indicators and the values considered to be normal as they have been collected from a significant number of cases. From this stems the natural move to combine account data and statistical methods, for the purpose of company default prediction modeling Clearly, the models adopted in day-to-day banking operations for deciding on credit facilities (and to review facilities granted) usually consider other information, in addition to company accounts Banks look at company governance models and management skills and abilities. They take into account a firms present market position and the competitive position it can hope to attain, its process and product innovation capacity, the make-up of the particular business sector and of the group of which the firm is part (Altman, & Sabato, 2006; Lehmann, 2003; Lussier, 1995), as well as a firms credit history (Vallini, Ciampi, Gordini, & Benvenuti, 2008).  If an objective view of a firm (i.e. only of corporate data) replaces a subjective view which included also objective aspects, such as a firms turnover and assets, and was therefore a comprehensive, all-round evaluation, then a number of essential variables will inevitably be left out of the picture. A firms decline can be brought on by an entrepreneurs inability or lack of determination; and these shortfalls exist long before their effects show up in the firms balance sheets. The evolution of a firms account data will depend on how the management carries out its function, more than on inertial pressures. In a crisis situation it is the willingness and ability of the top management that will most affect the degree of reversibility of the crisis itself (Vallini, 1984). Corporate data is still significant as a possible predictor in that whenever a decline is (or seems) objectively unstoppable, entrepreneurs tend to let the firm fail, and to move any remaining assets to a new business, which is unconnected to the preexisting one. There is a point at which saving a firm in crisis costs too much. It is easier to set up a new firm or to develop another existing enterprise. However, the assumption that insolvency (solvency) which can be predicted from accounting data is the same as real insolvency (solvency) can be contradicted by decisions taken by entrepreneurs. An entrepreneur can accelerate or even cause a firms crisis, as is proven by fraudulent bankruptcy cases and/or by the failure cases which are deliberately triggered, whether this be for personal financial gain or for strategic purposes that have nothing to do with the failing firm. In these cases, if the willful deterioration takes place in a very short time period, its probable that the firms accounts will not show the default risk until it is too late. Entrepreneurs can also act uneconomically and defy failure predictions made solely on the basis of accounting data, and can do this in various ways. They may perhaps see new strategic opportunities and solve the firms crisis by investing new capital from personal family assets (without the thought of personal immediate gain), or by finding new business partners who are willing to invest capital. Furthermore, we should remember that also rational entrepreneurs are not guided only by economic aims, and do not measure their success solely in economic terms. For this reason, the probability that a firm will recover is almost always higher than would appear to be the case. From this, it follows that any model based solely on account data is by definition unable to express the real probability of default, as through such data all the possible eventualities cannot be foreseen. It is also true, however, that any default is preceded by progressively worse accounting results and, consequently, models based on account data can always pick up an on-going tendency if it already exists. So the real problem is how the prediction model is used. In this connection, we might also note, though the matter is fairly obvious, that the speed of the decline showed by corporate data varies greatly from one case to another. In addition, unexpected events may suddenly intervene and reverse the situation. For example, a large credit may be lost following a creditor default, or there may be a drop in turnover because the market the firm operates in has reached its maturity, or the lower turnover may be due to any other external event. The more any evaluation model is used, the more reliable it becomes. But what happens if the model is used at a point in time before an existing risk could be revealed? This question returns us to a basic truth, which is that the first preceptors of weak signals of unfavorable external events are the entrepreneurs themselves, if they are good entrepreneurs. Reliability is above all subjective, as is shown by the ethical banks.  Rating and scoring models differ in the leeway given in credit facility decision-taking. Rating models usually leave much to the discretion of the person in charge of assigning credit access, whereas there is little (if any) freedom of choice with scoring models.  Altman (1968) used multivariate linear discriminant analysis applied to data from a sample of 66 firms (33 insolvent, and 33 solvent) to select the following set of economic-financial ratios as predictors of insolvency/solvency: Working capital/total assets; Retained earnings/total assets; Ebit/total assets; Market capitalization/total debt; Sales/total assets.  For linear discriminant analysis to work efficiently, two conditions must be fulfilled: 1) the independent variables in the model must be normally distributed multivariates; and 2) group dispersion matrixes (variance and covariance matrixes) must be identical in the two groups, i.e. in defaulting and non-defaulting firms (Barnes, 1982; Karels, & Prakash, 1987; McLeay, & Omar, 2000). In the search for models which could be adopted more widely, Ohlson (1980) introduced the logistic regression function. His dataset contained 105 defaulting firms, 2,058 non-defaulting firms, and 9 economic-financial ratios calculated on data from 1970 to 1976. Logistic regression allows analysts to work with numerically diverse samples, and it gives better results if the observations are discrete and not overlapping.  However, a number of studies have examined the impact that the widespread adoption of credit-rating models is having on relations between banks and SEs (e.g., Altman, 2004; Altman, & Saunders, 2001; Berger, 2006; Berger, & Frame, 2005; Berger, & Udell, 2006; Bofondi, & Lotti, 2006; Cowan, & Cowan, 2006; Frame, Srinivasan, & Woosley, 2001; Heitfield, 2004).  For the purposes of this paper, we consider SEs to be firms whose turnovers do not exceed 1.8 million Euros.  Odom and Sharda used Altmans economic-financial ratios (Altman, 1968) on a sample of 129 firms (65 defaulting and 64 non-defaulting).  Zhang, Hu and Patuwo (1999) used 6 economic-financial predictors (the 5 used by Altman in 1968, plus the current ratio). They analyzed a sample of 220 manufacturing firms (110 defaulting and 110 non-defaulting). They obtained prediction accuracy rates of 88.2% with ANNA and 78.6% with LRA.  The results obtained by a small number of other studies (Bell, Ribar, & Verchio, 1990; Boritz, & Kennedy, 1995; Boritz, Kennedy, & Albuquerque, 1995; Martinelli, De Carvalho, Rezende, & Matias, 1999) do not however prove ANNA to be so much better than MDA and LRA. Although ANNA has been shown to have great potential in enterprise default prediction accuracy, we therefore agree with those analysts who are of the opinion that the black-box approach of neural networks needs further studies (Altman, Marco, & Varetto, 1994).  A firms size was determined by its 2001 turnover. Size groups were calculated on the distribution quartiles of the defaulting firms.  Studying one entire population (all failed firms) against a sample (solvent firms) has few computational contraindications, except that the logistic evaluation intercept loses significance.  There were some noteworthy differences in distribution between the two groups: in the defaulting firms, there was a (relatively) higher incidence of firms in Size Groups 2 and 3, of firms operating in Central and Southern Italy, and of firms in the manufacturing and building industries.  The initial set of ratios was selected on the basis of two criteria: 1) their frequency in the research literature on company default prediction (e.g., Altman, 1968, 1993; Altman, Brady, Resti, & Sironi, 2005; Altman, Haldeman, & Narayanan, 1977; Altman, & Sabato, 2005, 2006; Beaver, 1967; Blum, 1969, 1974; Crouhy, Mark, & Galai, 2001; Edmister, 1972); 2) their ability to describe essential aspects of three areas of company economic and financial profile; namely: profitability, leverage, and liquidity.  The table shows the distribution of the average values (calculated on balance sheet data for the 2001 trading year) for each ratio in the 2 corporate groups of the study. These average values were weighted with regard to the quantity which was used as the denominator. Average operating profitability (ROS and ROI) is practically zero for defaulting firms, whereas it is 4% in the control group. This is due to the defaulting firms having lower values in Value Added/Turnover, in Value Added/Employees, and in Ebitda/Turnover. There is a significant difference between the two groups in terms of net profitability (-2.7% for defaulting firms and +4.8% for non-defaulting firms). This is also the result of the way company finances were handled and the impact this had on the accounts (the average Interest Charges to Ebitda ratio in defaulting firms is twice that in the control group). The diverse impact is due mainly to the higher rate of average financial debt levels (Financial Debts to Equity ratio is 217%/96.9% for defaulting/non-defaulting firms, respectively), and not to higher unit costs per bank loan (the Interest Charges/Bank Loans ratio in the two groups is almost identical).  This is a well-known heuristic method with low computational complexity. It often gives satisfactory results. In this method, each of the n variables is tried, one at a time, and one-variable n linear regression models are constructed. The variable (X(1)) which gives the best model (Y = a + b1X(1)) is the first to be selected. Each of the other Xi variables is examined (excluding X(1), which has already been selected), and the X(2) variable is selected. This is the variable presenting the best behavior when placed in a regression model with two independent variables, one being X(1). Hence the model: Y = a + b1X(1) + b2X(2) is the best two variable model when one variable is X(1). The third variable is selected using the same criteria; and the process is repeated until no new variable makes any significant contribution to the model, or until the selection of a predetermined number of variables has been achieved.  Compared to results obtained when calculating on the aggregate, all three functions (neural, discriminant, and logistic) give higher levels of accuracy when they are calculated separately for business and location and, especially, for size. This accuracy increases when the three classifications are tested in combinations of two variables at a time. These results indicate that if SE financial statements are to be used to predict credit risk, then some caution must be exercised in applying statistical methods and in interpreting results. Above all, decisional functions should be based on a reasonably homogeneous sample. Pooling different business sectors or geographical areas tends to reduce a models prediction accuracy. This is all the more true if models are acquired from outside sources and/or are constructed on samples that are not representative of the universe with which the credit institution usually operates. Furthermore, our cross-section experiment leads us to draw the analogical conclusion that decisional functions should be reviewed and updated frequently.  A firm is not a biological system running on natural laws. Its management is subjective, and every corporate quantity depends on management choices. Weaker ratios may be due to a different attitude to risk. For example, a lack of balance in how to approach demands from owners and creditors can change parameters and ratios. Consequently, a companys accounts, though correct, may not always reveal the whole truth about company management. One year, profit may be lower because more value has been placed on customers (the lowest possible prices have been granted). Or staff or suppliers may have benefited from higher salaries and rates. The result is that even when account data is legally correct, clear and true, it can easily paint a picture which is more attractive, or less attractive, than a firm really is. As a result, the models prediction may be accurate in itself but may be very much affected by the inability of account data to interpret management choices (Vallini, Ciampi, Gordini, & Benvenuti, 2008).     2009 Oxford Business & Economics Conference Program ISBN : 978-0-9742114-1-1 PAGE  PAGE 26 June 24-26, 2009 St. Hughs College, Oxford University, Oxford, UK )*    < D E r Ѽ餒pXpCp5ph]Gh 95OJQJ^J(h]Gh 90J!>*B*OJQJ^Jph/jh;ch 9OJQJU^JmH sH )jh;ch 9OJQJU^JmH sH h]Gh 9OJQJ^J#h;ch 95OJQJ^JmH sH .h;ch 95;CJ OJQJ^JaJ mH sH (h 95CJ OJQJ\^JaJ mH sH .h;ch 95CJ OJQJ\^JaJ mH sH +h;ch 95CJ OJQJ^JaJ mH sH   <   o _ $da$gd 9$d7$8$H$a$gd 9 $da$gd 9 $da$gd 9$ d7$a$gd 9$ dh7$a$gd 9r s t   L P U ^ d {ҽҰq\E\E\,h;ch 9B*OJQJ\^JmH phsH )h;ch 9B*OJQJ^JmH phsH h 9OJQJ^JmH sH  h;ch 9OJQJ^JmH sH #h;ch 95OJQJ^JmH sH h]Gh 95OJQJ^Jh]Gh 9OJQJ^J(h]Gh 90J!>*B*OJQJ^Jph)jh;ch 9OJQJU^JmH sH /jh;ch 9OJQJU^JmH sH *t:=i  οΩΐΐΩΩ{dVE h;ch 9OJQJ^JmH sH h 9OJQJ^JmH sH ,h;ch 95B*OJQJ^JmH phsH )h\h 9B*OJQJ^JmH phsH 0hJ1h 9B*CJ\aJmH nHphsH tH*h 9B*CJ\aJmH nHphsH tHhJ1h 9CJaJmH sH h 9CJaJmH sH %hJ1h 9B*CJaJmH phsH #h 9B*OJQJ^JmH phsH    }!"##P$'*+ J$da$gd 9 dgd 9 =$da$gd 9 $da$gd 9 $da$gd 9 $da$gd 9$ \ d7$8$H$a$gd 9w x !!!!!"o#p####P$''I(J(c(k(o(s(y(ŮŮŮş~o]#h;ch 95OJQJ^JmH sH h 95OJQJ^JmH sH %jh;}h 90J+OJQJU^Jh;ch 96OJQJ^Jh;ch 9OJQJmH sH -jh;ch 90J+OJQJU^JmH sH  h;ch 9OJQJ^JmH sH h 9OJQJ^J%jh;ch 90J+OJQJU^Jh;ch 9OJQJ^J$y({(((((/)0)7)B)))))))))^*i*S+^+|,},,,,m-n-p--B/C/X4Y444 5 5535s h;ch 9OJQJ^JmH sH #h;ch 95OJQJ^JmH sH  h;ch 9OJQJ^JnHtHh;ch 9OJQJ]h;ch 9OJQJ\^J(h;ch 90JI5B*OJQJ^Jph%jh;ch 90J+OJQJU^Jh;ch 9OJQJ^Jh 9OJQJ^J(+p--/12 54555F5\5$dh$Ifa$gd 9$dh$Ifa$gd 9$7$8$H$a$gd 9 J$da$gd 9 $da$gd 9 J$da$gd 9 3545\5]5o5q5r5555555555555566661626N6O6W6i6j6r666666666667ٲٲDzٲn!jh;ch 90J+OJQJUh;ch 9OJQJ^J hkh 9<hkh 9B*CJOJQJ\^JaJmH nHphsH tH(hkh 9CJOJQJ^JaJmH sH #hkh 95OJQJ^JmH sH +hkh 95CJOJQJ^JaJmH sH  hkh 9OJQJ^JmH sH *\5]5o5p5q5m\KK$dh$Ifa$gd 9$dh$Ifa$gd 9kd$$IfTFF 0E  t06    44 laTq5r5}555m\GG$dh$If]a$gd 9$dh$Ifa$gd 9kdV$$IfTFF 0E  t06    44 laT55555m\GG$dh$If]a$gd 9$dh$Ifa$gd 9kd$$IfTFF 0E  t06    44 laT55555m\GG$dh$If]a$gd 9$dh$Ifa$gd 9kd$$IfTFF 0E  t06    44 laT55555m\GG$dh$If]a$gd 9$dh$Ifa$gd 9kdZ$$IfTFF 0E  t06    44 laT55555m\GG$dh$If]a$gd 9$dh$Ifa$gd 9kd$$IfTFF 0E  t06    44 laT55555m\GG$dh$If]a$gd 9$dh$Ifa$gd 9kd$$IfTFF 0E  t06    44 laT55556m\GG$dh$If]a$gd 9$dh$Ifa$gd 9kd^$$IfTFF 0E  t06    44 laT66 666m\GG$dh$If]a$gd 9$dh$Ifa$gd 9kd $$IfTFF 0E  t06    44 laT66/60616m\GG$dh$If]a$gd 9$dh$Ifa$gd 9kd$$IfTFF 0E  t06    44 laT1626D6I6N6m\GG$dh$If]a$gd 9$dh$Ifa$gd 9kdb$$IfTFF 0E  t06    44 laTN6O6_6d6i6m\GG$dh$If]a$gd 9$dh$Ifa$gd 9kd $$IfTFF 0E  t06    44 laTi6j6z666m\GG$dh$If]a$gd 9$dh$Ifa$gd 9kd $$IfTFF 0E  t06    44 laT66666m\GG$dh$If]a$gd 9$dh$Ifa$gd 9kdf $$IfTFF 0E  t06    44 laT66666m\GG$dh$If]a$gd 9$dh$Ifa$gd 9kd $$IfTFF 0E  t06    44 laT66677 8mh]PB$7$8$H$a$gd 9 $da$gd 9 J$da$gd 9gd 9kd $$IfTFF 0E  t06    44 laT77777777 8!8G8H8b8c8888888888888899 9ǵyyyybybyyKb,h7h 9CJKHOJQJ^JaJmH sH ,h7h 9CJKHOJQJ^JaJmH sH  h7h 9OJQJ^JmH sH +h7h 95CJOJQJ^JaJmH sH (h7h 9CJOJQJ^JaJmH sH #h;ch 95OJQJ^JmH sH  hp8h 9OJQJ^JmH sH -jh;ch 90J+OJQJU^JmH sH  h;ch 9OJQJ^JmH sH  8!828G8H8Y8N@dh$Ifgd 9kdj $$IfTFF - t06    44 laT$dh$Ifa$gd 9$dh$Ifa$gd 9Y8^8b8c8x8|88[Mdh$Ifgd 9kd $$IfTFF - t06    44 laT$dh$If]a$gd 988888pbMM$dh$If]a$gd 9dh$Ifgd 9kd $$IfTFF - t06    44 laT88888pbMM$dh$If]a$gd 9dh$Ifgd 9kdn$$IfTFF - t06    44 laT88888pbMM$dh$If]a$gd 9dh$Ifgd 9kd$$IfTFF - t06    44 laT88888pbMM$dh$If]a$gd 9dh$Ifgd 9kd$$IfTFF - t06    44 laT88 999pbMM$dh$If]a$gd 9dh$Ifgd 9kdr$$IfTFF - t06    44 laT 999#95969>9@9R9_9`9k9m999999999999999:::):1:<:=:S:T:\:i:j:::::::::;;;;!;";;;<;D;E;Y;f;g;h;ڬڬڬڬڬìڞh 9OJQJ^JmH sH ,h7h 9CJKHOJQJ^JaJmH sH ,h7h 9CJKHOJQJ^JaJmH sH  h7h 9OJQJ^JmH sH (h7h 9CJOJQJ^JaJmH sH <99+90959pbMM$dh$If]a$gd 9dh$Ifgd 9kd$$IfTFF - t06    44 laT5969S9Y9_9pbMM$dh$If]a$gd 9dh$Ifgd 9kd$$IfTFF - t06    44 laT_9`9999pbMM$dh$If]a$gd 9dh$Ifgd 9kdv$$IfTFF - t06    44 laT99999pbMM$dh$If]a$gd 9dh$Ifgd 9kd"$$IfTFF - t06    44 laT99999pbMM$dh$If]a$gd 9dh$Ifgd 9kd$$IfTFF - t06    44 laT99999pbMM$dh$If]a$gd 9dh$Ifgd 9kdz$$IfTFF - t06    44 laT99:::pbMM$dh$If]a$gd 9dh$Ifgd 9kd&$$IfTFF - t06    44 laT::2:7:<:pbMM$dh$If]a$gd 9dh$Ifgd 9kd$$IfTFF - t06    44 laT<:=:]:c:i:pbMM$dh$If]a$gd 9dh$Ifgd 9kd~$$IfTFF - t06    44 laTi:j::::pbMM$dh$If]a$gd 9dh$Ifgd 9kd*$$IfTFF - t06    44 laT:::::pbMM$dh$If]a$gd 9dh$Ifgd 9kd$$IfTFF - t06    44 laT:::::pbMM$dh$If]a$gd 9dh$Ifgd 9kd$$IfTFF - t06    44 laT:::;;pbMM$dh$If]a$gd 9dh$Ifgd 9kd.$$IfTFF - t06    44 laT;;;;!;pbMM$dh$If]a$gd 9dh$Ifgd 9kd$$IfTFF - t06    44 laT!;";2;6;;;pbMM$dh$If]a$gd 9dh$Ifgd 9kd$$IfTFF - t06    44 laT;;<;Z;`;f;pbMM$dh$If]a$gd 9dh$Ifgd 9kd2$$IfTFF - t06    44 laTf;g;h;<7=L=V=p__UU<$$q&`#$/G$Ifa$gd 9 $a$gd 9$d7$8$H$a$gd 9kd$$IfTFF - t06    44 laTh;<<<=L=U=^=_=t=u={=年s^H3(h;ch 9CJOJQJ^JaJmH sH +h;ch 9;CJOJQJ^JaJmH sH (h;ch 9CJOJQJ^JaJmH sH 4h;ch 9;B*CJOJQJ^JaJmH phsH .h;ch 95CJOJQJ\^JaJmH sH +h;ch 95CJOJQJ^JaJmH sH #h;ch 95OJQJ^JmH sH Ajh;ch 90J+B*OJQJU\^JmH nHphsH tH h;ch 9OJQJ^JmH sH  V=^=_=u={=fP7$$q&`#$/G$Ifa$gd 9$q&`#$/G$Ifgd 9kd$$If0$ 6`q044 la$$q&`#$/G$Ifa$gd 9{=|===iP$$q&`#$/G$Ifa$gd 9$q&`#$/G$Ifgd 9kd,$$If0$ 6`q044 la{=|==================>>>>>#>$>:>;>C>D>J>K>[>]>o>p>v>w>>>>>>ѼѼюѼѥѼѼѼюѼюѼѼ}k#h;ch 95OJQJ^JmH sH  h;ch 9OJQJ^JmH sH ,h;ch 9CJKHOJQJ^JaJmH sH ,h;ch 9CJKHOJQJ^JaJmH sH (h;ch 9CJOJQJ^JaJmH sH (h;ch 9CJOJQJ^JaJmH sH 1h;ch 9B*CJOJQJ^JaJmH phsH *====iP$$q&`#$/G$Ifa$gd 9$q&`#$/G$Ifgd 9kd$$If0$ 6`q044 la====iP$$q&`#$/G$Ifa$gd 9$q&`#$/G$Ifgd 9kdp$$If0$ 6`q044 la====iP$$q&`#$/G$Ifa$gd 9$q&`#$/G$Ifgd 9kd$$If0$ 6`q044 la==>>iP$$q&`#$/G$Ifa$gd 9$q&`#$/G$Ifgd 9kd$$If0$ 6`q044 la>>>#>iP$$q&`#$/G$Ifa$gd 9$q&`#$/G$Ifgd 9kdV $$If0$ 6`q044 la#>$>D>J>iP$$q&`#$/G$Ifa$gd 9$q&`#$/G$Ifgd 9kd $$If0$ 6`q044 laJ>K>p>v>iP$$q&`#$/G$Ifa$gd 9$q&`#$/G$Ifgd 9kd!$$If0$ 6`q044 lav>w>>>iP$$q&`#$/G$Ifa$gd 9$q&`#$/G$Ifgd 9kd<"$$If0$ 6`q044 la>>>>>>>>>>>>xxxxxxxxxi \ d7$gd 9gd 9kd"$$If0$ 6`q044 la >>>>A-AAAABlByBCC D DDDDD,D-DuEvEEEKFFFFHHwIȬuugggggguuV h;ch 9OJQJ^JmH sH h;ch 9H*OJQJ^Jh 9OJQJ^Jh;ch 9OJQJ\^J#h;ch 95OJQJ^JmH sH h;ch 9OJQJ^J7h;ch 95B*OJQJ\^JmH nHphsH tH;hLh 95B*CJOJQJ\^JmH nHphsH tH1h 95B*OJQJ\^JmH nHphsH tH >>>A-AB'CpDKFFFHwIIIII$$&`#$/7$G$Ifa$gd 9 $a$gd 9 $da$gd 9 dgd 9 J$da$gd 9$ \ d7$a$gd 9I J Jkd#$$Ifr 1p# li  6`2#44 ]ap2$$&`#$/7$G$Ifa$gd 9 J J JJJJJ$$&`#$/7$G$Ifa$gd 9$&`#$/7$G$Ifgd 9wI JJ)JCJYJhJ}JJJJJJKKKRNN$$Ifr (!  l!44 laQQQQQQQyffUUU$$*$1$Ifa$gd 9$dh$G$Ifa$gd 9kd?$$Ifr (!  l!44 laQQQQQQyffVE$$*$1$Ifa$gd 9$*$1$G$Ifgd 9$dh$G$Ifa$gd 9kd?$$Ifr (!  l!44 laQQQQ5RRySShT:UbWWWWWWW J$da$gd 9kd@$$Ifr (!  l!44 la$$*$1$G$Ifa$gd 9 QQQQ:UCUUUUUVVAVBVVVVVVVVVVWWW W/W̽zzz_J_J_J_J(h;ch 9CJOJQJ^JaJmH sH 4h;ch 9CJOJPJQJ^JaJmH nHsH tH%h 95CJOJQJ^JaJmH sH  h;ch 9OJQJ^JmH sH #h;ch 95OJQJ^JmH sH h;ch 9OJQJ^Jhdh 9CJOJQJ^J+h;ch 95CJOJQJ^JaJmH sH :h;ch 95CJOJPJQJ\^JaJmH nHsH tH:UUUUVFVqVV$$G$Ifa$gd 9$$Ifa$gd 9 $a$gd 9VVVVVVfSBB-$$*$1$G$Ifa$gd 9$$*$1$Ifa$gd 9$dh$G$Ifa$gd 9kd|A$$Ifֈ BY" ]"44 laVVVVVVQ>-$$*$1$Ifa$gd 9$dh$G$Ifa$gd 9kdcB$$If;ֈ BY" ]"44 la$$*$1$G$Ifa$gd 9VVVVVV-kdNC$$Ifֈ BY" ]"44 la$$*$1$G$Ifa$gd 9$$*$1$G$Ifa$gd 9$$*$1$Ifa$gd 9VVVVVVV$$*$1$G$Ifa$gd 9$$*$1$G$Ifa$gd 9$$*$1$Ifa$gd 9$dh$Ifa$gd 9VVWW WWfSBB-$$*$1$G$Ifa$gd 9$$*$1$Ifa$gd 9$dh$G$Ifa$gd 9kd5D$$Ifֈ BY" ]"44 laWWWW W%WS@/$$*$1$Ifa$gd 9$dh$G$Ifa$gd 9kdE$$Ifֈ BY" ]"44 la$$*$1$G$Ifa$gd 9%W*W/W3W7W$$*$1$G$Ifa$gd 9$$*$1$G$Ifa$gd 9$$*$1$Ifa$gd 9/W7W8W9WWWY#YYZ Z=ZAZFZcZkZpZZZZZZZZͻ~c~c~c~cE~:h;ch 95CJOJPJQJ\^JaJmH nHsH tH4h;ch 9CJOJPJQJ^JaJmH nHsH tH(h;ch 9CJOJQJ^JaJmH sH  h;ch 9OJQJ^JmH sH h 9OJQJ^Jh;ch 9OJQJ^J#h;ch 95OJQJ^JmH sH +h;ch 95CJOJQJ^JaJmH sH 7h;ch 95CJOJPJQJ^JaJmH nHsH tH7W8W9WYYYd_RG9$$Ifa$gd 9 $7$a$gd 9 J$da$gd 9$a$kdF$$Ifֈ BY" ]"44 laYYYYZZZ ZcR?$dh$G$Ifa$gd 9$dh$Ifa$gd 9kdF$$IfT$r 4;  l!44 laT$$G$Ifa$gd 9 Z,Z8Z=Z>ZAZO>$dh$Ifa$gd 9kdG$$IfTcr 4;  l!44 laT$$*$1$G$Ifa$gd 9$$*$1$Ifa$gd 9AZFZRZ^ZcZdZ>kdH$$IfTr 4;  l!44 laT$$*$1$G$Ifa$gd 9$$*$1$Ifa$gd 9$dh$G$Ifa$gd 9dZkZpZ|ZZZ$$*$1$G$Ifa$gd 9$$*$1$Ifa$gd 9$dh$G$Ifa$gd 9$dh$Ifa$gd 9ZZZZZZudQ@@$$*$1$Ifa$gd 9$dh$G$Ifa$gd 9$dh$Ifa$gd 9kduI$$IfTr 4;  l!44 laTZZZZZZZbOO?$*$1$G$Ifgd 9$dh$G$Ifa$gd 9kdJJ$$IfTr 4;  l!44 laT$$*$1$G$Ifa$gd 9ZZZZZ\^QD9D J$da$gd 9 $da$gd 9kdK$$IfTr 4;  l!44 laT$$*$1$G$Ifa$gd 9$$*$1$Ifa$gd 9ZZ\\\\\^^^^U_V_c_d_______E`]```x``````ŷŷŔŔ~k~k~k~V~V~V~V~(h;ch 9CJOJQJ^JaJmH sH %h 95CJOJQJ^JaJmH sH +h;ch 95CJOJQJ^JaJmH sH #h;ch 95OJQJ^JmH sH  hEh 9OJQJ^JmH sH h 9OJQJ^JmH sH  h;ch 9OJQJ^JmH sH h 9OJQJ^Jh;ch 9OJQJ^J$hMrh 9CJOJQJ^JmH sH ^d_w____`A`$$G$Ifa$gd 9$$Ifa$gd 9 $a$gd 9A`B`E`J`O`T`X`\`fUBBBBB$d$G$Ifa$gd 9$dh$Ifa$gd 9kdK$$Ifֈ BY" ]"44 la\`]```e`j`o`s`w`dS@@@@@$d$G$Ifa$gd 9$dh$Ifa$gd 9kdL$$Ifֈ BY" ]"44 law`x```````dS@@@@@$d$G$Ifa$gd 9$dh$Ifa$gd 9kdM$$Ifֈ BY" ]"44 la````````dS@@@@@$d$G$Ifa$gd 9$dh$Ifa$gd 9kdN$$Ifֈ BY" ]"44 la````````dQ>>>>>$d$G$Ifa$gd 9$dh$G$Ifa$gd 9kdO$$Ifֈ BY" ]"44 la`````0aaaaabb"b#b,b1bNbObVb]b^b_b҈m҈m҈mO<$h2Oh 9CJOJQJ^JmH sH :h;ch 95CJOJPJQJ\^JaJmH nHsH tH4h;ch 9CJOJPJQJ^JaJmH nHsH tH(h;ch 9CJOJQJ^JaJmH sH  h;ch 9OJQJ^JmH sH #h;ch 95OJQJ^JmH sH #hMrh 95OJQJ^JmH sH +h;ch 95CJOJQJ^JaJmH sH .h;ch 95CJOJQJ\^JaJmH sH ```0aAa\adWL>.$$G$Ifa$gd 9$$Ifa$gd 9 $7$a$gd 9 $da$gd 9kdP$$Ifֈ BY" ]"44 la\aaaaaaaaiVE$$*$1$Ifa$gd 9$dh$G$Ifa$gd 9kdrQ$$Ifr (!  l!44 la$$G$Ifa$gd 9aaaabbQ>.$$G$Ifa$gd 9$dh$G$Ifa$gd 9kdCR$$IfEr (!  l!44 la$$*$1$G$Ifa$gd 9$$*$1$Ifa$gd 9bbb"b#b,bS@$dh$G$Ifa$gd 9kdS$$Ifr (!  l!44 la$$*$1$G$Ifa$gd 9$$*$1$Ifa$gd 9,b1b=bIbNbObCkdS$$Ifr (!  l!44 la$$*$1$G$Ifa$gd 9$$*$1$Ifa$gd 9$$G$Ifa$gd 9ObUbVbWbXb]b$$*$1$G$Ifa$gd 9$$*$1$Ifa$gd 9$$*$1$G$Ifa$gd 9$$G$Ifa$gd 9$dh$G$Ifa$gd 9]b^b_bcddefxgylaaaTJ $a$gd 9 J$da$gd 9 J$da$gd 9 $da$gd 9kdT$$Ifr (!  l!44 la_bbb e$e1e5effxgggggggbhzhhhhhhhhhho!ooooưp]$h2Oh 9CJOJQJ^JmH sH .h;ch 95CJOJQJ\^JaJmH sH (h;ch 9CJOJQJ^JaJmH sH %h 95CJOJQJ^JaJmH sH +h;ch 95CJOJQJ^JaJmH sH  h;ch 9OJQJ^JmH sH #h;ch 95OJQJ^JmH sH h 9OJQJ^Jh;ch 9OJQJ^Jxggggg)hShThHkdU$$Ifֈ BY" ]"44 la$$G$Ifa$gd 9$$Ifa$gd 9ThbhghlhqhuhyhzhAkdrV$$Ifֈ BY" ]"44 la$$G$Ifa$gd 9$dh$G$Ifa$gd 9zhhhhhhhhAkd]W$$Ifֈ BY" ]"44 la$$G$Ifa$gd 9$dh$G$Ifa$gd 9hhhhhhhhAkdHX$$Ifֈ BY" ]"44 la$$G$Ifa$gd 9$dh$G$Ifa$gd 9hhhhhhhhAkd3Y$$Ifֈ BY" ]"44 la$$G$Ifa$gd 9$dh$G$Ifa$gd 9hhti|moooo p1pXppp$$G$Ifa$gd 9$$&#$/G$Ifa$gd 9 $a$gd 9 J$da$gd 9 $da$gd 9 ooopp,p-pSpTppppppppppq q-q1qqqrq{qqqqqqqqq3r4rArIrMrnrҼ||a|a|a|a||a|a|a|a||a|4h;ch 9CJOJPJQJ^JaJmH nHsH tH(h;ch 9CJOJQJ^JaJmH sH .h;ch 95CJOJQJ\^JaJmH sH %h 95CJOJQJ^JaJmH sH +h;ch 95CJOJQJ^JaJmH sH  h;ch 9OJQJ^JmH sH 7h;ch 95B*OJQJ\^JmH nHphsH tH&pppG0dh$&#$/G$Ifgd 9kdZ$$If֞nJe Y"1 6O#44 lappppppp$$&#$/G$Ifa$gd 9pppG.dh$&#$/G$Ifgd 9kdW[$$If֞nJe Y"1 6O#44 lappppppp$$&#$/G$Ifa$gd 9$$&#$*$/1$Ifa$gd 9pppG.dh$&#$/G$Ifgd 9kd\$$If֞nJe Y"1 6O#44 lappppppq$$&#$/G$Ifa$gd 9$$&#$*$/1$Ifa$gd 9qqqG0dh$&#$/Ifgd 9kd]$$If֞nJe Y"1 6O#44 laq qqqq q%q$$&#$/G$Ifa$gd 9$$&#$*$/1$Ifa$gd 9%q&q-qG.dh$&#$/G$Ifgd 9kd_$$If֞nJe Y"1 6O#44 la-q1q6q;q@qEqJq$$&#$/G$Ifa$gd 9$$&#$*$/1$Ifa$gd 9JqKqWqG.dh$&#$/G$Ifgd 9kd;`$$If֞nJe Y"1 6O#44 laWqXq]qbqgqlqqq$$&#$/G$Ifa$gd 9qqrquqG0dh$&#$/G$Ifgd 9kdta$$If֞nJe Y"1 6O#44 lauqvqwqxqyqzq{q$$&#$/G$Ifa$gd 9{q|qqG.dh$&#$/G$Ifgd 9kdb$$If֞nJe Y"1 6O#44 laqqqqqqq$$&#$/G$Ifa$gd 9$$&#$*$/1$Ifa$gd 9qqqG.dh$&#$/G$Ifgd 9kdc$$If֞nJe Y"1 6O#44 laqqqqqqq$$&#$/G$Ifa$gd 9$$&#$*$/1$Ifa$gd 9qqqG0dh$&#$/Ifgd 9kde$$If֞nJe Y"1 6O#44 laqqqqqqq$$&#$/G$Ifa$gd 9$$&#$*$/1$Ifa$gd 9qqqG.dh$&#$/G$Ifgd 9kdXf$$If֞nJe Y"1 6O#44 laqqqqrr r$$&#$/G$Ifa$gd 9$$&#$*$/1$Ifa$gd 9 r rrG.dh$&#$/G$Ifgd 9kdg$$If֞nJe Y"1 6O#44 larrr$r)r.r3r$$&#$/G$Ifa$gd 93r4r;rG0dh$&#$/G$Ifgd 9kdh$$If֞nJe Y"1 6O#44 la;rr?r@rAr$$&#$/G$Ifa$gd 9ArBrIrG.dh$&#$/G$Ifgd 9kdj$$If֞nJe Y"1 6O#44 laIrMrRrWr\rarfr$$&#$/G$Ifa$gd 9$$&#$*$/1$Ifa$gd 9frgrnrG.dh$&#$/G$Ifgd 9kds_scsssssssssNuOuPuXuuuииxm[J[ h;ch 9OJQJ^JmH sH #h;ch 95OJQJ^JmH sH h]Gh 9mH sH h 9OJQJ^Jh;ch 9OJQJ^J$h;ch 9CJOJQJ^JmH sH +h;ch 95CJOJQJ^JaJmH sH .h;ch 95CJOJQJ\^JaJmH sH (h;ch 9CJOJQJ^JaJmH sH 4h;ch 9CJOJPJQJ^JaJmH nHsH tHrrrG0dh$&#$/Ifgd 9kdul$$If֞nJe Y"1 6O#44 larrrrrrr$$&#$/G$Ifa$gd 9$$&#$*$/1$Ifa$gd 9rrrG.dh$&#$/G$Ifgd 9kdm$$If֞nJe Y"1 6O#44 larrrrrrr$$&#$/G$Ifa$gd 9$$&#$*$/1$Ifa$gd 9rrrG.dh$&#$/G$Ifgd 9kdn$$If֞nJe Y"1 6O#44 larrrrrrs$$&#$/G$Ifa$gd 9sssG0dh$&#$/G$Ifgd 9kd p$$If֞nJe Y"1 6O#44 lass s s s s s$$&#$/G$Ifa$gd 9 sssG.dh$&#$/G$Ifgd 9kdYq$$If֞nJe Y"1 6O#44 lasss#s(s-s2s$$&#$/G$Ifa$gd 9$$&#$*$/1$Ifa$gd 92s3s:sG.dh$&#$/G$Ifgd 9kdr$$If֞nJe Y"1 6O#44 la:s>sCsHsMsRsWs$$&#$/G$Ifa$gd 9$$&#$*$/1$Ifa$gd 9WsXs_sG0dh$&#$/Ifgd 9kds$$If֞nJe Y"1 6O#44 la_scshsmsrsws|s$$&#$/G$Ifa$gd 9$$&#$*$/1$Ifa$gd 9|s}ssG.dh$&#$/G$Ifgd 9kdu$$If֞nJe Y"1 6O#44 lasssssss$$&#$/G$Ifa$gd 9$$&#$*$/1$Ifa$gd 9sssG.dh$&#$/G$Ifgd 9kd=v$$If֞nJe Y"1 6O#44 lasssssss$$&#$/G$Ifa$gd 9sssG3$&#$/G$Ifgd 9kdvw$$If֞nJe Y"1 6O#44 lasssssss$$&#$/G$Ifa$gd 9ssstOuG:// J$da$gd 9 $da$gd 9kdx$$If֞nJe Y"1 6O#44 laOuPuuuv;vbvvvv$$&`#$/G$Ifa$gd 9 $a$gd 9gd 9 uu6v7v]v^vvvvvvvvvvvvvvvw w#w$wCwFwGwfwjwkwwwwwwwٮٙٙ~b~b~b~b~7h;ch 9CJOJPJQJ\^JaJmH nHsH tH4h;ch 9CJOJPJQJ^JaJmH nHsH tH(h;ch 9CJOJQJ^JaJmH sH .h;ch 95CJOJQJ\^JaJmH sH %h 95CJOJQJ^JaJmH sH +h;ch 95CJOJQJ^JaJmH sH  h;ch 9OJQJ^JmH sH #vvvvI4$$&`#$/G$Ifa$gd 9dh$&`#$/G$Ifgd 9kdy$$If֞ Y"h 6`O#44 lavvvvvv$$&`#$/G$Ifa$gd 9vvvI2dh$&`#$/G$Ifgd 9kd{$$If֞ Y"h 6`O#44 lavww wwww$$&`#$/G$Ifa$gd 9$$&`#$*$/1$Ifa$gd 9ww wI2dh$&`#$/G$Ifgd 9kdR|$$If֞ Y"h 6`O#44 la w$w)w.w3w7w;w$$&`#$/G$Ifa$gd 9$$&`#$*$/1$Ifa$gd 9;w?IJ`͝ܝݝ!ͼjV<RïïïïÃ*hLh 96OJQJ]^JaJmH sH *hLh 96OJQJ\^JaJmH sH 'hLh 9OJQJ\^JaJmH sH $hLh 9OJQJ^JaJmH sH 'hLh 96OJQJ^JaJmH sH *hLh 96H*OJQJ^JaJmH sH 0ڦoڧFR˫^FFˮzH"HJR7$ $<P]a$gd 9Reƪڪ|}ȫɫ4HF 3F®ˮ;mmYCYYmYCYY*hLh 96OJQJ\^JaJmH sH 'hLh 9OJQJ\^JaJmH sH 'hLh 96OJQJ^JaJmH sH 'hLh 9OJQJ]^JaJmH sH $hLh 9OJQJ^JaJmH sH *hLh 96OJQJ]^JaJmH sH h]Gh 9OJQJ^JaJhLh 96OJQJ^JaJhLh 9OJQJ]^JaJ$h]Gh 9OJQJ^JaJmH sH ˮ5cz3̰Nqu3׳uô?67ӷ678wh]Gh 9OJQJ^JaJh]Gh 96OJQJ^JaJ*hLh 96OJQJ\^JaJmH sH 'hLh 9OJQJ\^JaJmH sH 0hLh 9OJPJQJ^JaJmH nHsH tH'hLh 96OJQJ^JaJmH sH $hLh 9OJQJ^JaJmH sH -*$,,W(2 $a$gd 9=$a$gd 9 8$a$gd 9$ $<P]a$gd 9 *$1$gd 9Ĺ]K,@YZ͹͂rccO<$hLh 9OJQJ^JaJmH sH 'hLh 96OJQJ^JaJmH sH h]Gh 9OJQJ^JaJhLh 96OJQJ^JaJhLh 9OJQJ^JaJ"h]Gh 96OJQJ\^JaJ*hLh 96OJQJ\^JaJmH sH 'hLh 9OJQJ\^JaJmH sH h]Gh 9OJQJ\^JaJ"hLh 96OJQJ\^JaJhLh 9OJQJ\^JaJZnp]^cfBO{뮣}k}k}k}k}k}k}k}V(hI1Xh 9CJOJQJ^JaJmH sH "h 9CJOJQJ^JaJmH sH (hJ1jh 9CJOJQJ^JaJmH sH  hJ1jh 9OJQJ^JmH sH hJ1jh 9mH sH !jhJ1jh 90J+UmH sH *hLh 96OJQJ]^JaJmH sH *hLh 9H*OJQJ]^JaJmH sH 'hLh 9OJQJ]^JaJmH sH /1LV'()*1234GHz~!$2345ƸƸƴqbqqqbhJ1jh 9CJaJmH sH "h 9CJOJQJ^JaJmH sH (hJ1jh 9CJOJQJ^JaJmH sH hJ1jh 9mH sH !jhJ1jh 90J+UmH sH h 9h 9CJOJQJ^JaJ heh 9CJOJQJ^JaJ hI1Xh 9CJOJQJ^JaJ-jhI1Xh 90J+CJOJQJU^JaJ&7Wj3+Pb1u 8$a$gd 9$7$8$H$a$gd 9 $a$gd 98$7$8$H$a$gd 9A$ & F ^`a$gd 9)*+,-2A0OPQRZĹtوووووc!jh'jh 90J+UmH sH 'h'jh 9CJOJQJ]aJmH sH (h'jh 9CJOJQJ^JaJmH sH h'jh 9mH sH !jhJ1jh 90J+UmH sH hJ1jh 9mH sH (h]Gh 9CJOJQJ^JaJmH sH "h 9CJOJQJ^JaJmH sH (hQ$h 9CJOJQJ^JaJmH sH A[abc;ʯsdsO:(h]Gh 9CJOJQJ^JaJmH sH (h;Ph 9CJOJQJ^JaJmH sH hJ1jh 9CJaJmH sH !jhJ1jh 90J+UmH sH "h 9CJOJQJ^JaJmH sH 1jhJ1jh 90J CJOJQJUaJmH sH 5jhJ1jh 90J+CJOJQJU^JaJmH sH hJ1jh 9mH sH +hJ1jh 9CJOJQJ\^JaJmH sH (hJ1jh 9CJOJQJ^JaJmH sH ;=uvw78qruپٛٛمmWAم+hJ1jh 9CJH*OJQJ^JaJmH sH +hJ1jh 9CJH*OJQJ^JaJmH sH .hJ1jh 96CJH*OJQJ^JaJmH sH +hJ1jh 96CJOJQJ^JaJmH sH .hJ1jh 96CJOJQJ]^JaJmH sH hJ1jh 9mH sH 5jhJ1jh 90J+CJOJQJU^JaJmH sH (hJ1jh 9CJOJQJ^JaJmH sH "h 9CJOJQJ^JaJmH sH (),st&'*ӽӽӓӽ}g}gӽӓVKhJ1jh 9mH sH !jhJ1jh 90J+UmH sH +hJ1jh 9CJH*OJQJ^JaJmH sH +hJ1jh 9CJH*OJQJ^JaJmH sH "h 9CJOJQJ^JaJmH sH .hJ1jh 96CJH*OJQJ^JaJmH sH +hJ1jh 96CJOJQJ^JaJmH sH (hJ1jh 9CJOJQJ^JaJmH sH .hJ1jh 96CJH*OJQJ^JaJmH sH 7<`d UVWX'ABVWXY[\^_abdνΨΤ}yoioieh 9 h 90Jjh 90JUh<h%CJOJQJ^JaJ hlA"hlA"CJOJQJ^JaJjhGUhG(hlCWh 9CJOJQJ^JaJmH sH !jhJ1jh 90J+UmH sH hJ1jh 9mH sH "h 9CJOJQJ^JaJmH sH (hJ1jh 9CJOJQJ^JaJmH sH #VWXZ[]^`acd !gdlA" 6&`#$gdlA"6h]hgd 9 6&`#$gd 9 (#gdlA"8$a$gd 9 $a$gd 9 ե{g'hLh 9OJQJ]^JaJmH sH hGh 9 hlA"h 9CJOJQJ^JaJ hlA"hlA"CJOJQJ^JaJ4jhlA"hlA"CJOJQJU^JaJmHnHu)h%0JCJOJQJ^JaJmHnHu$hlA"hlA"0JCJOJQJ^JaJ-jhlA"hlA"0JCJOJQJU^JaJ $ $<P]a$gd 96&P 1h:p 9|. A!"#$%77 FCd{LǞJFIF,,C     C   A " }!1AQa"q2#BR$3br %&'()*456789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz w!1AQaq"2B #3Rbr $4%&'()*56789:CDEFGHIJSTUVWXYZcdefghijstuvwxyz ?S(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((a9+v*N1) ñR4V;NA =@ GuXDƫ 7LS$op5=Ԯۋޣ[k7VgDoRA=xn27G_ʰh&]ë6N?p*&#j3ЏeYRhɬuv~ JcjQ՛ZMt,69`D1ҝJSUr!؜lS~?5|K紟٣si?QQG4,{'h\OTQ.Ŀk{I}Q{8h]Ö=#Qտ_+2*E>ywb' jU. y>ER5ԇFlnqSnÌ^1?Ej[<4NԎ<Err NA1M:bVtV$Z̨u ŬBnʞk]L%BzS#%\Ɵ['}ESQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQQqYR]^ܱ*q/XkN~Yu [+o} Xds^MNyCbXAObA֩QUJ;2%F v7]?:7CjX.?#=J%$IS,騬]^7e7A]fg(;I* ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ) @VR?ɩrQݔ)lTVD?wjwmyb o} 縎1pqUdNrı&剓1n)5?q_&3!ߍWIvtF#$J(B((((((((((((((((((((((7Ҡn.M)+3cU֝Wx3Ϋ6(09ԵpQ@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@ q@f3Uwg*4=Q2k mJySu,ŏ9ibWGLp3j]b$.X9\`By˩{gsvQEaIlQE ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (- j6Z?OOoG"ʁSЊ͕Z?s?uQcz;YP:NOs(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((->gBmkUa ٬iN{#TI&C7#bK}45^eTu ՛Z#O9u <轪*Gdry4QEdlQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQE\ӯ>( ~C}+yX8W+ZMlB>һplÈ}QEzQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQES$"J}b(Ac.0FC5P Y9ݴ{UVb$}MrK;#iJ2#ROQPcmUYUg\h ''&((((((((((((((((((((((((((((((((((((9:;+s y9ܘg 7jޯ^sƭg+Q[Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@T^E})6i7'$6$Z準rw>,DVڝPN[mOC@;gͫΨQ\r9yyCbZmVNEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPTWGe0XzbѧôgqɮT!>vXI9˹onqvC ssOv/rNOe'-[;# ((((((((((((((((((((((((((((((((((((((((((1\!桢vwWV:CGCEEi'nNusjQE1Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@T3]E MM艩,p5qrDKΖI=+xSiK׸>sYSL~Riϩ 0@'''EV&EPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEP&m⊃Dv&EEz]FkQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQMgTfT.51JqSQN*0dgs±羚{-W9.ϫK(!p6b,KSIEqR#QRXQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQE&}W4StOWmErQ@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@^{`3}ejI`Xά!6dkKup+>Y$k-ݤbKWF:RIgv%؜QErRIh(aEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPob4OWmErQ@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@SY ::Tn5xOV\a\ӯ <׹⃀w˝NYؾSZs;Brry4QE`tQ@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@'}?)SL?b͊(N`((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((Y)6I)J ۍd >eIؗbsrNa-eqq}{VdR]ҡVSݝХl((((((((((((((((((((((((((((((((((((((((((((((((((((((( ]]QShѕ-EzUFhQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEC=v.IcI5G,¹vVUưCh54b޹'KHI- +d!\k6IZSbM6IOvwœa𠢊+3@(((((((((((((((((((((((((((((((((((((((((((((((((((((((tiH:cN@z*xj z^UG'y6>($(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((;u˰ԛKV4T3Gnvڲu|Ch=k=ݝ1,Os\ĥNaZ7:þV!xv3>Epr8AETQ@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@XͺPFW*ifF|8tʴieV\lآ+<@(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((kԛKV4T3Gnvڳ.u|Ch=k9ݤbK$)ifΰmgf%i(NSݝa𠢊* (((((((((((((((((((((((((((((((((((((((((((((((((((((((((((|Py4]d5D8@oJFr8qRTGEhQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEG$ v ZMq}*)#rf$a#YHҶb޹'KHvSJZCBXg6SY,I>W )(4 ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (.iPy9=ѡ~}5^1柠QEsQ@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@R3b"ĥg]k XcڲI]Y##O)k- c?U$+eؓM'RSaN0QYQ@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@*. 'U&6q5P4"r勑yp+Jw(b ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( BBT8AYSW<-YNZEon=ԗcP^|{)FEVFEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEP[TU=ۓXְ]*vvpbQEzQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQET7Q.]ZIr/zuc ͡JU64u''VM֥- *$Ey)iЌ5݅QX!EPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPE꣩8654k|)ZJK^8E#ĩ>y6QEhdQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQESY {uְJ7^`! M(, (\VT&mōG^}LDt= xxYj;Yb{mW)QEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEoz/K0x-UqtЇ4˩=Q^Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Uk'- %vR,tWzpeTn՛uIrp>ERb:@2{np?:TQ\MUQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQJb'(jfy*ڂ[[w~=z5iI\((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((Ψ2@ B w%a^Օ,3nv,k!GHvSZD^՚PV1zy%I4W)ф#hQPXQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEU*8sWRU.@'WGgn-U{y_͈-=Q^Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@!8n.\d]jO~ʦ7ZpAY77p* +ΝYOэ?P+p((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((tQdT^bl$Å[U"%E*Z)C6fU _p)wi5S;ieJ[ؾR+Rrwg *J ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (mfTb쉔U٣ya5z+ٌTNNrraEUQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQE⢞;u˷ޱI'ʦQ?ZƥXޝTcBS_cu%eӵEEy*ʦNiQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQE(k*ϭP:Vz8zv\159"QEvAEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEVPu2*1rvEp,@wjs{-LCzD)cbKzmWݰQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQETvuN =N4<[R/# =|*(E0QEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQE!8K2Bw,;縒O+xE:=^w4,_(z$r}M%r=8B0VQEQ@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@T֖`8GaM&ݐQWe"{y8vi"@0O^8jMԕŠ(L(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((BBYO='8]BKGlvǷzƻԤ$)(VIVXkΩ^ShJW ((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((@,@$>[B35KI,fֶ+ӷ7VQ]QEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQE5"Pv9>Qճ-ݝ1,Os\u1 iYn$gjz E9;ьTUQE ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( LuUKP2MtVVkXN+z4z}tܙFT`(XŠ((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((l,JYXR)Ԍ*BvX7]{(I,I''WRz:1P+(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((fP3}'dLzM\Ҵ`tbPnraEUQ@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@S$bR@lzv7|<Vq%I*ifMsy%eGJ+褢(0((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((P =5ġs]-acf-bےjzir+&^weQErQ@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@בcR@XR9ԍ5)ʣлwGlbrse*"KI=%y*ʧS~EV&EPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPZMu>Pjdnd jyPhRE[{Z( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (jYUKB;a~U+XR4$LEK ޳&WmIEYQHaEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPR[̡r;Tj(&E|5*~5K +aT` +J#n)(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((f 2Nej!ݍg9 Q.+KbI=%y+JSz (:(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((+KKLW9"'5ݖ4%DAZ4)kׄTnn(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((() ɠnnLwŔo^²F1$%J:GsYlX{#aUh''vzQ (AEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPE-\GSId&Wdjg#Px%E`TҦ3ǫU~AEVEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEFSK|S)(7hgKtXz%wL94jWshN ^(:(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((ɠ"*]DSP?gM>zT)rg׭cQEqQ@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@5XԖ z;U99oĹǎ¹VPntҡ*WI_Z'&+͔BB(,(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((+[K4Ϙ [@``tVh8(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((Kdi+۲$$X.RO*GOOZ\qKmf+HŘOsIEwQ@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Z7RQ5ԡG hw{r.UX*N((((((((((((((((((((((((((((((((((*ż,SVN?݌K-҇< ן~ByG*{Y=oeO{^Q ?4Qg=>yG(ן~BGpT^Q E}S^ן~ByG*{YeO{^Q ?4Qg=>yG(ן~BGpT^Q E}S^ן~ByG*{YeO{^Q ?4Qg=>yG(ן~BGpT=>A85U.mJғ0F<QEzGQEQEQEQEQEQEQEQEQEQEQEQEQEQEXnè9IT[U'!՟sT/k?!GF=S^ן~ByG*{YeO{^Q ?4Qg=>yG(ן~BGpT^Q E}S^ן~ByG*{YeO{^Q ?4Qg=>yG(ן~B* { ֲBZGd̦SWh}W$3|9%v,5kKSu Xb){}w3aQhڧs;5ذyF=>w3aQhڧs;5ذyF=>w3aQhڧs;5ذyF=>w3aQhڧs;5ذyF=>w3aQhڧs7/!´?mSt1%TgD[4TAEEm"t5 N;J*=MnTAƱxi-qQ{ӗDqnTf*rHOfEEVfEPEPEPEPEPEPEPEPEPEPEP ⺚2O8 r;5ذyF4~ڧs;5ذyF=>w3aQhڧs;5ذyF=>w3aQhڧs;5ذyF=>w3aQhڧs;5ذyF=>w3aQhڧs;5ذyF=>w3aQhڧs;5ذyF=>w3aQhڧs;5ذyF=>w3aQhڧs;5ذyF=>w3aQhڧs;5ذyF=>w3aQhڧs;5ذyF=>w3aQhڧs;5ذyF=>w3aQhڧs;5ذyF=>w3aQhڧs;5ذyF=>w3aQhڧs;5EգHz=;aZJ젢(QEQEQEQE%bYCZذy2>J+/J,ŇG,?jѢ>'ŇG,?jѢcO{jXb(4ŇG,?jѢcO{jXb(4ŇG,?jѢcO{jXb(4ŇG,?jѢcO{jXb(4ŇG,?jѢcO{jXb(4ŇG,?jѢcO{jXb(4ŇG,?jѢcO{jXb(4ŇG,?jѢcO{jXb(4ŋIZTQimS?4kR??zԢcONWiiZRbbML}zC[T^,MCm2?~Mi2 lFZK9]ӡ"5LcD-&ݣ°eo< D:W=JJWgM:klQsՃ: {)C]QN Z-F z>g;Z((((((((((((((((((((((((((((((((('ɼnlWE`ǁ\yjz8XhQEqEPEPEPEPEPEPEPEPEPEPNn:mQXFv>Z3NGҴkڄԏ$B(3 ( ( ( ( ( ( ( ( ( ( ( ( ( IQOOc[ZJW {`(QEQEQEQEQETֲ]>SU--!cMlBQB]T9k-J #vժ(EEEYdŠ($(((((((((((((() 0FG-JJl67˝6k|o_Q]: Q[z\sn-}1JNjmQXQ@Q@Q@Q@Q@Q@Q@Q@Q@kk <^(8((((((((((((((((((((((((((4Y}i)_֒'﭂(aEPEPEPEP?WI\ݏ}GWYb$QEvAEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPHNizV&緖OeRiu%dG_0F:{:(&Rrwg+ *J +a QQBml&њv/G(nejUA D,ЖUixYFkZu w¬gΔIEVAEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEdFN0; }b̘F ֳHe9W9sI܄y"QEAQEQEQEQEQEQEQEQEQEQEQEkNȺB~|+4b袊8(((((((((((((DRTs=_֒}i+{(QEQEQEQStQƚM!6ȣ` VŖaӰ6qڮeҠ<ʸ-#)h0((((((((((((((((((K L]C }N7k[eU*C=QLY!=+ϭCގǣF7=(ࢊ((((((((]Mr]MwvgQ]QEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQER4?o%+W=QE ((((>J+ҺJp W\Si(\((((((((((((+SD 0o"tCZS$2x4tR:ZO(((((((((((((*9IU%G???ʓٍne}i)_֒7-(aEPEPE9` 1+bKX´9TzTkRaSӹX*)(R8ZMJ (2 ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( B20ih MNo1zJϮ:FA~( yrVeV(C(((((((t|WS\|WS]]bAEWqQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQE= rIJ}=}lQE ( ( ( ('ҺJ?/3 + ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (:ٗbҦRPWe.nn䩉zJ'''+1f$ԚJ*TuS +3P(((((Q@:]Z3yJJqbxv40((((((((((((*9IU%G???ʓٍne}i)_֒7-*[{i._j Ji6쁴r'(Ge/XKE~jzr#ͫr;JZ(È(((((((((((((((((((((((((l$FSЌW5q fCOY+(LD/nf|eE枠QEQEQEQEQEQEh3((((((((((((((((((((((((((()CKHz֒}i+{(QEQEQEQEOcQt_]%z8_f+AEWaQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQP]ݥ{zmE]''d%GǠ~iy 4s!w9>yUjTֻQXEPEPEPEPEPEPEPEPEPTWCcqwkCG1c=tP,CmEHQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEV&qL&E18\̲dg=k+.S ˛( ( ( ( ( ( ( ( ( ( ( ( ( ( ( O]!N/RM3϶FO^wWG+ ((((((((((((DRTs=_֒ rsZVVq$Îknj%7d{Sq+YitC>!-j zP-zt*kUGEVEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPU\z HFF &8WsO.yugcNEP0(((((]Mr]MwvgQ]QEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQER4?o%+W=QE ((((>J+ҺJp v uo#I݅QT@QEQEQEQEQEQEQEQEV~w-Qmϰ }?ưڃhނRLs=?jOtSi>s=?jOtSi>s=?jOtSi>s=?jOtSi>s=?VTO{(v4YuE?4c՗ERQu%Цq0jwp>YkAV&Ks)a`~RwK8aW\+Fzu8Q=^Ŋ(0 ( ( ( ( ( ( ( ( ( (0udvU*c=YV=.QEQEQEQEQEQEh3((((((((((( Iȼ~j9by[V;crIh[{zѽj~Gh[{zѽhT}Φ巷֏.Gh[{zѽhT}Φ巷֏.Gh[{zѽhT}Φ巷֏.Gh[{zѽhT}Φ巷֏.Gh[{zѽhT}Φ巷֏.Gh[{zѽhT}Φ巷֏.Gh[{zѽhT}Φ巷֏.Gh[{zѽhT}Φ5oZ<T}ZJ( ( ( ( ( ('ҺJ?/3 + ( ( ( ( ( ( ( ( (1utRLԿOV&u$=Sm???*???*EGr;???*???*E}CsZZtQ'=;???*???*E}CtjT ^Xl O&¨4IbtZ4f9r}*͕ڧLjwƛmQt(ɦF2c'W*W"H#a7ֳ}mSH({a8?5$M u*}t TMQEQEQEQEQEQEQEQEQEQEQEɉ9[5R9znҺ*bUp+ ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( a7zusYU$5yeXy&+=((((((((((((((((*:D]xqƷ.YCv(XŠ((((((((() @J}>H_) z: Zf},=yF,$_>ָCdu_ScVANqlx/p)((((((((+#[׬o'kч"2袊`(((((()8e8"EX^8uniͼ]"8)#5QάG^uQ]'0QEQEQEQEQEQEQEQEQE#ܓY^M3 QXEPEPEPEPEP⺚⺚; ((((((((((Zx>6{QEAQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQE=}GW7cQt~yQ]QEQEQEQEQEQEQEQEQE_'֫UK?djg3ܧ * (()XЕBnڱa$$핊/֝gfrǫUPyu9 (@(vivabM)+1bxB0GQh. ,Μ&?g+t=5=o((((((((((|yX,ks]< P@5݅{ŭ(<(((((((((((((((((((((((F`X5gvy67+UG + ( ( ( ( ( ( ( ks??8hePucԭc'¥NIEw0((((((()Q8a4PQ hFn>#yJүfԏ$B( Š(((((((*ZP_rQWeF.NȚkK;üCqr.YzTUլ)PPQEsAJx}i)W{D)կS[ (b ( ( ( ( ( ( ( ( }?Ƶ#[6ta( ( ( ( ( ( ( ( ѦnSĭ;/;Mޛ6(((((((((k2PV((((((]Mr]MwvgQ]QEQEQEQEQEQEQEQEQEjVjVZ= (((((((((((((((((((((((>J+ҺJp *ҟƌ ݢ+<@((((((((Bp( W}dg R'E^,4=k)QPXQEQEQEQEQEh3((((((((((?zV?z^-O?QPhQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEOcQt_]%z8_f+AEWaQEQEQEQEQEQEQEQEQEs~gR>ZYL)(@@2 _D&WbC NTdڧ4vkjsVkӣGW֬(9((((kFk6DbQEQEQEQEQEQEQEQEQEQEWOn1 Tn`=k T]]+<ࢊ((((((((((((((((((((((fbִkԦxj养8xsNQEygQEQEQEQEQEQEQE i1i)rųvQ?1RQE{I[Cn~Ʊ+O2SEs,X+ҹaex(C(((((((+SEV]Io)tq֔$̪G =ЌZO((((()̰8vK{ ºsլ:)Qu5M}LΩQEy=hAYQRPQEQERZJU@Q u6?kǂ (((((((((5Oz}?ƹ #.(((((((((4H?eAڮz&pJзrQ^Q@Q@Q@Q@Q@Q@Q@Q@A{(F'Z>.X6kJ6{QEAQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQE=}GW7cQt~yQ]QEQEQEQEQEQEQEQEQE_'֫UK?djg3ܧ }*RmJmVZsӭmR09}jjQPyU:-((((((+/\=I5\?vJзsԿbQ^YQ@Q@Q@Q@Q@Q@Q@Q@Q@rg8Fb= ݦ@]zeg~AEWiQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEAy7n޹I$I]j~V!?eW4pQ\XQEQEQEQEQEQEQEV#CVEtP|dkLL w'+<{Rɺ`b֡%@:ulDy~V\s"(,(((((((( *6)9d?sƷk֣.h#ǯI+s(((* sҠҲ1$V؝hs{t<]IQEyVzI[DQE ( ( ( UIJx}h#VAN~^^ESQEQEQEQEQEQEQEQEVF5YO=᳣DeEQEQEQEQEQEQEQEOkhO^ҚNNMM:3[`b[h(ԵRx{I_QEQEQEQEQEQEQEQEQEFǠncq39ZZ q]O Os>EW!QEQEQEQEQEQE:?+Z?+.{+ ( ( ( ( ( ( ( ( (9O?խO?׋SgOAETQ@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@_]%sv?WI^gQEqQ@Q@Q@Q@Q@Q@Q@Q@Q@}jYԿO%ݾ :xNSidM7mܾw5klm_n*ZiRTV(9(((((*9Kx˹i7!.W=֦kKNzT5֩%zi8QEQEQEQEQEQEQEQEQEQEhц q*ڪ:D^]rzj1=!ՆT*{|^Hޠ;_2L(EQ@Q@Q@Q@Q@Q@Q@ QkQ4HbtYDʜuir80yTQEzGQEQLU 9݆C 2NcjG,*AXTϫ^OFޘQEwQ@Q@Q@Q@Q@*_> u_ScVANqlx/p)((((((((+#[תl*wǶkrHڌ&9+[ z?;ׯ?Tz_Xɢ;ף z=N}̚+[ z?;ףTXɢ;ף z=N}̚+[wJ45^aSOEm."i6s}Xy00jh%Oo1,kRp̥TeoVq,JQON0IOaEVaEPEPEPEPEPEPEPEPP\-%R;ԳX^8AVj{8ѤKȂYieWm(((((((Gu5Gu5߅ٞv/tQEwEPEPEPEPEPEPEPEPEPmoZ$cTo 1v+!$?QH?viw!$?QH?viw!$?QH?viw!$?QH?viw!$?QH?viw!$?QH?viw!$?QH?viw!$?QH?viw!$?QH?viw!$?QH?viw!$?QH?viw!$?QH?viw!$?QH?viw!$?QH?viw!$?QH?viw!$?VNEpPmc?뤠tu5fuQ^aQ@Q@Q@Q@Q@Q@_]%sv?WI^gQEqQ@Q@Q@Q@Q@Q@Q@Q@U;\CzTJ*kALkZ(U}6FܻM `j AK^W*HaEUQEdkqaO^+.-B:=/N[ .h[QEuQ@Q@Q@Q@Q@Q@Q@Y.ž V8WtL2i]^>9 `j{i+iمU[S)IE]1rvDWIkf#=a]=etZiw&^eZz-VOWQEtQ@Q@Q@Q@Q@Q@*_> u_ScVANqlx/p)((((((((((((((((((((((((()Ld79KAGXԪ3jtQKPCwQ^T^PVAETQEQEQEQEQEQEQE:?+Z?+.{+ ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ?[s|NuQ^YQ@Q@Q@Q@Q@Q@_]%sv?WI^gQEqQ@Q@Q@Q@Q@Q@Q@Vu"8_zTNj A5l6'2ұ̌YIC1bI9'*GQݞ:J-AoD*틏U*R8=Z.l\zGǪUJ~}ػq꿕U*(Qq꿕Ri>ػq꿕#j @}Si>؝lV횈ΛEC{RQH((((((((((((UK0d^iҶB˙n&" (N((((((((((((((((((((((;YdJ-ZfqUkȭ.i{4a(MŠ(((((((4Xw3?SYC=\(GkK/QE@QEQEЌW5swR0A+]f-+&&7iZVgQE枠QEQEQEQEQEQEQEQEϵ"x<خbS 㱭;SnR#+U{:*R[MmDWv1= ,I'$W-JJ4ցEVFEPEPEPEPEPEPEPJx}i)W{D)կS[ (b ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ) UԡLʌ\-+N;|Y:}S*;̖K˟õEEnI%dQE!Q@Q@Q@Q@Q@Q@Q@Q@kk <^(8(((((((((((((((((((((((((uO??Ӈ!EWzEPEPEPEPEPEP?WI\ݏ}GWYb$QEvAEPEPEPEPEPEPE!8GS.Lq*jҝ7Qj:bзdu7Qݞ:j (4 ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( q*Tj2OjN $ԩ­EN>ebF +J;w(b ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( _&۽OYe?eV\lڔ9摖NNOZ(s ( ( ( ( ( ( ( (duQԜWOTtQan=npѴ\7+D(8B((j*6D/Q8E.Y&rSM2McZQ@Q@Q@Q@Q@Q@Q@(dXi\*+nM;U:nƥUMkē eZEr+b2eJISz47RbQEQEQEQEQEQEQEQEQERZJU@Q u6?kǂ (((((((((((((((((((((((M,KV(Րӳ9$ܣqU+dWUY%N|1Z5cПF2P2>(J5#?* (((((((((Gu5Gu5߅ٞv/tQEwEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPX|bS\؏΢+=p(((((({+n>J+,1_ ( (((((fH!f8%W+jTT֦:M1pϭgEyR=xAAYQRXQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEPNZ$rkcOJ9TՖ,R}\5j+ӌTUJNN)/>+!{+GXdAѫ:YǖM9s0* (((((((~RZ:կS_W<QEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQE"IW>7s+dvCҳ'ݰGj驲FVz2:Tw BsɬRCkϜ%fz0(4 ( ( ( ( ( ( (-~fyؽQEpQ@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@bS[UMsb>C:(,Š(((((( ?+G |H(8((((tBp)7Ijzɹsլ:iQuėv:-U''vz (AEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPNHFڣ& [vqڮd&)єsUz-:`ÿ'Q^b.SswQEdQ@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@TsB)7eqwcWq4vckŜBu5ZHpJ{icZ\lբ+J+ҺJp C:(,Š(((((( ?+G |H(8() -g_j,GsI1xZ Zf}=XNI=(((((((((((((((((KW"|n!Q TZT _CZѢ^]Uȭa o/Ү{WMSQc((((((((((((((((((((((((((a sdMjlF;rYu%;v=\49a~EW1QEQEQEQEQEQEQEQEiGEY|ƭׯFL򌿧hסFuj`QEvEPEPEPEPEP?ܜtnjmyoV+ȭY١>x +p((((((_>ց=?kl)-QE1Q@Q@Q@Q@Q@Q@Q@Q@UeARUcVN0mQcy7G&";5y7G&"=Nz}Mɿ:ȢoS}^c_q?~tn'oβ(WOߝۉ<(;6?y7M?_jɢoS}^ciuU#VsԯV "d4/!ȿJ##\KԱ~522YQXkL%\QZp\pFںV3ٜ8nh(((((((((+WUl&M#t"x֔9\FCS+zw(QEQEQEQE:?+Z?+.{+ ( ( ( ( ( ( ( ( (0[W2|ڟ~=Um=OjW"Г2|j:+>gӖ=>/i棢g9cؓ2|j:(}Ö=>/i棢g9cؓ2|j:(}Ö=>/i棢g9cؓ2|j:(}Ö=>/i棢g9cؓ2|j:(}Ö=>/i棢g9cؓ2|j:(}Ö=>/i棢g9cؓ2|j:(}Ö=>/i棢g9cؓ2|j:(}Ö=>/5iX}Qvƒ[ ) ((((((>J+ҺJp FG#W/?7Gּꏹdz2=Ercy:<~t}k>FG#W/?7Gּꏹdz2=Ercy:<~t}k>bkWW=N5ZT5kSp2McvF=oOӅ6 h u_ScVANqlx/p)((((((((+#[׬o'kч"2袊`((((((()иd;HFaIr2y?:Jnov[]z}9ח,慻Q\PQEQEQEQEh3((((((((((?zV?z^-O?QPhQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEOcQt_]%z8_f+AER- !)(1rvD7ijsaX7Wou!fv{ ɨ̫YlzzŠ(s(((((((}KIA׳OGWaEVAMxAPޝE]֎- 鬩"hWSU<k=cO㤶9*I{y 8uy4M4QE (((((((((|R.ջOGEsfh$VԪoIT^gQEWQ:ՊRWGӋ (((((((((((((((((((((((yˍٚALǠ;orǹ,LN,.܆E瞐QEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEIpPdГz!6 { ?oY%`rS-=>cRVu4[Q]'(QEQEQEQEQEQEQEU]F>ٽWV = L2hV9Z*{|^A^+VvgQEQEQEQEQEQE֒~'G~MZ:űŠ( ((((((((o'k^5OzgFˢ+=((((((((7Xt<E4]ФҖiֈI^_2L[AEUQEQEQEQEQEQEQEQE!C\f)O85n\xxvei4Q+=0((((]Mr]MwvgQ]QEQEQEQEQEQEQEQEQEjVjVZ= (((((((((((((((((((((((>J+?$ j5N 9THSXH_ұf9''Z+GQݝTƚ (5 ( ( ( ( ( ( ( (7_*R}UQEQEQEZ]Gkt1V#+^r9x^2[zdQEQEQEQEQEQEQEQEQEQEQE5ZɹIq] 3,SEsoO,nP5y%z\ntR)  -zQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQIҀ3ıXgPκr:*xe6jy QEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEOihrm^sM''d&Uؖ֯u&w>kjQsNKh }jZ)QT{MjΦ`+ ( ( ( ( ( ( ( ( (2>U} dMuC\)V W~竆4y{ EW)QEQEQEQEQE֒~'G~MZ:űŠ( ((((((((o'k^5OzgFˢ+=(((((((((kEl۲֍fhr}G: 5o0+c((((((((q۹uYʃl Ʋ6oAڢ1(d((((t|WS\|WS]]bAEWqQEQEQEQEQEQEQEQEQEsڟ~=UZ~=Ur(4 ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( r#HTd {ڃ?ҷm,#QƶI~Fjk̢wl5]RvTHiQEhfQEQEQEQEQEQEQEQEKW>ƮMPf:4񣟢+=((((]Mr]MwvgQ]QEQEQEQEQEQEQEQEQEjVjVZ= (((((((((((((((((((((*͝ݿ*wjLkT[IơTa]t9k-:}GmlɵGQ^I+#mvVԿ_uEǔA띯;#,(;B((((((((( '= T_*{4x~6QEhdQEQEQEQ??oTݓQjÞ67?g;9)YJQEQEQEQEQEQEQEQEQEQETַeqӸhNM&΢)SidXV{9$QEhfQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQE#6$f_:wn[ZUۊ?+(;((((((((((((((*Ս]Ob쉔UXصF:ފ% ŠXX" (NV%MyEZ (0 ( ( ( ( ( ( ( ( ( ( ( l$FSwQ@Rzeh0ldũI4{ * ((((~RZ:կS_W<QEQEQEQEQEQEQEQEQEkF5_ltQEyGQEQEQEQEQEQEQEQEoMEU FIZS]icNHn4QEzQEQEQEQEQEQEQEQEQEOU8o\zu!YU ֖FQ^9Q@Q@Q@Q@kk <^(8((((((((({SǪkSǪSQEEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEi* F 5a!EtP3'RozG[vREv!EPmK<\tZyKιq?=E˯l11G +((((~RZ:կS_W<QEQEQEQEQEQEQEQEQEkF5_ltQEyGQEQEQEQEQEQEQRG &M>(g $4g|hvP=yK婈~Y^N[agUv+ьTUJNn(B(((((((((5q5XӃ:="SgF^3`((((t|WS\|WS]]bAEWqQEQEQEQEQEQEQEQEQEsڟ~=U;>i]retW8I{AE+(wetV~}=;(wetQ=;(wetQ=;(wetQ=;(wetQ=;(wetQ=;(wetQ=;(wetQ=;(wetQ=;(wetQ=;(wetQ=;(wetQ=;(wetQ=;(wetQ=;(wetQ=;(wetQ=;(wetQ=;(wPRqqlŠ*喜, ecZ#'d!{Gϥn٥y'5$0+ӥESyUk:-(((ǔA띮R)~;^n'GXQEvQ@Q@Q@Q@Q@Q@Q@Q@Q@Ozvi?>Ui*l(((((+'Y(V2XhF+:獍iHVF񚶌 (Q@Q@Q@Q@Q@Q@Q@Q@Q@>L2+PsL:x%D*J[SZDW;7t⹱养XxsNQEygQEQEQEQEQEQEQEQEQEQEQEQEQEQVlZu4'dLŰk1qHF5STיU? +c((((((((((((((j : jTWQy:9Vu#i˒iXqI^1Q@Q@Q@Q@*_> u_ScVANqlx/p)((((((((*bׅJT*J̨ؒ}?3bIV7N7$Oؒ}?3EW>S'?G$OlGTcbIQ'?[4Qz};ؒ}?3bIV}^`N0$ pyV{ };kjUѡ,OT]u>x dwBJZ+EFnMŠ($(((((((((((+$n#8$`w0+c=O5É'~: EWQ@Q@Q@Q@kk <^(8(((((((((((((((((((((((((((R2NkT ;Yi$'ss\4Fek+w7Z08VЂ'RUQEQEQEQE[R)~;]RvOďO 𰢊+ ( ( ( ( ( ( ( ( (7_*R}UQEQEQEQEQEQEA2WV=uLԩ`殠6Ӳ>b!g̏O R"+ ( ( ( ( ( ( ( ( ( (0+\B+䤾Q+egS2mQEPQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQE^۳w\Zg<MfW4Q\PQEQEQEQEQEQEQEQEQE8Dd#Od~Ty2q*vbE?ɓQ S?ߕLoʋ0E?ɓTֶth:8۰WbX=gcXP" Q-Hd(7 wa} B4UYʣBZ*/=S}ЭsWؖ0Tiz(]Õ%L??Ga} 9p}hOQBe9_bZ*/=S}УwWؖ0Tiz(]Õ%L??OILelzӺbCb ( ( ( ( ( ( ( ( (05H<@nES^2p5^Eh͞ QXEPEPEPJx}i)W{D)կS[ (b ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ('3Dr~V/7,sUz˞mrA +#`((((]Mr]MwvgQ]QEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEU{ĴBX-A}b#J]GHvR笶${Һ('ҹz!TJ ۓlcEyEPEPEPEPmK<\tZyKιq?=O&dq'5p,3htR:Z (((((((((kt*{34f)Y uöUljNfEQEQEQERZJU@Q u6?kǂ (((((((((((((((((((((((((((((w_g~fU`X\g-#\-B<袊\(((((t|WS\|WS]]bAEWqQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQQ\\%e֓i+۲$f 'wTRݪ1u;-U>w-"zT: ɢ+ !TJ먇R}+ 81{!QEzQEQEQEQEVԿ_uEǔA띯7#,(;B((((((((( '= T_*{4x~6QEhdQEQEQEQEQEQES~nH:r++_\܊T EW Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@ QWGgp. V޹\Sl?u%g9qu7hO$(((((((((((((((+ Vn6lJ!w2;1Nk+% !QEyQEQEQEQEQEQEQEQEQElm?p+Jɶ;֦fybԗ4 (3 (.2y=i6Ɠyz݅`M3O!w9&iy 棯*WQ*J (:((((((((MγBzժ&kWJ\LkGmQZQ@Q@Q@Q@Q@Q@Q@Q@V!9f2\ɢZhh0ܸ9xYSW (Š((~RZ:կS_W<QEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQUo?W=Lʌ\WV< u_ScVANqlx/p)((((((((((((((((((((((((((bzʼ;R0ZB;"栖@;a;9g9?ʘXNII^eJҥk((((((((t|WS\|WS]]bAEWqQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQLU 9 Vu#C7vO5B*:@iaw.Ř撊+ ( ( ( ( !TJ먇R}+ 81{!QEzQEQEQEQEVԿ_uEǔA띯7#,(;B((((((((( '= T_*{4x~6QEhdQEQEQEQEQEQEQE6EIE&ƝIFF ZͯI{7Ux!+9HQYQ@Q@Q@Q@Q@Q@Q@Q@Q@QEt:}mԟ85j4˟r2+֣>x=hrOZ(9Š((((((((((((lBނL;n\s{GޖEWQEQEQEQEQEQEQEQEQEQEQEr9@nu15aцiKI̴ *{P4S<)ǖN!EUQEQEQEQEQEQEQEQEPTQ@fd#5ik0mdf׋R(@(((( ڗyKι/?s~$zx_Q\hQEQEQEQEQEQEQEQEQEǠAWj]fŠ( ((((((((6F0sSmhۨ5nkF&Q/\sGt:9ef5Q^aQ@Q@Q@Q@Q@Q@Q@Q@Q@Q@o?h~eXkO0\/8 ps[џ$zI֖c ( ( ( ( ( ( ( ( ( ( ( (<n<덠TuvbNIɦcCkΝg Ƈ3Ƈ1(h}M>03Ƈ1(h}M>03Ƈ1(h}M>03Ƈ1(h}M>032q[tzL1Ȭ2H9b:m^<T‡Ҳ+ZmD΅ (N(((((((((((((GEl\R2+ q Z0,%9sDޢ??!G+o +^kx~B>Pޢ??!G( +^kx~B>Pޢ??!G( +^kx~B>Pޢ??!G( +^kx~B>Pޢ??!G( +^kx~B>Pտ϶qG"ںu{1 q'ֹ+N3i SMHJ(ΐ(_>@L)Ղ5k`{Qq Cz׸0T7{Qq >Cz׸0T7{Qq >Cz׸0T7{Qq >Cz׸0T7{Qq >Cz׸0T7{Qq >Cz׸0T7{Qq >Cz׸0T7{Qq >Cz׸0T7{Qq >Cz׸0T7{Rk\G`VEsͩ71L75x)ae)4k}MsM+bO֚XXNʿ5ы+DZǫ6Z}fP0?ެ*z] t*_QsZԛݚ*P[!+bO֛E新QE (((((((((((t|WS\q V4ӹ^5oQX?^VoQX?^}fjq ???!G`VoQX?^}fjq ???!G`VoQX?^}fjq ???!G`VoQX?^}fjq ???!G`VoQX?^}fjq ???!G`VoQX?^}fjq ???!G`VoQX?^}fjq ???!G`VoQX?^}fjq ???!G`VoQX?^}fjq ???!G`VoS% Bisyt >'29>ݫE75x#'MBV3ou7ʦQ?STkoSG4>FԠƇ3Ƈ1(h}M>03Ƈ1(h}M>03Ƈ1(h}M>03'ҩcCjtBr׫rEWYQEQEQEQEVԿ_uO4BxJU$;hU8#Ƈ3Ƈ1(h}M>03Ƈ1(h}M>03Ƈ1(h}M>03Ƈ1(h}M>03ƇǠAWj+x=ҥF )3̛Rh(((((((((:# E-]ۛiNT5YGwQޫcCk͖W|11\ۘV4>h}MO_iV4>h}MW}fEmcChƇyiV4>h}MW}fEmcChƇyiV4>h}MW}fEmcChƇyiV4>h}MW}fEmcChƇyiV4>h}MW}fEmcChƇyii_hx5rX%ByUAIE)ny9\EVaEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPYZ.x-c?9+ݤrrǒk^_unvУKa $y&+=0((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((+Z0 8&,yvYn23)a>"@j E vQEvEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPP^]-E2v8ۛt=+_f:haL]IQEyMVz[DQE ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( )QF =kYiAprZB2HWeK=:K{nP`SBӥ~RzQ[Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@5cRpzRp2zV&~nNuTTͩSu ԧ UhIݞb(PQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEdrhloa{v:Q/ DX]t9k-:#vx՚(A%dyNN(B((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((*~ MjIA]"RaDVMry4W9٧N6AETQ@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@U=5HfS֪1rvDJ pQr}}+jMKoV pt5{]Zz-QErQ@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Ts̰FRnڱwdE{vǠ~IW,$nBIE^UZ^kQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEi[jMX {H^}kOWRaՕl/ޝhR^`.sQEYEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEtf 5 u.:{ՍVy1F/2yzxz\(3((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((ZIt(cM''d&U#HTOaZz@<ܞ*孌vo^<:ZjF8(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((;!v!B-XsHҹf9&+\sK=+=@(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((55MM>;anZڝ)O¥h)Y%p?ZȂ5 SNMhys*(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((()!N'^M/ZʥEN76Mԕw&RǁT4Q^CmIEYQHaEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPE5-wcҚM!6Ȁ,@$g]M[x{k3ΫoH H5 ; uWiøQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEVKj*[-|8c Ƨ;9&^EI=t8(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((()@$ AS[ZItQv=+fOg5:RaRil|4(kGġT=W q<ԕGQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQE'Jlgnfۻs1s*֫xeħS>y*0W3(;((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((*{k9._SM&ݐQWd 8'Ҵixݫֺ|v8ަW}<=TķkP:+((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((+?T#؇oҭ]\ hKe\rUׇeQ^aQ@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@*vA$bK򯩭k>FSסRi( 0:N0ZdJ (3 ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( F`^l_%z B7fQKQ73`}cT''v{Q (((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((gs\2*JQKjִav˄_ǽM^<:<ژ-#T(Q]gQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQE!!FO![XKsG,$ՍBLp~E*yUsdz)FvQEs!EPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEI4TIKˆ_N) E =-e9*b##)i)OAW`qKEz`͔7y0* ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( կv/Ԋw8Z$囩9LENUʎ=>gChOP(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((("4jԴ4+HSކskR'_ͮ77* 0=ӣjgRQ]0QEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEPn)÷򨜔pQ]bҩEx򓓻=AYQRPQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEK \Гz!6"d3|օazһ੉{895=WrI+#'vQE1Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@ E 1Nn%g=U^sy*xVeyϕt=L=>UQ\`QEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQER`OaVmt.Hz[1/MoNCxE(ZiikP+҅8hy*P+C (((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((nNNOu;N@XV$|*3b䓒i( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( )U*itU3H^E-l"ߵkZ)2|WcbPҟ^:Vy1D Z((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((&*jw_g~vVO{pngfT ѧQEbnQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQS[Ir~Eǥ4vBm%vCVtn9#b֕f1]fpTV^}MXIEY ;)(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((+?V8 ҹkϖ6[OW{"*( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (NɠO+mE,}d/zֆ;u(N1ՙ84'5FQ^)tJo (3 ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (4,z \qnJũn7=>xg+({8X((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((d8Ek]*8/j=jV=m>[WŮw7rj K^(<ڕ=6AEWAQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQE\F-I=s9^\w:B ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( )UK$´-tq`&Q'>էktV6nQ@%wè-O:&R: H5F:+((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((ʃ7j«ZǟrqWUkȭ>yr@( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (6|$65'dLj,, /ZӵӢպ+EnUb+%dp6Š( ((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((Ӌ{vcV6>0r$Ʊ.H6mJH'''Q^AQ@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@TI+Z:KSҴttL49Z*F{Wd0#%- QcevW 0-F &QEYEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPdpX1\ҙg$ί?o:2Q=,,,(3(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((($Pi6Kеa8E RZu11εLsȭ$"U ]l>u%=QEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQE2WXw`2\l ¨ӥ2Fn96I˚M#(,(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((TA@ JT'Kˆ_AZZnE޺aBRrF-Yk;GGZӂ;u¨W|)F#ϝYvQEjbQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEGV˵ dn8?^]f]Ӫñ>irЏ4ѝEW{!EPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPE8'PRX AW%ZԷ|ϩ])j9g4Z.I\?vR (ʹ>Q]lpNQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQE <\ۙ.d'8[Oۻpp:u Tac( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( PRX AWeEZQ[y5 CxE2%EkR+a>Q]ly9QElbQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEP$m,x?:Eʮ6zujh(:B((((((((((((((((((((((((((((((((((((((((((((((((((((((()QF =%*rI+BGwii¨L0CxEm. ZQA>b(cu=Š(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((( UݜvzU:ė.ҡnl`(,(((((((((((((((((((((((((((((((((((((((((((((((((((((( 'l"&Bm-Y:8V)cZv7C+~!P]P_$1ʷљe;GH-\"R]ХlՔaEV!EPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEP/6<007L'$ZJ羴AEP0(((((((((((((((((((((((((((((((((((((((((((((((((((R%Y^[!#k}"(_Ү* (aGIi:FUV}hGġT` }qIOaEVaEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEP)EW}QEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQNHCRگ& hj Odg)3$ m9|zּQ[F{Z]uQS$ʌ]ʐTFURȗzkv5J..%8 *K ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( (bb6!9ڄM"љdmU4`5<徇4ژ1PMhC2?>jJZ+}NIbg-!(ʀTQ])%9[oVQE1Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@\B'r=k#wjV_iMq\Ϊy$;Q^aQ@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@Q@T.6!9=I[Z å n?tFsqIv GszVFT ut I:wSV…1KEu(IJR݅QTHQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQERu35-42u_ZǮvy!+\5މB٘PFZ+B((((((((((((((((((((((((((((P$ <M5-.J;F=:Z0U9#CX-0_tgb z 4VR2q5iT/@-Ң9\aEUQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEPRu܃lֱrXv5TWܦ\V륈pZ[=GQJ..%%tQEIAEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPE-n GO'U y=jz )3V9leZwfMIj!耟Sڬ*ϥtG 9_eh9A߾*Z4kn:{֍]ib*Kv0uhI-op)((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((*֕,oP:*e%f\g(;ŜŔ\/"n5NJ`J<3't1Ki4U?(=*TC\팣/ETQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQES6Tc@ ȗ$dVhұ;_C՘XoQPc*Ƨ8ʣ+#S** zV bF iwn=*z 7=;v5Eo<V=61XTUc4+u)nŠ($((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((*9ma0%Oql,ls*L3+ P'3"ꊂsc5I?5ϣ:#]QQ[OAH=x$؎Qt7XoE\J02Y'>YInH= #[ʽcqSQh(QEQEQEQESNSceMf+:*#椏JNJ{"H-NЏFjhA=T5ɢѡSߊ=66nx ֋ 7lsdR yIc k[xv}42xM.BҧMF\m>kfa2xc%&6gTV՛݌"B3iQZeQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEQEF?OؿAq޳Ɗ+HmQXEPJhOcB۵Y ?(?CϗƽH-: ֏(he_qQEtEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPEPDyK carlo.vallini@unifi.ityK Tmailto:carlo.vallini@unifi.ityX;H,]ą'cDyK yK Bmailto:francesco.ciampi@unifi.it$$If!vh505E5 #v0#vE#v :V F t06505E5 T$$If!vh505E5 #v0#vE#v :V F t06505E5 T$$If!vh505E5 #v0#vE#v :V F t06505E5 T$$If!vh505E5 #v0#vE#v :V F t06505E5 T$$If!vh505E5 #v0#vE#v :V F t06505E5 T$$If!vh505E5 #v0#vE#v :V F t06505E5 T$$If!vh505E5 #v0#vE#v :V F t06505E5 T$$If!vh505E5 #v0#vE#v :V F t06505E5 T$$If!vh505E5 #v0#vE#v :V F t06505E5 T$$If!vh505E5 #v0#vE#v :V F t06505E5 T$$If!vh505E5 #v0#vE#v :V F t06505E5 T$$If!vh505E5 #v0#vE#v :V F t06505E5 T$$If!vh505E5 #v0#vE#v :V F t06505E5 T$$If!vh505E5 #v0#vE#v :V F t06505E5 T$$If!vh505E5 #v0#vE#v :V F t06505E5 T$$If!vh505E5 #v0#vE#v :V F t06505E5 T$$If^!vh55-5#v#v-#v:V F t0655-5aT$$If^!vh55-5#v#v-#v:V F t0655-5aT$$If^!vh55-5#v#v-#v:V F t0655-5aT$$If^!vh55-5#v#v-#v:V F t0655-5aT$$If^!vh55-5#v#v-#v:V F t0655-5aT$$If^!vh55-5#v#v-#v:V F t0655-5aT$$If^!vh55-5#v#v-#v:V F t0655-5aT$$If^!vh55-5#v#v-#v:V F t0655-5aT$$If^!vh55-5#v#v-#v:V F t0655-5aT$$If^!vh55-5#v#v-#v:V F t0655-5aT$$If^!vh55-5#v#v-#v:V F t0655-5aT$$If^!vh55-5#v#v-#v:V F t0655-5aT$$If^!vh55-5#v#v-#v:V F t0655-5aT$$If^!vh55-5#v#v-#v:V F t0655-5aT$$If^!vh55-5#v#v-#v:V F t0655-5aT$$If^!vh55-5#v#v-#v:V F t0655-5aT$$If^!vh55-5#v#v-#v:V F t0655-5aT$$If^!vh55-5#v#v-#v:V F t0655-5aT$$If^!vh55-5#v#v-#v:V F t0655-5aT$$If^!vh55-5#v#v-#v:V F t0655-5aT$$If^!vh55-5#v#v-#v:V F t0655-5aT$$If^!vh55-5#v#v-#v:V F t0655-5aT$$If^!vh55-5#v#v-#v:V F t0655-5aT$$If^!vh55-5#v#v-#v:V F t0655-5aT$$If!vh5$5#v$#v:V  6`q0,5$5$$If!vh5$5#v$#v:V  6`q0,5$5$$If!vh5$5#v$#v:V  6`q0,5$5$$If!vh5$5#v$#v:V  6`q0,5$5$$If!vh5$5#v$#v:V  6`q0,5$5$$If!vh5$5#v$#v:V  6`q0,5$5$$If!vh5$5#v$#v:V  6`q0,5$5$$If!vh5$5#v$#v:V  6`q0,5$5$$If!vh5$5#v$#v:V  6`q0,5$5$$If!vh5$5#v$#v:V  6`q0,5$5$$If!vh5$5#v$#v:V  6`q0,5$59$$If!vh55 5l55i#v#v #vl#v#vi:V   6`2#,55 5l55i/ 4 ]p2_$$If!vh55 5555i#v#v #v#v#vi:V 4  6`<#+,55 555i/ 4 ]p<$$If!vh5555555i#v#v#v#v#v#vi:V 4  6`F#+++,,555555i/ 4 ]pFkd&$$If4֞ {1p#i  6`F#44 ]apF$$If!vh5555555i#v#v#v#v#v#vi:V 4  6`F#+++,555555i/ 4 ]pFkd)$$If4֞ {1p# i  6`F#44 ]apF$$If!vh5555555i#v#v#v#v#v#vi:V 4  6`F#+++,,555555i/ 4 ]pFkdp-$$If4֞ {1p#i  6`F#44 ]apF$$If!vh5555555i#v#v#v#v#v#vi:V 4  6`F#+++,555555i/ 4 ]pFkd1$$If4֞ {1p# i  6`F#44 ]apF$$If!vh5555555i#v#v#v#v#v#vi:V 4  6`F#+++,,555555i/ / / / /  4 ]pFkd4$$If4֞ {1p#i  6`F#44 ]apF$$If!vh5555555i#v#v#v#v#v#vi:V 4  6`F#+++,,555555i/ / / / / 4 ]pFkd8$$If4֞ {1p#i  6`F#44 ]apF$$If!vh5 55 55#v #v#v #v#v:V l!5 55 55/ / / / a$$If!vh5 55 55#v #v#v #v#v:V ;l!5 55 55/ / / / a$$If!vh5 55 55#v #v#v #v#v:V l!5 55 55/ / / / a$$If!vh5 55 55#v #v#v #v#v:V l!5 55 55/ / / / a$$If!vh5 55 55#v #v#v #v#v:V l!5 55 55/ / / / a$$If!vh5 55 55#v #v#v #v#v:V l!5 55 55/ / / / a$$If!vh5 55555#v #v#v#v#v#v:V ]"5 55555/ / / / a$$If!vh5 55555#v #v#v#v#v#v:V ;]"5 55555/ / / / a$$If!vh5 55555#v #v#v#v#v#v:V ]"5 55555/ / / / a$$If!vh5 55555#v #v#v#v#v#v:V ]"5 55555/ / / / a$$If!vh5 55555#v #v#v#v#v#v:V ]"5 55555/ / / / a$$If!vh5 55555#v #v#v#v#v#v:V ]"5 55555/ / / / a$$If!vh5 5555#v #v#v#v#v:V $l!5 5555/ / / / aT$$If!vh5 5555#v #v#v#v#v:V cl!5 5555/ / / / aT$$If!vh5 5555#v #v#v#v#v:V l!5 5555/ / / / aT$$If!vh5 5555#v #v#v#v#v:V l!5 5555/ / / / aT$$If!vh5 5555#v #v#v#v#v:V l!5 5555/ / / / aT$$If!vh5 5555#v #v#v#v#v:V l!5 5555/ / / / aT$$If!vh5 55555#v #v#v#v#v#v:V ]"5 55555/ / / / a$$If!vh5 55555#v #v#v#v#v#v:V ]"5 55555/ / / / a$$If!vh5 55555#v #v#v#v#v#v:V ]"5 55555/ / / / a$$If!vh5 55555#v #v#v#v#v#v:V ]"5 55555/ / / / a$$If!vh5 55555#v #v#v#v#v#v:V ]"5 55555/ / / / a$$If!vh5 55555#v #v#v#v#v#v:V ]"5 55555/ / / / a$$If!vh5 55 55#v #v#v #v#v:V l!5 55 55/ / / / a$$If!vh5 55 55#v #v#v #v#v:V El!5 55 55/ / / / a$$If!vh5 55 55#v #v#v #v#v:V l!5 55 55/ / / / a$$If!vh5 55 55#v #v#v #v#v:V l!5 55 55/ / / / a$$If!vh5 55 55#v #v#v #v#v:V l!5 55 55/ / / / a$$If!vh5 55555#v #v#v#v#v#v:V ]"5 55555/ / / / a$$If!vh5 55555#v #v#v#v#v#v:V ]"5 55555/ / / / a$$If!vh5 55555#v #v#v#v#v#v:V ]"5 55555/ / / / a$$If!vh5 55555#v #v#v#v#v#v:V ]"5 55555/ / / / a$$If!vh5 55555#v #v#v#v#v#v:V ]"5 55555/ / / / a7$$If!vh55555155#v#v#v#v1#v#v:V  6O#5555155/ / / / / / / / 7$$If!vh55555155#v#v#v#v1#v#v:V  6O#5555155/ / / / / / / / 7$$If!vh55555155#v#v#v#v1#v#v:V  6O#5555155/ / / / / / / / 7$$If!vh55555155#v#v#v#v1#v#v:V  6O#5555155/ / / / / / / / 7$$If!vh55555155#v#v#v#v1#v#v:V  6O#5555155/ / / / / / / / 7$$If!vh55555155#v#v#v#v1#v#v:V  6O#5555155/ / / / / / / / 7$$If!vh55555155#v#v#v#v1#v#v:V  6O#5555155/ / / / / / / / 7$$If!vh55555155#v#v#v#v1#v#v:V  6O#5555155/ / / / / / / / 7$$If!vh55555155#v#v#v#v1#v#v:V  6O#5555155/ / / / / / / / 7$$If!vh55555155#v#v#v#v1#v#v:V  6O#5555155/ / / / / / / / 7$$If!vh55555155#v#v#v#v1#v#v:V  6O#5555155/ / / / / / / / 7$$If!vh55555155#v#v#v#v1#v#v:V  6O#5555155/ / / / / / / / 7$$If!vh55555155#v#v#v#v1#v#v:V  6O#5555155/ / / / / / / / 7$$If!vh55555155#v#v#v#v1#v#v:V  6O#5555155/ / / / / / / / 7$$If!vh55555155#v#v#v#v1#v#v:V  6O#5555155/ / / / / / / / 7$$If!vh55555155#v#v#v#v1#v#v:V  6O#5555155/ / / / / / / / 7$$If!vh55555155#v#v#v#v1#v#v:V  6O#5555155/ / / / / / / / 7$$If!vh55555155#v#v#v#v1#v#v:V  6O#5555155/ / / / / / / / 7$$If!vh55555155#v#v#v#v1#v#v:V  6O#5555155/ / / / / / / / 7$$If!vh55555155#v#v#v#v1#v#v:V  6O#5555155/ / / / / / / / 7$$If!vh55555155#v#v#v#v1#v#v:V  6O#5555155/ / / / / / / / 7$$If!vh55555155#v#v#v#v1#v#v:V  6O#5555155/ / / / / / / / 7$$If!vh55555155#v#v#v#v1#v#v:V  6O#5555155/ / / / / / / / 7$$If!vh55555155#v#v#v#v1#v#v:V  6O#5555155/ / / / / / / / 7$$If!vh55555155#v#v#v#v1#v#v:V  6O#5555155/ / / / / / / / 7$$If!vh55555155#v#v#v#v1#v#v:V  6O#5555155/ / / / / / / / 3$$If!vh5h555555#vh#v#v#v#v#v:V  6`O#5h55555/ / / / / / / / 3$$If!vh5h555555#vh#v#v#v#v#v:V  6`O#5h55555/ / / / / / / / 3$$If!vh5h555555#vh#v#v#v#v#v:V  6`O#5h55555/ / / / / / / / 3$$If!vh5h555555#vh#v#v#v#v#v:V  6`O#5h55555/ / / / / / / / 3$$If!vh5h555555#vh#v#v#v#v#v:V  6`O#5h55555/ / / / / / / / 3$$If!vh5h555555#vh#v#v#v#v#v:V  6`O#5h55555/ / / / / / / / 3$$If!vh5h555555#vh#v#v#v#v#v:V  6`O#5h55555/ / / / / / / / 3$$If!vh5h555555#vh#v#v#v#v#v:V  6`O#5h55555/ / / / / / / / 3$$If!vh5h555555#vh#v#v#v#v#v:V  6`O#5h55555/ / / / / / / / 3$$If!vh5h555555#vh#v#v#v#v#v:V  6`O#5h55555/ / / / / / / / 3$$If!vh5h555555#vh#v#v#v#v#v:V  6`O#5h55555/ / / / / / / / 3$$If!vh5h555555#vh#v#v#v#v#v:V  6`O#5h55555/ / / / / / / / 3$$If!vh5h555555#vh#v#v#v#v#v:V  6`O#5h55555/ / / / / / / / 3$$If!vh5h555555#vh#v#v#v#v#v:V  6`O#5h55555/ / / / / / / / 3$$If!vh5h555555#vh#v#v#v#v#v:V  6`O#5h55555/ / / / / / / / 3$$If!vh5h555555#vh#v#v#v#v#v:V  6`O#5h55555/ / / / / / / / 3$$If!vh5h555555#vh#v#v#v#v#v:V  6`O#5h55555/ / / / / / / / 3$$If!vh5h555555#vh#v#v#v#v#v:V  6`O#5h55555/ / / / / / / / 3$$If!vh5h555555#vh#v#v#v#v#v:V  6`O#5h55555/ / / / / / / / 3$$If!vh5h555555#vh#v#v#v#v#v:V  6`O#5h55555/ / / / / / / / 7$$If!vh5h555555#vh#v#v#v#v#v:V  6O#5h55555/ / / / / / / / 7$$If!vh5h555555#vh#v#v#v#v#v:V  6O#5h55555/ / / / / / / / 7$$If!vh5h555555#vh#v#v#v#v#v:V  6O#5h55555/ / / / / / / / 7$$If!vh5h555555#vh#v#v#v#v#v:V  6O#5h55555/ / / / / / / / 7$$If!vh5h555555#vh#v#v#v#v#v:V  6O#5h55555/ / / / / / / / 7$$If!vh5h555555#vh#v#v#v#v#v:V  6O#5h55555/ / / / / / / / 7$$If!vh5h555555#vh#v#v#v#v#v:V  6O#5h55555/ / / / / / / / 7$$If!vh5h555555#vh#v#v#v#v#v:V  6O#5h55555/ / / / / / / / 7$$If!vh5h555555#vh#v#v#v#v#v:V  6O#5h55555/ / / / / / / / 7$$If!vh5h555555#vh#v#v#v#v#v:V  6O#5h55555/ / / / / / / / 7$$If!vh5h555555#vh#v#v#v#v#v:V  6O#5h55555/ / / / / / / / 7$$If!vh5h555555#vh#v#v#v#v#v:V  6O#5h55555/ / / / / / / / 7$$If!vh5h555555#vh#v#v#v#v#v:V  6O#5h55555/ / / / / / / / 7$$If!vh5h555555#vh#v#v#v#v#v:V  6O#5h55555/ / / / / / / / 7$$If!vh5h555555#vh#v#v#v#v#v:V  6O#5h55555/ / / / / / / / 7$$If!vh5h555555#vh#v#v#v#v#v:V  6O#5h55555/ / / / / / / / 7$$If!vh5h555555#vh#v#v#v#v#v:V  6O#5h55555/ / / / / / / / 7$$If!vh5h555555#vh#v#v#v#v#v:V  6O#5h55555/ / / / / / / / 7$$If!vh5h555555#vh#v#v#v#v#v:V  6O#5h55555/ / / / / / / / 7$$If!vh5h555555#vh#v#v#v#v#v:V  6O#5h55555/ / / / / / / / $$If!vh5 55555#v #v#v#v#v:V "5 5555/ / / / T$$If!vh5 55555#v #v#v#v#v:V @"5 5555/ / / / T$$If!vh5 55555#v #v#v#v#v:V @"5 5555/ / / / T$$If!vh5 55555#v #v#v#v#v:V @"5 5555/ / / / T$$If!vh5 55555#v #v#v#v#v:V @"5 5555/ / / / T$$If!vh5 55555#v #v#v#v#v:V @"5 5555/ / / / T$$If!vh5 55555#v #v#v#v#v:V @"5 5555/ / / / T$$If!vh5 55555#v #v#v#v#v:V @"5 5555/ / / / T^K 666666666vvvvvvvvv66666686666666666666666666666666666666666666666666666666hH6666666666666666666666666666666666666666666666666666666666666666662 0@P`p2( 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p8XV~_HmH nH sH tH Z`Z Normal *$1$(CJOJPJQJ^J_HaJmHsHtHpp  Heading 7+$$ & F dh@&a$5CJOJPJQJaJDA`D Default Paragraph FontVi@V 0 Table Normal :V 44 la (k ( 0No List 2/2 WW8Num5z0OJQJ2/2 WW8Num5z1OJQJ2/2 WW8Num5z2OJQJL/!L Car. predefinito paragrafoJ/1J Absatz-Standardschriftart>/A> WW8Num4z0CJOJQJ^JaJ>/Q> WW8Num4z1CJOJQJ^JaJ>/a> WW8Num4z2CJOJQJ^JaJP/qP WW-Absatz-StandardschriftartR/R WW-Absatz-Standardschriftart1FoF Default Paragraph Font1PP Heading 7 Char5CJOJPJQJ^JaJ.. table_small>> Footer CharOJQJPJ^J.)@. Page NumberJJ Balloon Text CharCJOJQJaJDD Footnote Text CharCJaJBOB Footnote CharactersH*6U`6 Hyperlink >*B* phD/!D Carattere della notaH*@/1@ Endnote CharactersH*B/AB WW-Endnote CharactersP/QP Carattere nota di chiusuraH*>/a> BulletsCJOJPJQJ^JaJJ"qJ sottotitolo1B*CJOJ QJ aJph>"> searchwordfHq *W"* Strong5\F/F Default Paragraph Font2@&`@ Footnote ReferenceH*>* > Endnote ReferenceH*LL Header -x$CJOJPJ QJ^J aJ6B6 Body Text .x(/( List/^J H"H Caption 0xx $6CJ]^J aJ00 Indice1 $^J NN Heading 2x$CJOJPJ QJ^J aJJ2J Caption1 3xx $6CJ]^J aJ.B. Index4 $^J jRj Elenco a colori - Colore 115]^`0 @b0 Footer 6NrN Balloon Text1 7CJOJQJaJ6@6 Footnote Text888 Frame contents9<< Table Contents: $FF Table Heading ;$ $a$5\|| Normale + Times New Roman<  7$5CJOJQJ\^JaJbOb Default Style=*$7$OJ PJQJ ^J mH sH u44 Header > %R^R Normal (Web)?1$*$OJQJPJ^JBB Caption2 @xx $ 6^J ]P@P List ParagraphA]^`N"N Balloon Text2 BCJOJQJaJB2B Contenuto tabellaC $T1BT Intestazione tabella D$ $a$5\>R> Contenuto corniceEHbH G@0 Balloon TextFCJOJQJaJXqX F@0Balloon Text Char1CJOJPJQJ^JaJtHtt %P Table Grid7:VH0 H*$1$4X@4 (YEmphasis 56\]dOd Qt" Default StyleJ*$7$8$H$OJPJQJ^JmH sH tH PK![Content_Types].xmlj0Eжr(΢Iw},-j4 wP-t#bΙ{UTU^hd}㨫)*1P' ^W0)T9<l#$yi};~@(Hu* Dנz/0ǰ $ X3aZ,D0j~3߶b~i>3\`?/[G\!-Rk.sԻ..a濭?PK!֧6 _rels/.relsj0 }Q%v/C/}(h"O = C?hv=Ʌ%[xp{۵_Pѣ<1H0ORBdJE4b$q_6LR7`0̞O,En7Lib/SeеPK!kytheme/theme/themeManager.xml M @}w7c(EbˮCAǠҟ7՛K Y, e.|,H,lxɴIsQ}#Ր ֵ+!,^$j=GW)E+& 8PK!Ptheme/theme/theme1.xmlYOo6w toc'vuر-MniP@I}úama[إ4:lЯGRX^6؊>$ !)O^rC$y@/yH*񄴽)޵߻UDb`}"qۋJחX^)I`nEp)liV[]1M<OP6r=zgbIguSebORD۫qu gZo~ٺlAplxpT0+[}`jzAV2Fi@qv֬5\|ʜ̭NleXdsjcs7f W+Ն7`g ȘJj|h(KD- dXiJ؇(x$( :;˹! I_TS 1?E??ZBΪmU/?~xY'y5g&΋/ɋ>GMGeD3Vq%'#q$8K)fw9:ĵ x}rxwr:\TZaG*y8IjbRc|XŻǿI u3KGnD1NIBs RuK>V.EL+M2#'fi ~V vl{u8zH *:(W☕ ~JTe\O*tHGHY}KNP*ݾ˦TѼ9/#A7qZ$*c?qUnwN%Oi4 =3ڗP 1Pm \\9Mؓ2aD];Yt\[x]}Wr|]g- eW )6-rCSj id DЇAΜIqbJ#x꺃 6k#ASh&ʌt(Q%p%m&]caSl=X\P1Mh9MVdDAaVB[݈fJíP|8 քAV^f Hn- "d>znNJ ة>b&2vKyϼD:,AGm\nziÙ.uχYC6OMf3or$5NHT[XF64T,ќM0E)`#5XY`פ;%1U٥m;R>QD DcpU'&LE/pm%]8firS4d 7y\`JnίI R3U~7+׸#m qBiDi*L69mY&iHE=(K&N!V.KeLDĕ{D vEꦚdeNƟe(MN9ߜR6&3(a/DUz<{ˊYȳV)9Z[4^n5!J?Q3eBoCM m<.vpIYfZY_p[=al-Y}Nc͙ŋ4vfavl'SA8|*u{-ߟ0%M07%<ҍPK! ѐ'theme/theme/_rels/themeManager.xml.relsM 0wooӺ&݈Э5 6?$Q ,.aic21h:qm@RN;d`o7gK(M&$R(.1r'JЊT8V"AȻHu}|$b{P8g/]QAsم(#L[PK-![Content_Types].xmlPK-!֧6 +_rels/.relsPK-!kytheme/theme/themeManager.xmlPK-!Ptheme/theme/theme1.xmlPK-! ѐ' theme/theme/_rels/themeManager.xml.relsPK] wo !m%X,,.//4 /9:2W i""#$&|+/]3^7a7PPPPP& Zer y(357 9h;{=>wIQ/WZ`_bonruwuy~l!RˮZ;|~*8S]ux+\5q55555556616N6i6666 8Y888888959_99999:<:i::::;!;;;f;V={=====>#>J>v>>>I JJJlJJRN$QNQxQQQQ:UVVVVVW%W7WY ZAZdZZZZ^A`\`w````\aab,bOb]bxgThzhhhhppppppqq%q-qJqWqqquq{qqqqqqqq rr3r;rArIrfrnrrrrrrrss ss2s:sWs_s|sssssssOuvvvvw w;wGw^wfwwwwwwwww xx/x7xSxfxxxxxxxxxy y'y:ySy[ysy|q~~~~~~~~'APXr "<[hπրZЈ)Wڦ}      !"#$%&'()+,-./012345679:;<=>?@ABCDEFGHIJKLMNOPQRTUVWXYZ[\^_`abcdefghijklmnopqrstvwyz{|}~DsXXZaelo!!t    ,R$Cd{LǞ#8&@> &(    s A,. LOGO-ABERWordPictureWatermark3,T`T,T`TS"?0(  0 # q "v$u@  ܢ]WXXZZ[[]^`acd <~!!a+t+75:59:x:}:E^E?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcefghijklmnopqrstuvwxyz{|}~Root Entry F`Data d`1TableEWordDocument[SummaryInformation(DocumentSummaryInformation8CompObjy  F'Microsoft Office Word 97-2003 Document MSWordDocWord.Document.89q