ࡱ> ikfghHfy bjbjEE c''"K&%%)))===8u=t %:"G:G::EEE$e:q)GD@EGG:%%G::' Q{Q{Q{G%G:p):Q{GQ{Q{hJX:dВ=_L0\ X)XEEhQ{FTlFQEEE::kEEEGGGGEEEEEEEEE : Chapter 2 Bernoulli Random Variables in n Dimensions 1. Introduction This chapter is dedicated to my STAT 305C students at Iowa State University in the Fall 2006 semester. It is due, in no small part, to their thoughtful questions throughout the course, but especially in relation to histogram uncertainty, that has convinced me to address the issues in this chapter in a rigorous way, and in a format that I believe is accessible to those who have a general interest in randomness. There are many phenomena that involve only two possible recordable or measurable outcomes. Decisions ranging from the yes/no type to the success/failure type abound in every day life. Will I get to work on time today, or wont I? Will I pass my exam, or wont I? Will the candidate get elected, or not? Will my friend succeed in her business, or wont she? Will my house withstand an earth quake of 6+ magnitude, or wont it? Will I meet an interesting woman at the club tonight, or wont I? Will my sisters cancer go into remission, or wont it. And the list of examples could go on for volumes. They all entail an element of uncertainty; else why would one ask the question. With enough knowledge, this uncertainty can be captured by an assigned probability for one of the outcomes. It doesnt matter which outcome is assigned the said probability, since the other outcome will hence have a probability that is one minus the assigned probability. The act of asking any of the above questions, and then recording the outcome is the essence of what is in the realm of probability and statistics termed a Bernoulli random variable, as now defined. Definition 1.1 Let X denote a random variable (i.e. an action, operation, observation, etc.) the result of which is a recorded zero or one. Let the probability that the recorded outcome is one be specified as p. Then X is said to be a Bernoulli(p) random variable. This definition specifically avoided the use of any real mathematical notation, in order to allow the reader to not be unduly distracted from the conceptual meaning of a Ber(p) random variable. While this works for a single random variable, when we address larger collections of them, then it is extremely helpful to have a more compact notation. For this reason, we now give a more mathematical version of the above definition. Definition 1.2 Let X be a random variable whose sample space is  EMBED Equation.3 , and let p denote the probability of the set {1}. In compact notation, this is often written as  EMBED Equation.3 . Then X is said to be a Bernoulli(p), or, simply, a Ber(p) random variable. Since this author feels that many people grasp concepts better with visuals, the probability structure of a Ber(p) random variable is shown in Figure 1. At one level, Figure 1 is very simple. The values that X can take on are included in the horizontal axis, and the probabilities associated with them are included on the vertical axis. However, conceptually, the implications of Figure 1 are deep.  Figure 1. The probability structure for a Ber(p=0.7) random variable. X is a 1-dimensional (1-D) random variable, since the values that it can take on are its sample space  EMBED Equation.3 , which includes simply numbers, or scalars. So, these numbers can be identified as a subset of the real line, which in Figure 1 is the horizontal axis. Since probabilities are also just numbers, they require only one axis, which in Figure 1 is the vertical line. But what if X were a 2-D random variable; that is, its sample space was a collection of ordered pairs? As we will see presently, then we would need to use a plane (i.e. an area associated with, say, a horizontal line and a vertical line). In that case, the probabilities would have to be associated with a third line (e.g. a line coming out of the page). To summarize this concept, the probability description for any random variable requires that one first identify its sample space. In the case of Figure 1, that entailed drawing a line, and then marking the values zero and one on that line. Second, one then associates probability information associated with the sample space. In the case of Figure 1, that entailed drawing a line perpendicular to the first line, and including numerical probabilities associated with zero and one. Another conceptually deep element of Figure 1 is an element that Figure 1 (as does almost any probability figure in any text book in the area) fails to highlight. It is the fact that, in Figure 1, the probability 0.7 is not, I repeat, NOT the probability associated with the number 1. Rather, it is the probability associated with the set {1}. While many might argue that this distinction is overly pedantic, I can assure you that ignoring this distinction is, in my opinion, one of the most significant sources of confusion for students taking a first course in probability and statistics (and even for some students in graduate level courses I have taught). Ignoring this distinction in the 1-D case shown in Figure 1 might well cause no problems. But ignoring it for higher dimensional case can result in big problems. So, lets get it straight here and now. Definition 1.3 The probability entity Pr() is a measure of the size of a set. In view of this definition, Pr(1) makes no sense, since 1 is a number, not a set. However, Pr({1}) makes perfect sense, since {1} is a set (as defined using { }, and this set contains only the number 1 in it. Since Pr(A) measures the size of a set A, we can immediately apply natural reasoning to arrive at what some books term axioms of probability. These include the following: Axiom 1. Pr(  EMBED Equation.3 . Axiom 2.  EMBED Equation.3 , where  EMBED Equation.3 ; that is,  EMBED Equation.3 is the empty set. Axiom 3. Let A and B be two subset of  EMBED Equation.3 .  EMBED Equation.3 . The first axiom simply says that when one performs the action and records a resulting number, the probability that the number is in  EMBED Equation.3 must equal one. When you think about it, by definition, it cannot be a number that is not in  EMBED Equation.3 . The second axiom simply states that the probability that you get no number when you perform the action and record a number must be zero. To appreciate the reasonableness of the third axiom, we will use the visual aid of the Venn diagram shown in Figure 2.  Figure 2. The yellow rectangle corresponds to the entire sample space,  EMBED Equation.3 . The size (i.e. probability) of this set equals one. The blue and red circles are clearly subsets of  EMBED Equation.3 . The probability of A is the area in blue. The probability of B is the area in red. The black area where A and B intersect is equal to  EMBED Equation.3 . Since Pr() is a measure of size, it can be visualized as area, as is done in Figure 2. Imagining the sample space,  EMBED Equation.3 , to be the interior of the rectangle, it follows that the area shown in yellow must be assigned a value of one. The circle in red has an area whose size is Pr(A), and the circle in blue has a size that is Pr(B). These two circles have a common area, as shown in black, and that area has a size that is  EMBED Equation.3 . Finally, it should be mentioned that the union of two sets is, itself, a set. And that set includes all the elements that are in either set. If there are elements that are common to both of those sets, it is a mistake to misinterpret that to mean that those elements are repeated twice (once in each set). They are not repeated. They are simply common to both sets. Clearly, if sets A and B have no common elements, then  EMBED Equation.3 . Hence, from Axiom 2, the rightmost term on Axiom 3 is zero. In relation to Figure 2 above, that would mean that the blue and red circles did not intersect. Hence, the area associated with their union would simply be the sum of their areas. We will encounter this situation often in this chapter. For this reason, we now formally state this as a special case of Axiom 3. Axiom 3- A Special Case: Let A and B be two subsets of  EMBED Equation.3 . If  EMBED Equation.3 , then  EMBED Equation.3 . We are now in a position to apply address the above axioms and underlying concepts in relation to the Ber(p) random variable, X, whose sample space is  EMBED Equation.3 . To this end, lets begin by identifying all the possible subsets of  EMBED Equation.3 . Since  EMBED Equation.3 has only two elements in it, there are four possible subsets of this set. These include {0}, {1},  EMBED Equation.3 and  EMBED Equation.3 . The first two sets here are clearly subsets of  EMBED Equation.3 . However, the set  EMBED Equation.3 is also, formally speaking, a subset of itself. However, since this subset is, in fact, the set itself, it is sometimes called an improper subset. Nonetheless, it is a subset of  EMBED Equation.3 . The last subset of  EMBED Equation.3 , namely the empty set,  EMBED Equation.3 , is simply, by definition, a subset of any set. Even so, it has a real significance, as we will presently describe. And so, the collection of all the possible subsets of  EMBED Equation.3 is the following set:  EMBED Equation.3 . It is crucially important to understand that  EMBED Equation.3 is, itself a set. And the elements of this set are, themselves sets. Why is this of such conceptual importance? It is because Pr() is a measure of the size of a set. Hence, Pr() measures the size of the elements of  EMBED Equation.3 . It does not measure the size of the elements of  EMBED Equation.3 , since the elements of this set are numbers, and not sets. In relation to Figure 2, we have the following results: (i)  EMBED Equation.3  ; (ii)  EMBED Equation.3 ; (iii) Since  EMBED Equation.3 , we have  EMBED Equation.3  (iv) Since  EMBED Equation.3 , we could also arrive at the rightmost value, 1.0, in (iii) via Axiom 2; namely,  EMBED Equation.3 . The practical beauty of the set  EMBED Equation.3 is that any question one could fathom in relation to X can be identified as one of the elements of  EMBED Equation.3 . Here are some examples: Question 1: What is the probability that you either fail ( {0} ) or you succeed ( {1} ) in understanding this material? Well, since or represents a union set operation, the event that you either fail or succeed is simply  EMBED Equation.3 , which is an element of  EMBED Equation.3 . Question 2: What is the probability that you fail? Since here, failure has been identified with the number, 0, the event that you fail is a set that includes only the number 0; that is, {0}. And, of course, this set is in  EMBED Equation.3 . Question 3: What is the probability that you only partially succeed in understanding this material? Well, our chosen sample space does not recognize partial success. It has only two elements in it: 0 = failure, and 1 = success. And so, while this is a valid question for one to ask, the element in  EMBED Equation.3 that corresponds to this event of partial success is the empty set,  EMBED Equation.3 . So, the probability that you partially succeed in this setting is zero. 2. Two-Dimensional Bernoulli Random Variables. It might seem to some (especially those who have some background in probability and statistics) that the developments in the last section were belabored and overly pedantic or complicated. If that is the case, wonderful! Those individuals should then have no trouble in following this and subsequent sections. If, on the other hand, some troubles are encountered, then it is suggested that these individuals return to the last section and review it. For, all of the basic concepts covered there are simply repeated in this and future sections; albeit simply in two dimensions. However, in fairness, it should be mentioned that the richness of this topic is most readily exposed in the context of not one, but two random variables. It is far more common to encounter situations where the relationship between two variables is of primary interest; as opposed to the nature of a single variable. In this respect, this section is distinct from the last. It requires that the reader take a different perspective on the material. Definition 2.1. Let  EMBED Equation.3 and  EMBED Equation.3  be Bernoulli random variables. Then the 2-dimensional (2-D) random variable  EMBED Equation.3 is said to be a 2-D Bernoulli random variable. The first item to address in relation to any random variable is its sample space. The possible values that the 2-D variable  EMBED Equation.3 can take on are not numbers, but, rather ordered pairs of numbers. Hence, the sample space for X is  EMBED Equation.3 . (2.1) Key things to note here include the fact that since X is 2-D, its sample space is contained in the plane, and not the line. Hence, to visualize its probability description will require three dimensions. Also, since now,  EMBED Equation.3 has 4 elements (as opposed to 2 elements for the 1-D case), its probability description will require the specification of 3 probabilities (not only one, as in the 1-D case). Define the following probabilities:  EMBED Equation.3  (2.2) Even though (2.1) defines four probabilities ( EMBED Equation.3 ), in view of Axiom 2 above, only three of these four quantities need be specified, since the fourth must be one minus the sum of the other three.  0 0  1 Figure 3. Visual description of the probability structure of a 2-D Bernoulli random variable. Having defined the sample space for X, and having a general idea of what its probability description is, the next natural step is to identify all the possible subsets of (2.1). Why? Because remember, any question one can fathom to ask in relation to X corresponds to one of these subset. And so, having all possible subset of X in hand can give confidence in answering any question that one might pose. It can also illuminate questions that one might not otherwise contemplate asking. Since this set contains 4 elements, the total number of subsets of this set will be 24 = 16. Lets carefully develop this collection, since it will include a procedure that can be used for higher dimensional variables, as well. A procedure for determining the collection,  EMBED Equation.3 of all the subsets of (2.1): (i) All sets containing only a single element: {(0,0}, {(1,0)}, {(0,1)}, {(1,1)} (ii) All sets containing two elements: -pair (0,0) with each of 3 elements to its right elements: {00, 10}, (00, 01}, {00, 11} -pair (1,0) with each of the two elements to its right: {10, 01}, {10, 11} -pair (0,1) with the one remaining element to its right: {10 , 11} [Notation: for simplicity we use 10 to mean the element (1,0), etc.] (iii) All sets containing 3 elements: -pair {00 10} with the first element to the right: {00 10 01} -pair {00 10} with the second element to the right: {00 10 11} -pair {00 01} with the element to the right of 01: {00 01 11} -pair {10 01} with the element to the right: {10 01 11} (iv)  EMBED Equation.3 and  EMBED Equation.3  If you count the total number of set in (i) (iv) you will find there are 16. Specifically,  EMBED Equation.3 { {00}, {10}, {01}, {11}, {00,10}, {00,01},{00,11},{10,01},{10,11}, {01,11}, {00,10,01} , {00,10,11}, {00,01,11} , {10,01,11} ,  EMBED Equation.3 ,  EMBED Equation.3  } (2.3) It is important to note that the four singleton sets {(0,0)}, {(1,0)}, {(0,1)} and {(1,1)} have no elements in common with one another. Since they are each a 1-element set, to say that two of them have an element in common would be to say that they each have one and the same element. While the ordered pairs (0,0) and (0,1) do, indeed, have the same first coordinate, their second coordinates are different. As shown in Figure 3, they are two distinctly separate points in the plane. Thus, the intersection of the sets {(0,0)} and {(0,1)} is the empty set. A second point to note is that any element (i.e. set) in the collection (2.3) can be expressed as a union of two or more of these disjoint singleton sets. For example, {(0,0), (1,1) } = {(0,0)}  EMBED Equation.3 {(1,1)}. Hence, from Axiom 3 above,  EMBED Equation.3 . It follows that if we know the probabilities of the singleton sets, then we can compute the probability of any set in  EMBED Equation.3 . We now state this in a formal way. Fact: The probability structure of a 2-D Bernoulli random variable is completely specified when 3 of the 4 probabilities  EMBED Equation.3 are specified. In view of this fact, and the above Definition 2.1, it should be apparent that Definition 2.1 is incomplete, in the sense that it does not define a unique 2-D Bernoulli random variable. This is because in that definition only two parameters were specified; namely,  EMBED Equation.3 and  EMBED Equation.3 . Even so, the given definition is a natural extension of the definition of a 1-D Bernoulli random variable. We now offer an alternative to Definition 2.1 that does completely and unambiguously define a 2-D Bernoulli random variable. Definition 2.1 The random variable  EMBED Equation.3 is said to be a completely defined 2-D Bernoulli random variable if its sample space is  EMBED Equation.3 and if any three of the four singleton set probabilities  EMBED Equation.3 are specified. This alternative definition eliminates the lack of the complete specification of the 2-D Bernoulli random variable, but at the expense of not seeming to be a natural extension of the 1-D random variable. Now, lets address the question of how the specification of  EMBED Equation.3 leads to the specification of  EMBED Equation.3 and  EMBED Equation.3 . To this end, it is of crucial conceptual importance to understand what is meant when one refers to the event that  EMBED Equation.3 equals one, within the 2-D framework. Remember: ANY question one can ask, in relation to  EMBED Equation.3 can be identified as one unique set in the collection of sets given by (2.3). This includes questions such as: what is the probability that  EMBED Equation.3 equals one? In the 2-D sample space for X, this event is: The event that  EMBED Equation.3 equals one (often written as [ EMBED Equation.3 =1] ) is the set {(1,0), (1,1)}. This set includes all elements whose first coordinate is 1, but whose second coordinate can be anything. Why? Because there was no mention of  EMBED Equation.3 ; only  EMBED Equation.3 . If you are having difficulty with this, then consider when you were first learning about x, y and graphing in high school math. If there is no y, then you would identify the relation x=1 as just the point 1.0 on the x-axis. However, in the x-y plane, the relation x=1 is a vertical line that intersects the x-axis at the location 1.0. You are allowing y to be anything, because no information about y was given. And so, we have the following relation between  EMBED Equation.3 and  EMBED Equation.3 :  EMBED Equation.3  (2.4a) Similarly,  EMBED Equation.3  (2.4b) From (2.4) we observe more of the missing details when one specifies only  EMBED Equation.3 and  EMBED Equation.3  in relation to a 2-D Bernoulli random variable. If these parameters are specified, then one still needs to specify one of the four parameters  EMBED Equation.3 for a complete, unambiguous description of the probability structure of  EMBED Equation.3 . There is one common situation where specification of only  EMBED Equation.3 and  EMBED Equation.3 is sufficient to completely specify the probability structure of  EMBED Equation.3 . It is the situation where  EMBED Equation.3 and  EMBED Equation.3 are statistically independent. In more simple terms, this situation is one wherein knowledge of the value  EMBED Equation.3 has no influence on the probability that  EMBED Equation.3 equals any specified value. For example, if you toss a coin and you read heads (map heads to 1), then that result in no way changes the probability that you will get a heads on a second flip, does it? If we agree that it does not, then the 2-coin flip is an example of a 2-D Bernoulli random variable, where the two components of  EMBED Equation.3 are statistically independent. As another example, consider parts inspection at the delivery dock of a company. If a randomly selected part passes inspection, it is natural to assume that the probability that the next selected part passes is not influenced by knowledge that the first part passed. While this is a natural assumption in parts inspection protocols, it may not necessarily be true. If the parts were manufactured in the presence of an unknown systematic manufacturing malfunction, then the fact that the first part passed may well influence the probability that the second part passes; for example, if there is only one good part, then the probability that the second part passes, given the first part passed will be zero. We will presently address the mathematical details of what is required for  EMBED Equation.3 and  EMBED Equation.3 to be assumed to be statistically independent. However, in order to expedite that investigation, it is appropriate to first address yet another source of major confusion to novices in this area. Unions and Intersections, Ands and Ors, and Commas and Commas- It should be apparent by now that probability is intimately related to sets. As noted above, it is, in fact, a well-defined measure of the size of a set. Yet, as was noted above, the vast majority of text books dealing with probability and statistics use a notation that, at the very least, de-emphasizes the notion of sets. For example, in the case of the 2-D Bernoulli random variable  EMBED Equation.3 , most books will use notation such as  EMBED Equation.3  (2.5a) If one realizes that Pr(A) measures the size (i.e. probability) of the set A, then it must be that, depending on how you read (2.5a), either  EMBED Equation.3 is a set, or  EMBED Equation.3 is a set. In either case, it is very likely that a student who has had some prior exposure to sets has never seen either one of the above expressions for a set. To this point, we have been using a more common notation for a set; namely the {} notation. Lets rewrite (2.5a) in this more common notation.  EMBED Equation.3  (2.5b) There is nothing ambiguous or vague about (2.5b). The set in question has two elements in it; namely the element (1,0) and the element (1,1). In particular, (1,0) is an element, and not a set. Whereas, { (1,0) } is a set, and that set contains the element (1,0). One might argue that (2.5a) is clear, and that (2.5b) is involves too many unnecessary symbols that can cause confusion. However, lets consider the following probability:  EMBED Equation.3  (2.5c) This expression includes a set operation symbol, namely the intersection symbol  EMBED Equation.3 . This suggests that  EMBED Equation.3 and  EMBED Equation.3 are sets. Moreover, (2.5c) suggests that these two sets may have elements in common. But what exactly is the set  EMBED Equation.3 ? Well, if we ignore  EMBED Equation.3 , then we have only a 1-D Bernoulli random variable, whose sample space is {0,1}. In that case, the expression  EMBED Equation.3 means the set{1}. However, if we include  EMBED Equation.3 in our investigation, then the expression  EMBED Equation.3 means { (1,0) , (1,1) }. These are two distinctly different sets, and yet each set is expressed as  EMBED Equation.3 . A seasoned student of probability might argue that one must keep in mind the entire setting when interpreting the meaning of  EMBED Equation.3 . However, for a student who has no prior background in the field, it is often not so easy to keep the entire setting in mind. Before we can reconcile this ambiguity, we need to first address the set notion of a union ( EMBED Equation.3 ). The union of two sets is a set whose elements include all of the elements of each set; but where elements in common in these two sets are not counted twice. For example  EMBED Equation.3  (2.5d) Notice that the common element (1,1) is not counted twice in this union of the sets. Unfortunately, the same type of notation used in (2.5c) for intersections is commonly also used for unions. Specifically, we have the expression  EMBED Equation.3  (2.5e) Since (2.5c) and (2.5e) each involve a set operation, the above discussion related to the ambiguity and vagueness of expressions such as  EMBED Equation.3 applies to (2.5e). Now lets reconcile these two types of expressions. In doing so, we will discover that there are commas and there are commas. To this end, we will express (2.5c) in the unambiguous notation associated with a 2-D Bernoulli random variable.  EMBED Equation.3  (2.5f) The leftmost expression in (2.5f) is ambiguous when not accompanied by a note that we are dealing only with a 2-D random variable. (What if we actually had a 3-D random variable?) The middle expression is unambiguous. Furthermore, any student with even a cursory exposure to sets would be able to identify the single element, (1,1), that is common to both sets. The equality of the leftmost and rightmost expressions reveals that in this 2-D framework, we can refer to the element (1,1) as the element whose first component is one and whose second component is one. Hence the comma that separates these two components of the element (1,1) may be read as an and comma. Similarly, rewriting (2.5e) and referring to (2.5c) gives  EMBED Equation.3  (2.5g) Hence, the commas that separate the elements (1,0), (0,1) and (1,1) may be read as or commas. After a bit of reflection, the reader may find all of this to be obvious. In that event, this brief digression will have served its purpose. In that case, lets proceed to the following examples to further assess the readers grasp of this topic. Example 2.1 Let  EMBED Equation.3 ~Ber( EMBED Equation.3 ). Notice that there is no assumption of independence here. Clearly state the sets corresponding to the following events: (i)  EMBED Equation.3 : Answer:  EMBED Equation.3 . (ii):  EMBED Equation.3 : Answer:  EMBED Equation.3 . (iii)  EMBED Equation.3 : Answer:  EMBED Equation.3 . (iv)  EMBED Equation.3 : Answer:  EMBED Equation.3 . Compute the probabilities of the events in (a), in terms of  EMBED Equation.3 . (i)  EMBED Equation.3 : Answer:  EMBED Equation.3 . (ii):  EMBED Equation.3 : Answer:  EMBED Equation.3 . (iii)  EMBED Equation.3 : Answer:  EMBED Equation.3 . (iv)  EMBED Equation.3 : Answer:  EMBED Equation.3 . Hopefully, the reader felt that the answers in the above example were self-evident, once the sets in question were clearly described as such. The next example is similar to the last one. However, it extends the conceptual understanding of this topic to arrive at a very important and useful quantity; namely the cumulative distribution function (CDF). Example 2.2 Again, let  EMBED Equation.3 ~Ber( EMBED Equation.3 ). Now, let  EMBED Equation.3  be any pair of real numbers (i.e. any point in the plane). Notice here that  EMBED Equation.3 is not constrained to be an element of  EMBED Equation.3 . (a) Develop an expression for  EMBED Equation.3 as a function of  EMBED Equation.3 while ignoring X2 . Solution: If we want to, we can approach this problem in exactly the same manner as in the above example; namely, by clearly describing the set corresponding to the expressed event  EMBED Equation.3 ; namely,  EMBED Equation.3 . However, since our interest here is only in the random variable  EMBED Equation.3 , whose sample space is extremely simple (i.e. {0,1} ) we will choose this approach. The p-value for this random variable in terms of the 2-D probabilities is given above in (2.4a). The probability description for  EMBED Equation.3 was shown in Figure 1 above. But that figure only utilized x-values in the range [0,2]. The expression we are to develop here should consider any value of x1 . The following expression is hopefully clear from Figure 1:  EMBED Equation.3  (2.6) This expression is plotted below for the value  EMBED Equation.3   Figure 4. Graph of  EMBED Equation.3  given by (2.6). So, how exactly did Figure 4 arise from Figure 1? Well, Figure 1 shows where the lumps of probability are, and also gives the values of these lumps. For example, the lump at location  EMBED Equation.3 is the probability EMBED Equation.3 . If the reader is confused by the fact that Figure 1 is for the Ber(p) random variable, X, while Figure 2 is for the Ber( EMBED Equation.3 ) random variable,  EMBED Equation.3 , it should be remembered that when we discussed Figure 1 there was only one random variable. However, now there are two. And so, now, we need to have some way to distinguish one from the other. Nonetheless, both are Bernoulli random variables. And so, both will have the general probability structure illustrated in Figure 1; albeit with possibly differing p-values. So, again- how did Figure 4 arise from Figure 1? The key to answering this question is to observe that  EMBED Equation.3  is the totality of the probability associated with the interval  EMBED Equation.3 . Hence, as long as  EMBED Equation.3 , the value of  EMBED Equation.3 will be zero, since the first lump of probability is at  EMBED Equation.3 . So, at this location,  EMBED Equation.3 will experience an increase in probability, in the amount  EMBED Equation.3 . This increase, or jump in  EMBED Equation.3 is shown in Figure 4. As we allow  EMBED Equation.3 to continue its travel to the right of zero, since there are no lumps of probability in the interval (0,1) the value of  EMBED Equation.3 will remain at the value  EMBED Equation.3 throughout this region. When EMBED Equation.3 , the value of  EMBED Equation.3 will increase by an amount EMBED Equation.3 , since that is the value of the lump of probability at this location:  EMBED Equation.3 . Hence, when  EMBED Equation.3  we have  EMBED Equation.3 . In words, the probability that the random variable  EMBED Equation.3 equals any number less than or equal to one is 1.0. It follows that there are no more lumps of probability to be accumulated as  EMBED Equation.3 continues it travel to the right beyond the number 1. This is the reason that  EMBED Equation.3 remains flat to the right of  EMBED Equation.3 in Figure 4. It is the accumulating feature of  EMBED Equation.3 as  EMBED Equation.3  travels from left to right that is responsible for the following definition. Definition 2.3 Let X be any 1-D random variable. Then  EMBED Equation.3 is called the cumulative distribution function (CDF) for X. Example 2.2 continued: (b) Develop an expression for  EMBED Equation.3 as a function of  EMBED Equation.3 while not ignoring X2. Solution: Again, as in (a), we write  EMBED Equation.3 . As we compute the probability of this set, lets actually identify the actual set that corresponds to a given value for u: for  EMBED Equation.3 , for  EMBED Equation.3  for  EMBED Equation.3 . j Notice that the rightmost expressions in (ii) and (iii) above are summations. It is fair to argue that the summation notation is unduly heavy, in the sense that (ii), for example, could have been written more simply as  EMBED Equation.3 . Not only is this a fair argument, it points to yet another example where the biggest stumbling block to a novice might be the notation, and not the concept. However, in this particular situation the summation notation was chosen (at the risk of frustrating some novices) in order to highlight a concept that is central in dealing with two (or more) random variables. We now state this concept for the more general case of two random variables, say, X and Y, whose joint probability structure is specified by a collection of joint probabilities, say,  EMBED Equation.3 . Fact 2.1 Consider a 2-D random variable, (X,Y) having a discrete 2-D sample space  EMBED Equation.3 , and corresponding joint probabilities  EMBED Equation.3 . Then  EMBED Equation.3 . In many books on the subject, Fact 2.1 is stated as a theorem, and often it is accompanied by a proof. However, we do not believe that this fact is worthy of the theorem label. It is an immediate consequence of the realization that the set  EMBED Equation.3  A reader who has had a course in integral calculus might recognize that integration is synonymous with accumulation. The above Fact 2.1 says, in words: To obtain  EMBED Equation.3 integrate the joint probabilities over the values of y. For the benefit of such readers, consider the following example. Example 2.3 Consider a random variable, say, U, whose sample space is  EMBED Equation.3 (i.e. the closed interval with left endpoint 0, and with right endpoint 1). Furthermore, assume that U has a uniform probability distribution on this interval. Call this distribution  EMBED Equation.3 . The meaning of the term uniform here, is that the probability of any sub-interval of  EMBED Equation.3 depends only on the width of that interval, and not on its location. For a sub-interval of width 0.1 (be it the interval (0,0.1) or (0.2,0.3), or [0.8,0.9]) the probability that U falls in the interval is 0.1. This distribution is shown in Figure 5 below. It follows that the probability the U falls in the interval [0,u] is equal to u. Another way of expressing this is  EMBED Equation.3 . But this is exactly the definition of the CDF for U. And so  EMBED Equation.3 . This CDF is also shown in Figure 5 below. Notice that this CDF is linear in u, and has a slope equal to 1.0. The derivative of this CDF is, therefore, just its slope, which is exactly  EMBED Equation.3 . Hence, here, we can conclude that  EMBED Equation.3 is the derivative of  EMBED Equation.3 ; or, equivalently,  EMBED Equation.3 is the integral of  EMBED Equation.3 . j  Figure 5 Graphs of the CDF,  EMBED Equation.3 (thick line), and its derivative  EMBED Equation.3  (thin line). The above example is a demonstration of the following general definition that holds for any random variable. Definition 2.4 Let W be any random variable, and let  EMBED Equation.3 be its cumulative distribution function (CDF). Then the (possibly generalized) derivative of  EMBED Equation.3 is  EMBED Equation.3 , which is called the (possibly generalized) probability density function (PDF) for W. In Example 3.2 above, indeed, the derivative of the CDF  EMBED Equation.3 is exactly the PDF EMBED Equation.3 . However, in the case of  EMBED Equation.3 with a CDF having the general structure illustrated in Figure 4 above, we see that the CDF has a slope equal to zero, except at the jump locations. And at these locations the slope is infinite (or, if you like, undefined). What is the derivative of such a function? Well, properly speaking, the derivative does not exist at the jump locations. Hence, properly speaking,  EMBED Equation.3 does not have a PDF. However, generally speaking (i.e. in the generalized sense) we can say that its derivative has the form illustrated in Figure 1 above. Specifically, the PDF is identically zero, except at the jump locations where it contains  lumps of probability. [For those readers who are familiar with Dirac- functions, these lumps are, in fact, weighted -functions, whose weights are the probability values]. The key points here are two: Key Point #1: Every random variable has a well-defined CDF, and Key Point #2: If the CDF is not differentiable, then, properly speaking, the PDF does not exist. Nonetheless, if we allow generalized derivatives, then it does exist everywhere, except at a discrete number of locations. In the next chapter we will discuss the relation between the CDF and PFD of a wide variety of random variables. However, for the time being, lets return to Bernoulli random variables. In particular, there are two topics that still need to be addressed before we move on to n-D Bernoulli random variables. One is the topic of statistical independence,and the second is the topic of conditional probability. As we shall see shortly, these two topics are strongly connected. Definition 2.5 Let (X,Y) be a 2-D random variable with sample space  EMBED Equation.3 . Let A be a subset of this space that relates only to X, and let B be a subset that relates only to Y. Then the subsets (i.e. events) A and B are said to be (statistically) independent events if  EMBED Equation.3 . If all events relating to X are independent of all events relating to Y, then the random variables X and Y are said to be (statistically) independent. Before we investigate just exactly how the notion of statistical independence relates to a 2-D Bernoulli random variable, lets demonstrate its practical implications in an example. Example 2.4 Consider the act of tossing a fair coin twice. Let  EMBED Equation.3 correspond to the action that is the kth toss, and let a heads correspond to one, and a tails correspond to a zero. Then,  EMBED Equation.3 is a 2-D Bernoulli random variable. Since the coin is assumed to be a fair coin, we have  EMBED Equation.3  and  EMBED Equation.3 . But because the coin is fair, each of the four possible outcomes, {(0,0)}, {(1,0)}, {(0,1)}, {(1,1)} should have the same probability. Hence,  EMBED Equation.3 . Rewriting this probability in the usual notation gives  EMBED Equation.3 . So, we see that the events  EMBED Equation.3 and  EMBED Equation.3 are statistically independent. In exactly the same manner, one can show that all of the events related to  EMBED Equation.3 (i.e.  EMBED Equation.3  and  EMBED Equation.3 ) are independent of all the events related to  EMBED Equation.3  (i.e.  EMBED Equation.3  and  EMBED Equation.3 ). We can conclude that the assumption of a fair coin, and in particular, that the above four outcomes have equal probability, is equivalent to the assumption that  EMBED Equation.3 and  EMBED Equation.3 are statistically independent. j Now, let s look more closely at a 2-D Bernoulli random variable  EMBED Equation.3 with specified probabilities  EMBED Equation.3 . Without loss of generality, let s assume the first three probabilities have been specified. Then  EMBED Equation.3 . We now address the question: UNDER WHAT CONDITIONS ARE THE EVENTS  EMBED Equation.3 AND  EMBED Equation.3 INDEPENDENT ? ANSWER: Lets first express the condition for independence in terms of the usual notation. Then we will translate the condition in terms of sets. These events are independent if:  EMBED Equation.3 . (2.7a) In terms of sets, (2.7a) becomes  EMBED Equation.3 . (2.7b) In terms of the specified probabilities, (2.7b) becomes  EMBED Equation.3  (2.7c) Even though (2.7c) is the condition on the specified probabilities for these events to be independent, we can arrive at a more simple expression by using the fact that  EMBED Equation.3 . First, lets rewrite (2.7c) as  EMBED Equation.3 . (2.7d) Subtracting  EMBED Equation.3 from each side of (2.7d), and rearranging terms, gives  EMBED Equation.3 . (2.7e) Equation (2.7e) is the condition needed to assume that the events  EMBED Equation.3 and  EMBED Equation.3 are independent. Using exactly the same procedure, one can show that the condition (2.7e) is the condition. We state this formally in the following fact. Fact 2.2 The components of the 2-D Bernoulli random variable  EMBED Equation.3 with specified probabilities  EMBED Equation.3 are statistically independent if and only if the condition  EMBED Equation.3  holds. Example 2.4 above is a special case of this fact. Since we assumed  EMBED Equation.3 , clearly, the above condition holds. This equality of the elemental probabilities is a sufficient condition for independence, but it is not necessary. Consider the following example. Example 2.5. Suppose the person has very good control over the number of rotations the coin makes while in the air. In particular, suppose the following numerical probabilities:  EMBED Equation.3 . Now, we need to find the numerical value of  EMBED Equation.3 (if there is one) such that the relation  EMBED Equation.3 holds. To this end, express this condition as:  EMBED Equation.3  (2.8a) This equation can be rewritten as a quadratic equation in the unknown  EMBED Equation.3 .  EMBED Equation.3 . (2.8b) Applying the quadratic formula to (2.8b) gives  EMBED Equation.3 . (2.8c) Inserting the above numerical information into (2.8c) gives  EMBED Equation.3  (2.8d) Notice that for the chosen values  EMBED Equation.3 there are two possible choices for  EMBED Equation.3 . Furthermore, they add up to 0.6. Hence, if we choose the first for  EMBED Equation.3 , then the second is exactly  EMBED Equation.3 . It should also be noted that (2.8c) indicates that for certain choices of  EMBED Equation.3 and  EMBED Equation.3 there will be no value of  EMBED Equation.3 that makes the components of X independent. Specifically, if both  EMBED Equation.3 and  EMBED Equation.3 are large enough so that the term inside the square root is negative, then there is no real-valued solution for  EMBED Equation.3 . j We now address the concept of conditional probability in relation to a 2-D Bernoulli random variable. First, however, we give the following definition of conditional probability in the general setting. Definition 2.6. Let A and B be two subsets of a sample space,  EMBED Equation.3 , and suppose that  EMBED Equation.3 . Then, the probability of A given B, written as  EMBED Equation.3 is defined as  EMBED Equation.3 . (2.9) To understand (2.9) we refer to the Venn diagram in Figure 2. What given B means is that our sample space is now restricted to the set B. Stated another way, nothing outside of the set B exists. So, in Figure 2, only the red circle exists now. Equation (2.9) is the probability of that portion of the set A that is in the set B. The  EMBED Equation.3 , which is the black area in Figure 2, is the size of the intersection relative to the entire sample space. Since our new sample space is the smaller one, B, the probability of this intersection relative to B, demands that we scale it by dividing that probability by the probability of B, as is done in (2.9). Now that we have Definition 2.6, we can make an alternative definition of statistical independence defined per Definition 2.5. Specifically, Definition 2.5 Events A and B (where it is assumed that  EMBED Equation.3 ) are said to be statistically independent events if  EMBED Equation.3 . Remark In relation to Figure 2, this means that if A is contained entirely in B, then restricting our sample space to B does not alter the probability of A. In other words, if under the condition B, the probability of A is not changed, then A and B are statistically independent. However, while that condition that A is entirely contained in B is a sufficient condition for independence, it is not necessary. Again, referring to Figure 2, all that is necessary is that the overlap of A and B be just enough so that the black intersection area equals the product of the blue and read areas. We now proceed to relate the concept of conditional probability to a 2-D Bernoulli random variable. Because the sample space for this random variable is so simple, it offers a clear picture of both the meaning and value of conditional probability. Example 2.6 Again, let  EMBED Equation.3 ~Ber( EMBED Equation.3 ). Develop the expression for  EMBED Equation.3 . Solution:  EMBED Equation.3 . (2.10a) In particular,  EMBED Equation.3  (2.10b) and  EMBED Equation.3 . (2.10c) The probabilities (2.10b) and (2.10c) are the p-values for  EMBED Equation.3 , conditioned on the events  EMBED Equation.3 and  EMBED Equation.3 , respectively. j As simple as it was to obtain (2.10), it can be an extremely valuable tool. Specifically, if one has reliable numerical values for  EMBED Equation.3 , then (2.10) is a prediction model, in the sense that, if we have obtained a numerical value for  EMBED Equation.3 , it allows us to predict the probability that  EMBED Equation.3 will equal zero or one. Remember, if  EMBED Equation.3 and  EMBED Equation.3 are independent, then the numerical information associated with  EMBED Equation.3 is irrelevant, in the sense that it does not alter the probability that  EMBED Equation.3 will equal zero or one. But there are many situations where these random variables are not independent. 3. n-Dimensional Bernoulli Random Variables Definition 2.7 Let  EMBED Equation.3 where each  EMBED Equation.3 . Then X is said to be an n-D Bernoulli random variable. The p-values  EMBED Equation.3 in the above definition are not generally sufficient to describe X unambiguously. The reason lies in the fact that the sample space for X includes 2n distinct elements. Hence, to completely describe the probability structure of X requires the specification of  EMBED Equation.3 probabilities. Specifically, we need to specify all but one of  EMBED Equation.3 . There is a situation wherein the n p-values  EMBED Equation.3  are sufficient to completely describe X; namely when the n random variables comprising X are mutually independent. However, in doing so, we will demonstrate the value of the uniform random variable considered in Example 3 above. Using a Random Number Generator to Simulate n-D iid Bernoulli Random Variables In this section we address the problem of simulating data associated with a Bernoulli random variable. This simulation will utilize a uniform random number generator. And so, first, we will formally define what we mean by a uniform random number generator. Definition 2.8 A uniform random number generator is a program that, when called, produces a random number that lies in the interval [0,1]. In fact, the above definition is not very formal. But it describes in simple terms the gist of a uniform random number generator. The following definition is formal, and allows the generation of n numbers at a time. Definition 2.8Define the n-D random variable  EMBED Equation.3 where each  EMBED Equation.3 is a random variable that has a uniform distribution on the interval [0,1], and where these n random variables are mutually independent. The two assumptions that these variables each have the same distribution and that they are mutually independent is typically phrased as the assumption that they are independent and identically distributed (iid). Then U is an n-D uniform random number generator. The following example uses the uniform random number generator in Matlab to demonstrate this definition. Example 2.7 Here, we give examples of an n-D uniform random variable, U, using the Matlab command rand, for n=1,2 and 25: U = rand(1,1) is a 1-D uniform random variable. Each time this command is executed, the result is a randomly selected number in the interval [0,1]. For example: >> rand(1,1) ans = 0.9501 U=rand(1,2) is a 2-D uniform random variable. For example, >> rand(1,2) ans = 0.2311 0.6068 U=rand(5,5) is a 25-D uniform random variable. For example, >> rand(5,5) ans = 0.3340 0.5298 0.6808 0.6029 0.0150 0.4329 0.6405 0.4611 0.0503 0.7680 0.2259 0.2091 0.5678 0.4154 0.9708 0.5798 0.3798 0.7942 0.3050 0.9901 0.7604 0.7833 0.0592 0.8744 0.7889 It is important to note that the command rand(m,n) is the  EMBED Equation.3 -D random variable. The numbers are a result of the command. They are not random variables. They are numbers. A random variable is an action, algorithm, or operation that when conducted yields numbers. j We now proceed to show how the uniform random number generator can be used to simulate measurements of a Bernoulli random variable. Let s begin with a 1-D random variable. Again, we will use Matlab commands to this end. Using U to arrive at  EMBED Equation.3 : For  EMBED Equation.3 , define the random variable, X, in the following way: Map the interval  EMBED Equation.3 to the event [X=0], and map the event [ EMBED Equation.3 to the event [X=1]. Recall from Example 3 above that  EMBED Equation.3 . Hence, it follows that  EMBED Equation.3 . Therefore, since X can take on only the value zero or one, we have  EMBED Equation.3 ; that it, X is a Ber(p) random variable. Here is a Matlab code that corresponds to  EMBED Equation.3 : p=0.7; u=rand(1,1); if u <=1-p x=0 else x=1 end For example: >> p=0.7; u=rand(1,1); if u <=1-p x=0 else x=1 end x = 1 Now, suppose that we want to simulate multiple measurements associated with this random variable  EMBED Equation.3 associated with the above code. Well, we could simple embed the code in a DO loop, and repeat the above operation the desired number of times. Well, it turns out that Matlab is a programming language that is not well-suited to DO loops. If the loop count is small, it works fine. But if you wanted to simulate, say one million values associated with X, then it would take a long time. In fact, Matlab was designed in a way that makes it a very fast code for batch or vector operations. With this in mind, the code below is offered. It includes no IF/ELSE commands, and it requires no DO loop for multiple measurements. We will give the code for the case of one million values associated with X. p=0.7; m=1000000; u=rand(1,m); u=u-(1-p); x=ceil(u); The command u=rand(1,m) results in a 1x1000000 vector of numbers between 0 and 1. The command u=u-(1-p), shifts every number to the left by an amount 1-p. Thus, since here p=0.7, every number that was in the interval [0,0.3] has been shifted to a number in the interval[-0.3,0]. In particular, not only is every such number now a negative number, but the closest integer to the right of it is zero. The ceil command rounds numbers to the next higher integer. The command ceil is short for ceiling, or round up to the nearest integer. Similarly, numbers originally in the interval (0.3,1] are moved to the interval (0,0.7]. Since they are still positive, the next highest integer associated with them is one. Here is an example of running the above code. Rather than showing x, which contains one million zeros/ones, we included a command that adds these numbers. This sum is the number of ones, since zeros contribute nothing to a sum. >> p=0.7; m=1000000; u=rand(1,m); u=u-(1-p); x=ceil(u); >> sum(x) ans = 700202 Notice that the relative frequency of ones is 700202/1000000, which is pretty close to the 0.7 p-value for X. In fact, if we were to pretend that these numbers were collected from an experiment, then we would estimate the p-value for X by this relative frequency value. The value of running a simulation is that you know the truth. The truth in the simulation is that the p-value is 0.7. And so, the simulation using 1000000 measurements appears to give a pretty accurate estimate of the true p-value. We will next pursue more carefully what this example has just demonstrated. Using  EMBED Equation.3 to Simulate  EMBED Equation.3 Independent and Identically Distributed (iid) Ber(p) Random Variables, and then, from these, investigating the probability structure of the random variable  EMBED Equation.3 . In this subsection we are interested in using simulations to gain some idea of how many subjects, n, would be required to obtain a good estimate of the p-value of a typical subject. The experiment is based on the question: What is the probability that a typical American believes that we should withdraw from Iraq. We will identify the set {1} with an affirmative, and the set {0} with opposition. We will ask this question to n independent subject and record their responses. Let  EMBED Equation.3 be the response of the kth subject. Notice that we are assuming that each subject has the same probability, p, of believing that we should withdraw. Thus,  EMBED Equation.3 is an n-D random variable whose components are iid Ber(p) random variables. After we conduct the survey, our next action will be to estimate p using the estimator  EMBED Equation.3 . (2.7) Notice that (2.7) is a random variable that is a composite action that includes first recording the responses of n subjects, and then taking an average of these responses. But suppose we were considering conducting an experiment where only 100 measurements were being considered. Well, if we run the above code for this value of m, we get a sum equal to 74. Running it a second time gives a sum equal to 67. And if we run the code 500 times, we could plot a histogram of the sum data, to get a better idea of the amount of uncertainty of the p-value estimator for m=100. Here is the Matlab code that allows us to conduct this investigation of how good an estimate of the true p-value we can expect: p=0.7; n=500; m=100; u=rand(m,n); u=u-(1-p); x=ceil(u); phat=0.01*sum(x); hist(phat)  Figure 6. Histogram of the p-value estimator (2.7) associated with m=100 subjects, using 500 simulations. Notice that the histogram is reasonably well centered about the true p-value of 0.7. Based on the 500 estimates of (2.7) for n=100, the sample mean and standard deviation of the estimator (2.7) are 0.7001 and 0.0442, respectively. Were we to use a 2- reporting error for our estimate of (2.7) for m=100, it would be ~0.09 (or 9%). To get an idea of how the reporting error may be influenced by the number of chosen subjects, n, used in (2.7), we embedded the above code in an m-DO LOOP, for values of m=100, 1000, and 10,000. For each value of m we computed the sample standard deviation. The code and results are given below. >> %PROGRAM NAME: phatstd m=[100 1000 10000]; phatstdvec=[]; p=0.7; n=500; for i=1:3 u=rand(m(i),n); u=u-(1-p); x=ceil(u); phat=(1/m(i))*sum(x); phatstd=std(phat); phatstdvec=[phatstdvec phatstd]; end phatstdvec phatstdvec = 0.0469 0.0140 0.0046 Closer examination of these 3 numbers associated with the chosen 3 values of m, would reveal that the standard deviation of (2.7) appears to be inversely proportional to  EMBED Equation.3 . In the next example, we demonstrate the power of knowledge of the conditional PDF of a 2-D Bernoulli random variable, in relation to a process that is a time-indexed collection of random variables. In general, such a process is known as a random process: Definition 2.9 A time-indexed collection of random variables,  EMBED Equation.3 is known as a random process. If the joint PDF of any subset  EMBED Equation.3 does not depend on t, then the process is said to be a stationary random process. The universe is rife with time-dependent variables that take on only one of two possible values. Consider just a few such processes from a wide range of settings: Whether a person is breathing normally or not. Whether a drop in air temperature causes a chemical phase change or not. Whether farmers will get more that 2 inches of rain in July or not. Whether your cell phone receives a correct bit of information or not. Whether a cooling pump performs as designed or not. Whether you get married in any given year or not. Whether a black hole exists in a sector of the galaxy or not. All of these examples are time-dependent. In the following example we address what might be termed a Bernoulli or a binary random process. Example 2.8 Samples of a mixing process are taken once every hour. If the chemical composition is not within required limits, a value of one is entered into the data log. Otherwise, a value of zero is entered. The Figure 7 below shows two randomly selected 200-hout segments of the data log for a process that is deemed to be pretty much under control. From these data, we see that, for the most part, the process is in control. However, when it goes out of control, there seems to be a tendency to remain out of control for more than one hour. Under federal regulations, the mixture associated with an out-of-control period must be discarded. Management would like to have a computer model for simulating this control data log. It should be a random model that captures key information, such as the mean and standard deviation of a simulated data log. Pursue the design of such a model. Well, having had Professor Shermans STAT 305C course, you immediately recall the notion of a Bernoulli random variable. And so, your first thought is to define the events [X=0] and [X=1] to correspond to in and out of control, respectively. To estimate the p-value for X, you add up all the ones in the lower segment given in Figure 7, and divide this number by 200. This yields the p-value, p=12/200=0.06. You then proceed to simulate a data log segment by using the following Matlab commands: >> u = rand(1,200); >> u= u 0.94; >> y = ceil(u); >> stem(y) The stem plot is shown in Figure 8 below.   Figure 7. Two 200-hour segments of the control data log for a mixing process. Even though Figure 8 has general similarities to Figure 7, it lacks the grouping tendency of the ones. Hence, management feels the model is inadequate.  Figure 8. Simulation of a data log 200-hour segment using a Ber(0.6) random variable. Use the concept of a 2-D Bernoulli random variable whose components are not assumed to be statistically independent, as the basis for your model. Specifically, X1 is the process control state at any time, t, and X2 is the state at time t+1. To this end, you need configure the data to correspond to  EMBED Equation.3 . You do this in the following way: For simplicity, consider the following measurements associated with a 10-hour segment: [0 0 0 1 0 0 0 0 10]. This array represents 10 measurements of X1. Now, for each measurement of  EMBED Equation.3 then measurement that follows it is the corresponding measurement of  EMBED Equation.3 . Since you have no measurement following the 10th measurement of  EMBED Equation.3 , this means that you have only 9 measurements of  EMBED Equation.3 ; namely 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 1 0 Of these 9 ordered pairs, you have 5 (0,0) elements. And so, your estimate for  EMBED Equation.3 would be 5/9. Using this procedure on the second data set in Figure 7, you arrive at the following numerical estimates:  EMBED Equation.3 and  EMBED Equation.3 . It follows that  EMBED Equation.3 . Since  EMBED Equation.3 , your first measurement of your 200-hour simulation is that of a Ber(0.06) random variable. You simulate a numerical value for this variable in exactly the way you did in part (a). If the number is 0, your p-value for simulating the second number is obtained using (2.7b), and if your first number was a 1, then you use a p-value given by (2.7b). Specifically,  EMBED Equation.3   EMBED Equation.3 . The Matlab code for this simulation is shown below. %PROGRAM NAME: berprocess.m % This program generates a realization % of a Ber(p00, p10, p01,p11) correlated process npts = 200; y=zeros(npts+1,1); % Stationary Joint Probabilities between Y(k) and Y(k-1) p01=0.05; p10=p01; p11=0.05 p00 = 1 - (p11 + p10 + p01); pvec = [p00 p10 p01 p11] %Marginal p for any Y(k) p=p11 + p10 % ------------------------- x = rand(npts+1,1); y(1)= ceil(x(1)- (1-p)); % Initial condition for k = 2:npts+1 if y(k-1)== 0 pk = p10/(p00 + p10); y(k)=ceil(x(k) - (1-pk)); else pk = p11/(p11 + p10); y(k)=ceil(x(k) - (1-pk)); end end stem(y(1:200)) xlabel('Time') ylabel('y(t)') title('Time Series for Process Control State') Running this code twice, gives the simulation segments in Figure 9 below.   Figure 9. Two 200-hour data log simulations using a 2-D Bernoulli random variable with probabilities  EMBED Equation.3 ,  EMBED Equation.3 , and hence,  EMBED Equation.3 . Management feels that this model captures the grouping tendency of the ones, and so your model is approved. Congratulations!!! Before we leave this example, lets think about the reasonableness of the ones grouping tendency. What this says is that when the process does go out of control, it has a tendency to remain out of control for more than one hour. In fact, the above conditional probability  EMBED Equation.3  States that if it is out of control during one hour, then there is an 83% chance that it will remain out of control the next hour. This can point to a number of possible sources responsible for the process going out of control. Specifically, if the time constant associated with either transient nonhomogeneities in the chemicals, or with a partially blocked mixing valve is on the order of an hour, then one might have reason to investigate these sources. If either of these sources has a time constant on the order of hours, then the above model can be used for early detection of the source. Specifically, we can use a sliding window to collect overlapping data segments, and estimate the probabilities associated with  EMBED Equation.3 . If a blockage in the mixing valve takes hours to dissolve, then one might expect the above probability value 0.8333 to increase. We can use this logic to construct a hypothesis test for determining whether we think the valve is blocked or not. We will discuss hypothesis testing presently. Perhaps this commentary will help to motivate the reader to look forward to that topic. j 4. Functions of n-D Bernoulli Random Variables Having a solid grasp of the sample space and probability description of an n-D Bernoulli random variable is crucial in order to appreciate the simplicity of the material in this section. If the reader finds this material difficult, then it is suggested that the previous sections be reviewed. Again, the concepts are (i) a random variable, which is an action that, if repeated could lead to different results, (ii) the sample space associated with the variable, which is the set of all measurable values that the variable could take on, and (iii) the probabilities associated with subsets of the sample space. The reader should place the primary focus on the nature of the action and on the set of measurable values that could result. In a sense, the computation of probabilities is after the fact; that is, once the events of concern have been clearly identified as subsets of the sample space, the probability of those events is almost trivial to compute. If the reader can accept and appreciate this view, then this section will be simple. Furthermore, as we arrive at some of the more classic random variables in most textbooks, the reader will not only understand their origins better, but will be able to readily relax the assumptions upon which they are based, if need be. 4.1 Functions of a 1-D Bernoulli Random Variable A function is an operation, an algorithm, or an action. Due to the extremely simple nature of  EMBED Equation.3 , there are not many operations that one can perform on X. One is the following: Example 2.9 For  EMBED Equation.3 , perform the following operation on X:  EMBED Equation.3 . Since X is a random variable, and Y is a function of X, it follows that Y is also a random variable. In this case, it is the operation of multiplying X by the constant a, and then adding the constant b to it. The first step in understanding Y is to identify its sample space. To this end, perform the above operation on each element in  EMBED Equation.3 , and the reader should arrive at  EMBED Equation.3 . It should be apparent that the following sets are equivalent:  EMBED Equation.3 and  EMBED Equation.3 . Since they are equivalent, they must have the same probabilities:  EMBED Equation.3  and  EMBED Equation.3 . Since a and b are any constants the readers chooses, it follows that any random variable Y that can take on only one of two possible numerical values is ,basically, just a veiled Bernoulli random variable. m Example 2.10 For  EMBED Equation.3 , perform the following operation on X:  EMBED Equation.3 . Even though this operation is more complicated than that of the last example, the reader should not feel intimidated. Simply, proceed to identify the sample space for Y, in exactly the same manner as was done in the last example:  EMBED Equation.3 and  EMBED Equation.3 . Hence,  EMBED Equation.3 , and so, again, we see that Y is simply a veiled Bernoulli random variable. m 4.2 Functions of a 2-D Bernoulli Random Variable Let  EMBED Equation.3 . Since X is completely and unambiguously defined by its ample space,  EMBED Equation.3 and the associated probabilities,  EMBED Equation.3 , the reader should feel confident that he/she can easily accommodate any function of X. Consider the following examples. Example 2.11 Perform the following operation on X:  EMBED Equation.3 . We then have the following equivalent sets, or events, and theire associated probabilities:  EMBED Equation.3  Hence, the sample space for Y is  EMBED Equation.3 , and the elemental subsets of this set have the above probabilities. Armed with this complete description of Y, the reader should feel competent and unafraid to answer any question one might pose in relation to Y. For chosen numerical values,  EMBED Equation.3 , we have  EMBED Equation.3 . Notice that we do not have  EMBED Equation.3 . Why? Because  EMBED Equation.3 is the set of possible values that Y can take on. And so, it makes no sense to include the number 1 twice. In this case, the subset {1} of  EMBED Equation.3 is equivalent to the subset {(1,0),(0,1)} of  EMBED Equation.3 . With this awareness of the equivalence of sets, it is almost trivial to compute the probability  EMBED Equation.3  If the reader feels that the above equation is unduly belabored, good. Then the material is becoming so conceptually clear and simple that we are succeeding in conveyance of the same. If the reader is confused or unsure as to the reasons for the equalities in the above equation, then the reader should return to the previous sections and fill in any gaps in understanding. Before we leave this example, consider the application where  EMBED Equation.3 corresponds to the measurement of significant (1), versus insignificant (0) rainfall on two consecutive days. Suppose that on any given day, the probability of significant rainfall is p. Then,  EMBED Equation.3 . If we assume that  EMBED Equation.3 and  EMBED Equation.3 are independent, then we arrive at the following probabilities for Y:  EMBED Equation.3  Notice that the rightmost quantities in these three equations are a consequence of the assumption of independence; whereas the middle quantities entail no such assumption. This leads to the question: Is it reasonable to assume that if a region experiences a significant amount of rainfall on any given day, then it might be more likely to experiences a significant amount on the next day? If the region is prone to experiencing longer weather fronts, where storms linger for more than on day, then the answer to this question would be yes. In that case,  EMBED Equation.3 and  EMBED Equation.3 are not independent. Hence, the rightmost expressions in the above equation are wrong; whereas the middle expressions are still correct. The caveat here is that one must have reliable numerical estimates of these probabilities. If one only has information about any given day, and not about two consecutive days, then one might resort to assuming the variables are independent. This is not necessarily a wrong assumption. But it is one that should be clearly noted in presenting probability information to farmers. m Example 2.12 Perform the following operation on X:  EMBED Equation.3 . This operation is not as fabricated as it might seem. Consider sending a text message to your friend. Most communications networks convert text messages into a sequence of zeros and ones. Each 0/1 is called an information bit. Now, let the event that you send a 1 correspond to  EMBED Equation.3 , and let the event that your friend correctly receives it be  EMBED Equation.3 . Then, here, the event  EMBED Equation.3  corresponds to a bit error in the transmission. We then have the following equivalent sets, or events, and their associated probabilities:  EMBED Equation.3 . Hence,  EMBED Equation.3 . Even though we have the joint probability information in the parameters  EMBED Equation.3 , it is more useful to compute the conditional probability information. After all, what you are really concerned with is the event that your friend correctly receives a 0/1, given that you sent a 0/1. As in Example 2.8, these conditional probabilities are given by  EMBED Equation.3  Usually, it is presumed that each bit you send to your friend is as likely to be a zero as it is a one; that is,  EMBED Equation.3 . In this case, the above error probabilities become  EMBED Equation.3  If it is further assumed that  EMBED Equation.3 , then we arrive at the usual expression for the bit transmission error:  EMBED Equation.3 . m 4.2 Functions of an n-D Bernoulli Random Variable Recall that a complete and unambiguous description of an n-D Bernoulli random variable requires specification of the probabilities associated with the  EMBED Equation.3 elemental sets in the sample space for X. This sample space can be expressed as:  EMBED Equation.3 . Denote the probability associated with the elemental set  EMBED Equation.3 as  EMBED Equation.3 . If one has access to m numerical measurements  EMBED Equation.3 of X, then one can estimate  EMBED Equation.3 by the relative number of occurrences of the element  EMBED Equation.3 in relation to the number of measurements, m. In this section we will restrict our attention to the more common setting, wherein the components of X are mutually independent. It follows that  EMBED Equation.3 . (2.8a) Now, since  EMBED Equation.3 , we have  EMBED Equation.3  (2.8b) We are now in a position to consider some classic functions of  EMBED Equation.3 . Example 2.13 Define the random variable Y, which is the smallest index, k, such that  EMBED Equation.3 . For example, suppose n=5. Then, in relation to the elements (0,1,0,0,1) and (0,0,1,1,0), the associated values for Y are 2, and 3, respectively. More generally, the sample space for Y is  EMBED Equation.3 . Before we compute the probabilities associated with the elemental subsets of this sample space, lets find the equivalent events in  EMBED Equation.3 . Specifically,  EMBED Equation.3 . Hence, in view of the assumption that the components of  EMBED Equation.3 are mutually independent, we have  EMBED Equation.3 . (2.9a) If we assume that, not only are the components of X mutually independent, but that they all have exactly the same p-value, then we obtain the following well known geometric probability model for Y:  EMBED Equation.3  (2.9b) Of course, the expression (2.9b) is simpler than (2.9a). It should be, since all the p-values are assumed to be the same. However, (2.9a) is often a more realistic situation than (2.9b). All too often, the assumption of equal p-values is born of convenience or of lack of understanding. We will see this same assumption in the next example. Example 2.14 In Example 2.7 we used Matlab to investigate the probability description for the p-value estimator associated with the assumedly independent and identically distributed (iid) Ber(p) components of  EMBED Equation.3 , given by (2.7), and repeated here:  EMBED Equation.3 . In this example, we will obtain the actual probability model for  EMBED Equation.3 . Furthermore, we will obtain it in the more general (and often more realistic) case, where the components are independent, but they do not have one and the same p-value. To this end, we first give the sample space for the following random variable:  EMBED Equation.3  The sample space for Y is  EMBED Equation.3 . Notice that this sample space has n+1 elements in it. With this, we are in a position to identify the subset of  EMBED Equation.3 that corresponds to the elemental subset {k} of  EMBED Equation.3 . We begin with the two simplest subsets:  EMBED Equation.3  and  EMBED Equation.3 . The key point here is that the only way that Y can take on the value zero (n) is if every component of X takes on the value zero (one). In the more general setting wherein the components are assumed to be mutually independent, but with not necessarily the same p-value, the probabilities of these two events are simply  EMBED Equation.3  and  EMBED Equation.3 . Next, we consider the slightly more challenging events  EMBED Equation.3 and  EMBED Equation.3 . In particular, the only way that Y can take on the value one is if one and only one of the components of X equals one. Similarly, the only way that Y can take on the value  EMBED Equation.3 is if one and only one of the components of X equals zero. Hence, we have the following equivalent events:  EMBED Equation.3 only one component of X equals 1  EMBED Equation.3  and  EMBED Equation.3 only one component of X equals 0  EMBED Equation.3  Notice that the elements making up these sets are distinct. For example, the element  EMBED Equation.3 is a point in n-D space that is distinctly different than the point  EMBED Equation.3 . Sure, many of the components of these two elements are the same. But the elements are distinctly separate points in n-D space. Their intersection is, therefore, the empty set. Hence, the probability of the event  EMBED Equation.3 is simply the sum of the elemental probabilities associated with the set  EMBED Equation.3 ; that is:  EMBED Equation.3  Similarly,  EMBED Equation.3  While to many readers, these expressions may seem formidable, if not down right ugly, such readers should carefully assess whether their queasiness is due to the unfamiliar notation, or to a lack of conceptual understanding. The first portions of each of these equations were  long hand expressions, wherein each probability is noted individually. The second portions of these equations use summation (") and product (") notation, in order to make the expressions more compact. The reader who is unfamiliar with this type of notation should not misconstrue discomfort over that, with lack of conceptual understanding. Now, lets consider the most general event  EMBED Equation.3 . This event is the event that k of the n components of X take on the value one, while the others take on the value zero, right? Well, one way corresponds to the event  EMBED Equation.3 . Notice that we have included subscripts on the 0s and 1s simply to make it clear as to their positions in the ordering of the n components of this element. It should be clear that the probability of this event is simply  EMBED Equation.3 . (2.10) The question now is: How many ways can one position k ones and (n-k) zeros in n slots? Each way will have a corresponding probability; just as the way of positioning all the ones first, (followed by all the zeros), resulted in the above probability. The answer to this question begins by answering a similar question: How many ways can one order n distinctly different objects in n slots? Well, in the first slot we can place any one of the n distinct objects. Once we have chosen one of them, then in the second slot we have only  EMBED Equation.3 distinct objects to choose from. Having chosen one of them, we are left to choose from  EMBED Equation.3 distinct objects to place in the third slot, and so on. Think of this as a tree, where each branch has branches, and each of those branches has branches, and so on. The question is to figure out how many total branches there are. Lets identify the first slot with the biggest diameter branches. Then we have n of these, corresponding to the n distinct objects. Now, each one of these main branches has  EMBED Equation.3 branches of slightly smaller diameter. And each one of those branches has  EMBED Equation.3  slightly smaller branches, and so on. So, the total number of branches is  EMBED Equation.3  (read as n factorial) Now, if each of the k +,89HIJ   & ' o u efgruvz{89@ADR[\]_pqr !źź|r|h4VhG<}56h4VhB56 hB56hlh4VhB6 h4VhB hB5hBhB5>*hBhB56>* h4VhG<}h$= h4Vh"hMahMahMa5 hMa5 h"5h"56CJ aJ h"5CJ aJ hMa5CJ aJ ,89IJ fgqr =>CD <gdHV <gdMa <gd! f! +./34`atuvw#$'()+<=>Ҭzunununib h4Vh%g h%g5 h! f56 h! f5jPh4Vh! fEHU#jH h4Vh! fCJUVaJjh4Vh! fUh4Vh! f6 h4Vh! fjh4Vh! fEHU#jH h4Vh! fCJUVaJjh4VhBUh4VhB6 hB5>*hB56>* hB5 h4VhB%!/s0x{636н~~zvvqvq hHV6hHVhv29 hb6jn h4Vh$=EHU#jH h4Vh$=CJUVaJ h4Vh$=jh4Vh$=Uh$= h$=6hbh4Vhv296 h4Vhv29 hv295jh%ghv295U hMa6hMa h%g5 h4Vh%gh4Vh%g6,6BCDORjo4"#6789<BEFYZ[\dexyzмЭĖćxмi\j>hMh]NEHUjH h]NCJUVaJjhMh]N5EHUjH h]NCJUVaJjhM5UjhMhMEHUjH hMCJUVaJjhMU hM5 hM56hMhMa hHV6hMhHV6 hMhHV hHV5 hHV56hbhHV$D;< !!,!-!""'';(<(h,i,,,p.q.. <gd! f <gdHVz{    ujh]Nh]NEHUjgh]NhmEHUjH hmCJUVaJjbh]Nh]NEHUjH h]NCJUVaJ h]N5 h]N56hM h]N6jqh]Nh]NEHUjH h]NCJUVaJjh]NUh]NjhMU*   [ ] !!!!*!+!,!-!6!t!u!!!!!!!"" " """ "I"J"t"u"z"{""""аСаСЃ~~~~vjhLZU hLZ6hLZj>h_h_EHUj<h_h_EHUjH h_CJUVaJjh_U h_5hb hyhyj h_Uh_hMa hy6hy h]N6h]Njh]NUjh]Nh]NEHU*"""""" #!#4#5#6#7###$ $f$g$z${$|$}$$$%%&&$&%&8&9&:&;&+'ϸϦϦϞ~yyyj]jXGh)h)EHUjH h)CJUVaJ h)6jEhLZh)EHUj"H h)CJUVaJh)jh)U hm6jCh]NhmEHUjH hmCJUVaJjhmUhmh_hLZjhLZUj@hLZhLZEHUj"H hLZCJUVaJ"+''''''''''''''''(((((("(#(6(7(8(9(((((((((((((0)1)D)E)|oj?PhnhnEHUjH hnCJUVaJ hn6jMhnhnEHUj H hnCJUVaJjKh)hnEHUjH hnCJUVaJjIh]NhnEHUjH hnCJUVaJjhnU hn5 hn56hmhn+E)F)G)O)P)c)d)e)f)))))))))))))+*,*?*@*A*B*D*U*V*i*j*k*l***++2+3+׽殡ה搈ylgy h?=6j\h]Nh?=EHUjH h?=CJUVaJjh?=Uh?=jZh]NhnEHUjXhnh?=EHUjbH h?=CJUVaJjVh]NhnEHUjTh]NhnEHUjH hnCJUVaJhnjhnUjRh]NhnEHU'3+4+5+J+K+^+_+`+a+y+z+++++++;,<,O,P,Q,R,c,f,g,h,i,,,,,,,,,滮暍zk\zjfh?=h?=5EHUj H h?=CJUVaJjh?=5U h?=5hnjdhnh?=EHUjH h?=CJUVaJ h?=6jbhnh?=EHUjbH h?=CJUVaJj`h]Nh?=EHUjH h?=CJUVaJh?=jh?=Uj^h]Nh?=EHU#,,,,,,,,,-I-----------..0.1.2.3.e.h.o.p.........þöçþöË~þöoböjohudhudEHUj H hudCJUVaJjmhnhudEHUjH hudCJUVaJjkh?=hudEHUjH hudCJUVaJjhudU hud6hud h?=6juih?=h?=EHUjH h?=CJUVaJjh?=Uh?=hEh?=B*ph&....,////001122444448899::::<< <gd! f.......// / ///(/)/*/+/7/8/K/L/M/N/////////////ɼxi\xxj{h'p6h'p6EHUjH h'p6CJUVaJjh'p6Uh'p6jtyhudhudEHUjH hudCJUVaJjvhudhudEHUjH hudCJUVaJjythudhudEHUjvH hudCJUVaJjhudUj;rhudhudEHUj4H hudCJUVaJhud"////00.0/0E0H0\0]0p0q0r0s00000$1)1o1p1111111111111N22222׽׮׏׋tjH hE5CJUVaJjhE5UhE5 h'p6>*jh?=h'p6EHUjh'p6h'p6EHUj^H h'p6CJUVaJhE5h'p6>*jh?=h'p6EHU h'p66h'p6jh'p6Ujg~h?=h'p6EHUjH h'p6CJUVaJ(2222222333333:4;4N4O4P4Q44444444]5)6,6666777i8k88888沥枚|w|pi h?56 h>Ehl h>E6h>E h?6h?hMahl5CJaJhlhm hE5hE5jhE5hE5EHUjH hE5CJUVaJj܈h?=hE5EHUjH hE5CJUVaJ hE5>*h'p6hE5jhE5Ujh?=hE5EHU(88888888889999b9c9v9w9x9y9999999999%:&:9:::;:<:e:r:özk^zjh?hEHUjPH hCJUVaJjhU h6h>Eh56h h?6jeh?h?EHUjPH h?CJUVaJj&h?h?EHUjH h?CJUVaJjh?h?EHUjH h?CJUVaJjh?Uh? h?5$r::::::::::::::; ;;;;;;;;;<<<<<<<<<<<<</=0=C=D=履tj H ha%CJUVaJjha%ha%EHUj H ha%CJUVaJjha%Uha%jh'p6hEHUj^H hCJUVaJh>Ej hhEHUjH hCJUVaJjhUhh} h? h6h(<=================>>">$>V>>?a?b?+BgdRgdv <gd! fD=E=F========>>!>">#>$>U>V>? ?E?N?`?a?b???@*@-@\@^@@@GALAAA*B+B,BXBYBlBͻɶɱ歩~vjhh} U hh} 56hh} hh} H* h>Ehh} h>E6 h>Eh>Eh>E hh} 6hh} hR h|.6 h|.5jh|.UmHnHuh|. hvhvjhvUmHnHuhvha%jha%Ujwha%ha%EHU++B,BBBBBCC`CaCCCCC6D7D]D^DDDDDEETEUEEEEEgdRlBmBnBoBBBBBBBBCC5D=D[DEZE[EnEoEpEqEuEvEEEEEEEFüzk^jh"6h"6EHUjH h"6CJUVaJjܡh"6h"6EHUjH h"6CJUVaJjh"6Uh"6h ohzL5B* php hzL>*hzLhh} hh} hh} hh} >* hzLhh} hh} 5 hh} 56jhh} Ujh?=hh} EHUjH hh} CJUVaJFFFFFFFFFFFFFFFFFHHII?I_IIIIIII0J1JDJEJȻ׬כ{n_jH hf>CJUVaJjho(%ho(%EHUjH ho(%CJUVaJjho(%U ho(%6h>Eho(%jh"6h"6EHUjH h"6CJUVaJjh"6h"6EHUjH h"6CJUVaJh"6jh"6UjХh"6h"6EHUjBH h"6CJUVaJ EHFFFFHHIIIIJJIJJJJJKKMMNNOOPR <gdQ gd"6  gd"6EJFJGJHJIJJJJJJJJJJKKvKwKKKKKKKKKKKKLLLLLöڢړ{wrwj[jH hQCJUVaJjh0U h\}s6h\}s h06h0j.hf>h06EHUjH h0CJUVaJjhf>hf>6U hf>56jhf>hf>EHUjNH hf>CJUVaJjhf>Uhf>hf>6ho(%hf>jho(%Uj߭ho(%hf>EHU!LLLLLLLLLL*M3MdMnMxM|MMMMMMMMMMMM N!NVNWNjNkNlNƺ}sdUjhQhQ6EHUjJH hQCJUVaJjhQ6UjhQhQ6EHU&jPH hQhQ6CJUVaJjhQhQ6UhQhQ6 hQ5 hQ56 hQ6hQjh0hQEHUj:H hQCJUVaJh0jh0Ujh0hQEHU!lNmNNNNNNNN&O/OOOOOOOO P P P!P"P#P'P(P;Pht6EHUjH htCJUVaJhf>ht6jhf>ht6UhthQjhf>hQ6EHUjH hQCJUVaJhf>hQ6jhf>hQ6U hQ6jhQ6UPPPPPPPPPP%Q&Q9Q:Q;QR?R@RAR`RaRtRuR˾⬤tgjhshsEHUjhshsEHUj[hQhs6EHU&jPH hQhs6CJUVaJhQhs6jhQhs6U hs6jQhshsEHUj H hsCJUVaJjhsUhshtjhtUjFh0htEHU%RRRRTT`UaUUUUUU0W1WL]M]^^^^````bb*c+c <gdQuRvRwR(S)SS?S@SFSGSZS[S\S]SSSSSSSSSTT7T9TOTSTgTiTTTTTTTTT,U-U@UAUBUCU淪楡杘桐tjhohoEHUjj$H hoCJUVaJjhoU hm6hmho hs6jhshsEHUj H hsCJUVaJh\}sjhshsEHUj"H hsCJUVaJhsjhsUjhshsEHU-CUGUHU[U\U]U^UaUbUuUvUwUxUUUUUUUUUUUUU V V V VVV%V}yj]jXh% h% EHUj8H h% CJUVaJh\}sjh% h% EHUj7H h% CJUVaJjh% Uh% jhohGiEHUj$H hGiCJUVaJjhoUj6hf>ho6EHUjH hoCJUVaJhf>ho6jhf>ho6Uho%V&V'V(V>VGVmVpVVVVVVVWW*W+W,W-W0WkWlWWWŽגvgc[cLj8H h IPCJUVaJjh IPUh IPjhQh% 6EHU&jPH hQh% 6CJUVaJhQh% 6jhQh% 6Ujlhf>h% 6EHUjH h% CJUVaJhf>h% 6jhf>h% 6U h% 6h% jh% Ujbh% h% EHUj8H h% CJUVaJWWWWWWWWWWWWWWWWXX%X&X'X(X,X-X@XAXBXCXGX`XXXX渰~qbUjh IPh IPEHUj:H h IPCJUVaJjh IPh IPEHUj:H h IPCJUVaJj.hQh IP6EHU&jPH hQh IP6CJUVaJhQh IP6jhQh IP6U h IP6j$h% h IPEHUj8H h IPCJUVaJh IPjh IPUjh% h IPEHU XXXXXXYYYYDYYYZ&ZTZUZhZiZjZkZZZZ'[K]L]M]k]]]]]Ȼ׷vrrnnnfnWjJ;H hc!>CJUVaJjhc!>Uhc!>h"jhQh>6EHU&jPH hQh>6CJUVaJhQh>6jhQh>6U h>6h\}sh>j h IPh IPEHUj;H h IPCJUVaJh IPjh IPUjh IPh IPEHUjJ;H h IPCJUVaJ ]]]]]]]]]^^l_m_<`E`V`W`j`k`l`m`````````aa5a6awaÿ濺zk^zVhaha6jhahaEHUjBH haCJUVaJjhaUjwhQha6EHU&jPH hQha6CJUVaJhQha6jhQha6U ha6ha hc!>56joh IPhc!>EHUj;H hc!>CJUVaJhc!>jhc!>Ujeh IPhc!>EHU!waxaaaaaaaaaaaaaabb c cc c!c"ccccdNdPdQddd e eee e!efeȻ󷲷󷪷sfj hahaEHUjEH haCJUVaJjhaUhajhNRPhNRPEHUjDH hNRPCJUVaJjhNRPU hNRP6hNRPjVhahNRPEHUjBH hNRPCJUVaJj"hahNRPEHUjBH hNRPCJUVaJhajhaU&+cdd)e*eiiCjDjpjqjXkYkkkXlYlHmImhmimppApBpapbpqq <gdQfeseze{eeeeeeeeeeeeeeeee>f@fIfJf]f^f_f`fufvfffffffffggöÍ~qjhahaEHUjGGH haCJUVaJjhahaEHUjhahaEHUjFH haCJUVaJjshahaEHUjBH haCJUVaJj hahaEHUjYFH haCJUVaJjhaUha ha6'ggg;ghZB6EHUjH hZBCJUVaJhf>hZB6jhf>hZB6UhZBjhQhZB6Uj2hQhZB6EHUq8r9rwrxrrrrr8s9sxsysss ttNtOtPttt <h^hgd73 <h^hgdz & F <gdz <h^hgdZB & F <gdZB <gdQrrrrrrrrrrrrrrrrsssssss s3s4s5s6s>s?sRsSsTsUsWsöײףׇzk^jFhZBhzEHUj$:H hzCJUVaJjChZBhzEHUj:H hzCJUVaJjAhZBhR`lEHUju9H hR`lCJUVaJhZBj>hZBhR`lEHUj7H hR`lCJUVaJ hR`l6hR`ljhR`lUjv<hZBhR`lEHUj7H hR`lCJUVaJ"Ws]s_s`ssstsusvswsxsyssssssssssssssssssst t t ttt(tɼzk^jPhzhzEHUj hz6EHUjH hzCJUVaJhf>hz6jhf>hz6U hz5hR`lj IhZBhzEHUj:H hzCJUVaJjhzUhz hz6#(t)t*t+t-t3t5t6tItJtKtLtMtNtPtVtWtjtktltmtotutwtxttttttttttttöײן׃vgZj\hZBhJ:EHUj`=H hJ:CJUVaJjWZhJ:hJ:EHUjvIvJv]v^v_v`vevfvyvzv½uh`QjH hMCJUVaJhf>hM6jhf>hM6UjbhQhM6EHU&jPH hQhM6CJUVaJhQhM6jhQhM6UhM hM5 hM56 hZB5 hJ:hJ: hJ:6hJ:j]_hJ:hJ:EHUj=H hJ:CJUVaJjhzUhz hz6ttt1v2vDwEwwwxxxxzz{Z{[{\{]{_{{{ gd"6 <gdQ <h^hgdZB <gdM <gdJ: <h^hgdJ:zv{v|vvvvvvvvvvvvvwwwww w*w+w>w?w@wAwBwCwDwEwcwdwwwxwɼਛ{{vlv]jGAH h]5CJUVaJjh,k5U h,k5h,kjkhMh,kEHUj@H h,kCJUVaJjhhMhMEHUja@H hMCJUVaJ hM6jfhMh,kEHUj@H h,kCJUVaJjhMUhMjhf>hM6UjWdhf>hM6EHU"xwywzwwwwwwwwwwwwwwwwwwwwwlxmxxxxxxxĵذӗqb]V hne(hne( hne(5jqh]5h]55EHUjsBH h]5CJUVaJ hne(6hne(h]5 h]56 hZB5h,kh,k5hoPhoP5H* hoP56 hoP5joh]5h]55EHUjAH h]5CJUVaJ h]55jh]55U h,k5jh,k5Ujmh,kh]55EHUxxxxxxxxxxxxyy(y)y*y+yyyzzzzzzSzUzzzzzzzzzrmeaahhhH* h6jxhne(hne(EHUj>uH hne(CJUVaJ hne(6jvhne(hne(EHUjsH hne(CJUVaJjhne(Uhne( hne(5 hZB5jth]5h~5EHUjBH h~CJUVaJjh]55U h]55 h]5h]5 hne(h]5#zz { { { {{B{C{V{W{X{Y{Z{[{]{^{_{h{i{r{s{{{{{{{{{X|Y|l|ķ󡚕sdӌ`XjhUhQj,h,kh5EHUjGAH hCJUVaJjh5Uh h5 h5 hKJhjthKJhKJUh&k hhj6~hhEHUjwH hCJUVaJhD1j1{hhEHUjvH hCJUVaJhjhU l|m|n|o|v|||||||||||||}}}}&}'}(})}<}=}P}Q}R}S},~5~~~~~~~~~,ķ۳{nӳ׳jhY{hY{EHUjH hY{CJUVaJjhY{hY{EHUjҖH hY{CJUVaJjhY{U hY{6hY{jhhY{EHUjEH hY{CJUVaJh'_hjhUjϓhY{hY{EHUjYH hY{CJUVaJ){~~IJԅՅ`34Qm67 ;< & F 8hhL^h`Lgdp gd"6,-@ABCD&':;<ϸϜπsogoXKj!hY{hkEHUjH hkCJUVaJjhkUhkjhY{hkEHUjEH hkCJUVaJjhY{hkEHUjH hkCJUVaJjghY{hY{EHUjJH hY{CJUVaJjhY{UhY{jĜh,khY{5EHUjGAH hY{CJUVaJ hY{5jhY{5U<=UVijklـڀ&'();OсҁȻrejhkhkEHUjH hkCJUVaJjGhY{hkEHUh'_j=hkhkEHUjH hkCJUVaJjhY{hkEHUjhkhkEHUjH hkCJUVaJjVhY{hkEHUjsH hkCJUVaJhkjhkU'*+>?@AU[\opqrςЂт҂ŸteXjhkh|&jEHUjH h|&jCJUVaJj4h|&jh|&jEHUjwH h|&jCJUVaJjh|&jUh|&jj*hkh|&jEHUj4H h|&jCJUVaJjhY{hkEHUjsH hkCJUVaJjhkhkEHUjH hkCJUVaJjhkUh'_hk"LM`abcLM`abcȄɄ܄Ȼtgc[cjhUhjuhkh|&jEHUjH h|&jCJUVaJj4hY{h|&jEHUjsH h|&jCJUVaJj*h|&jh|&jEHUjH h|&jCJUVaJj h|&jh|&jEHUj6H h|&jCJUVaJjh|&jh|&jEHUjH h|&jCJUVaJh|&jjh|&jU!܄݄ބ߄HIJTX]^beƅхӅԅՅ݅ Ȼ׷װצצחװצ׆zzuzkzjhoP5U h'_5 hoP5 hoP56h'_jhhwEHUj͞H hwCJUVaJ h6 h5 h56hY{jh|&jhEHUjH hCJUVaJhjhUjhY{hEHUjsH hCJUVaJ& !23FGHIORS[\]^_`h0189ôҩҢҚteaYjhoPUhjhoPhoP5EHUjSH hoPCJUVaJhhoP hoP6hoPhoP5H*hoPhoP5 hoP56hoPhoP56>*jh]5hoP5EHUjAH hoPCJUVaJ hoP5jhoP5Ujqh,khoP5EHUjGAH hoPCJUVaJ"9LMNOPQUVijklqrԽԡԍԅ}na}]X] h~6h~jhhEHUjH hCJUVaJjhUhhp hoPhj hphpEHUj%H hpCJUVaJjhhEHUjH hCJUVaJjhUhjhoPUjhhEHUjH hCJUVaJhoP"1234567?adȌɌ܌݌ތߌ=νήνΒνvie]ejhkXUhkXjh~hpEHUj&H hpCJUVaJjBhhkXEHUj"H hkXCJUVaJjah~h~EHUj!H h~CJUVaJjh~U h~5hoPh~jhh~EHUjO H h~CJUVaJjhUh h~6# ~Ž<CHij PQdùê̏̅}na}̅̅}j0h$ h$ EHUjH h$ CJUVaJjh$ U h$ 6 h$ 5 h$ 56 h[6jhph[6EHUj'H h[CJUVaJjhp6U hp6hph$ hoP h~h~jhkXUjphkXhpEHUjA$H hpCJUVaJ defgҐӐԐՐ$'IJ]^_`ηΥΞΥΥΥΏΥ~obj5hZhOP2EHUjH hOP2CJUVaJh<jhZhZEHUjH hZCJUVaJ hZhZ hZ6jh$ hZEHUjH hZCJUVaJjhZUhZ h$ 6h$ jh$ Ujh$ hZEHUjH hZCJUVaJ&pq“ɓӓדؓ,.02@PXZyuqfjp h [_h [_Uh [_h$ jK h$ hOP2EHUj&hOP2hOP2EHUjBH hOP2CJUVaJjhOP2hOP2EHUj#H hOP2CJUVaJhOP2hOP26jh$ hOP2EHUjh$ hOP2EHUjH hOP2CJUVaJjhOP2U hOP26hOP2(78ijœBDZ[*+& gd"6̔Δ<>dfhj"&8CFGKLPSmn𩥡yldjh9Uj6hOP2hOP2EHUjnH hOP2CJUVaJjhOP2U hOP25 hOP256 hOP26hOP2h9 h [_hOP2jh$ h [_EHUjH h [_CJUVaJjhOP2h [_EHUjBH h [_CJUVaJjh [_Uh [_ h [_5 h [_h [_&?[\fhimu˗̗ߗȻױ׬׬י}pldljh [_Uh [_j@!h9h9EHUj$H h9CJUVaJjh9h9EHUjH h9CJUVaJhOP2 h96h9h956jh9h9EHUjcH h9CJUVaJh9jh9Ujh9h9EHUjH h9CJUVaJ!˘Әtœڜޜ~9IƟޟߟYZ[ghior}j)H hrCJUVaJjhrU hr56 h556 hr6 h"6h"hrh73h9 h?P6h?Pj%h [_h [_EHU h [_6h [_jh [_Uj#h [_h [_EHUj7H h [_CJUVaJ.=>CDTUbdopvz{¡š١ڡ)*+!"5捆yjhrU hr5 hr56hr h556 h56j*h5h5EHUj*H h5CJUVaJjh5Uh5h5h556h5hr56h5hr5 hr6hrjhrUj'hrhrEHU/5678]^ʣˣ̣ͣ&.12EFGHKORSfghik öײף۲ײׇzײrcVjK6hR<hR<EHUjmH hR<CJUVaJjhR<Uj3hrhR<EHUjlH hR<CJUVaJj0hrhR<EHUjlH hR<CJUVaJhR<jf.hrhrEHUjkH hrCJUVaJ hr6hrjhrUj_,hrhrEHUj#kH hrCJUVaJ!&kIJkl'(BCz{ګ۫ST4567f gd"6HIRSfghiإ#$789:@ATUVWķ󗏗sdWjBBhR<hEHUjoH hCJUVaJj8@hhEHUjhoH hCJUVaJjhUhj=hR<hEHUjoH hCJUVaJj;hR<hEHUjnH hCJUVaJj8hR<hR<EHUjnH hR<CJUVaJhrhR<jhR<U"W\]pqrsԦզ֦צܦݦƧǧȧɼuh[jZOhhEHUjPMhhEHUjhoH hCJUVaJj KhR<hEHUj"pH hCJUVaJjHhhEHUjpH hCJUVaJjFhhEHUjoH hCJUVaJjDhR<hEHUjnH hCJUVaJjhUh#ȧɧ&'MNabcdhi|ûìûÐûtgûjXhR<h)NEHUjnH h)NCJUVaJjVh)Nh)NEHUjmrH h)NCJUVaJjSh)Nh)NEHUjqH h)NCJUVaJjh)NUh)NjcQhrhcPEHUjkH hcPCJUVaJjhcPUhcPhR<hjhU"|}~ABZ[nopqΫϫЫѫ45HIJKRSӸӜӋ|oNjӋgXjmrH hRCJUVaJjhRUjabhD1hREHUjuH hRCJUVaJhRj_hD1hD1EHUj`uH hD1CJUVaJj]hD1hD1EHUjtH hD1CJUVaJjhD1UhR<hD1h)Njh)NUjZhR<h)NEHUjoH h)NCJUVaJ56FGZ[\]gst KL_`abfgzº«ººsfºjnhR<hQ }EHUjnH hQ }CJUVaJjdlhD1hQ }EHUjfyH hQ }CJUVaJjUjhQ }hQ }EHUj*yH hQ }CJUVaJjhQ }UhQ }jqghD1hQ }EHUjxH hQ }CJUVaJh/}hRjhRUjdh)NhREHU$fg­ ıβϲ./ef gdQ } gd"6z{|}Ʈܮ"#WXklmnݯޯ׽yjbUbjhzhz6Uhzhz6juhzhQ }6EHU&jqH hzhQ }6CJUVaJjCshzhQ }6EHU&jkH hzhQ }6CJUVaJjhzhQ }6UhzhQ }6 hQ }5hD1 hC`,6hC`,hQ }jhQ }UjphR<hQ }EHUjoH hQ }CJUVaJABUVWXñıűرٱڱ۱ݱ Ȥг~qiZKqGCh(hdj|hzhd6EHUj}H hdCJUVaJhzhTO6jhzhTO6U hTOhzhTO hTO5 hTO56jKzhzhz6EHUj(|H hzCJUVaJhz hz6hRhzhQ }6hzhz6jhzhz6Ujwhzhz6EHU&jfyH hzhz6CJUVaJ  IJ]^_`òIJŲƲ)*+,/EFYZ®󘔏€qd`QjH h`_CJUVaJh`_jNh(h(EHUjhzh(6EHUj=H h(CJUVaJ h(6h67- h(hRj6hzh(6EHU&jfyH hzh(6CJUVaJhzh(6jhzh(6Uj(h(h(EHUjƁH h(CJUVaJh(jh(UZ[\de<=PQRSvw˾毢ڞ枑zkcTjH hf5CJUVaJjhf5Ujhzhf56EHUj}H hf5CJUVaJhzhf56jhzhf56Uhf5j$h`_hf5EHUjH hf5CJUVaJjh`_h`_EHUjIH h`_CJUVaJjh`_Uh(h`_jh(Uj\h(h`_EHUlmZ[ֿ׿QR\]~ gd"6ҴӴij}~ɵʵ˵̵DF滮柒vid hf56jhf5hf5EHUjhf5hf5EHUjH hf5CJUVaJjhf5hf5EHUjH hf5CJUVaJjhf5hf5EHUjH hf5CJUVaJjhf5hf5EHUjH hf5CJUVaJhf5jhf5Ujhf5hf5EHU&FHJRTz|~`bԷոָ滮槣wjj2h/}h/}EHUjH h/}CJUVaJjh/}U h/}5 h/}56 h/}6h/}h( hf5hf5j)hf5hf5EHUjH hf5CJUVaJj hf5hf5EHUjH hf5CJUVaJhf5jhf5Ujhf5hf5EHU%":<GH[\]^BDtu A׼נ׏sfj4hhEHUjVH hCJUVaJjhU h6hjh/}h/}EHUjIH h/}CJUVaJjph/}h/}EHUj&H h/}CJUVaJ h/}5 h/}56h/}jh/}Uj7h/}h/}EHUjϊH h/}CJUVaJ(ABYZlw{|ʼռ"#6789Jjnoֽ׽"$LMbcyzþľ޾߾lmrƹ h%KA6h%KA h%KA5jhhEHUjVH hCJUVaJjoh/}hEHUjϊH hCJUVaJjhU h5 h56 h6hh/}h h68rsտֿ89LMNORZ]^q͹wo`SoNo h~6jh~h~EHUjH h~CJUVaJjh~UjOhf>h~6EHUjH h~CJUVaJhf>h~6jhf>h~6UjhQh~6EHU&jPH hQh~6CJUVaJhQh~6jhQh~6U h~5 h~56h~hh%KA h%KA6qrst{|}~ $&LNPR׸ӣӔӂӣsfӣj.hL3bhL3bEHUjH hL3bCJUVaJ hL3b6j?hL3bhL3bEHUj}H hL3bCJUVaJjhL3bUjJh~hL3bEHUjH hL3bCJUVaJjhgUh~hL3bhgjh~Ujh~hgEHUjH hgCJUVaJ"\]^_`#$%&'( gd"6$%&'Ȼ׷|m`||QjH hgCJUVaJjhghgEHUjrH hgCJUVaJjhgUjhf>hg6EHUjH hgCJUVaJhf>hg6jhf>hg6UhgjvhL3bhdQEHUjUH hdQCJUVaJhL3bjhL3bUj6hL3bhdQEHUj9H hdQCJUVaJ  !"&':;<=}~JN[\^ab涩Ҝ捀yupipeh67- h67-56 h67-5h( hghgjAhghgEHUjH hgCJUVaJj7hghgEHUj.hghgEHUjݔH hgCJUVaJj$hghgEHUjrH hgCJUVaJ hg6hgjhgUjhghgEHU'2345vw9:M븫뗊놁wojhsUhshs6H* hs6hsjh67-hsEHUjH hsCJUVaJ h67-6jh67-h67-EHUjH h67-CJUVaJjJh67-h67-EHUjH h67-CJUVaJjh67-Uh67- h67-5 h!5 h67-56'MNOP%&CD^_`#Ȼ۷|xsxkf_k hh*r56 hh*r5hh*rh735 h736h73h67- h"h67- h"56jh67-h"EHUjH h"CJUVaJjh"U h"6h"jh"h"EHUjZH h"CJUVaJhsjhsUjehshsEHUjH hsCJUVaJ##$'(3569XlRTz{ST%MNQSټ٭xsojojo hh*r6hh*r h86jh8h8EHUjH h8CJUVaJjh8Uh8jh6ah8EHUjH h8CJUVaJjh6aU h6a5 h6a56 h6a6h?Ph6a hT7J5 h735 h7356 h73hzh73 hh*rh73)SYZa78DJ_aknr{24n '(;<=>V]dȷjhakFhtEHUjH htCJUVaJjhakFU hakF6htwhakF htw6h%h%6 h%6 h8h8h% hT7J5 h85 h856h6ah8h856 h86h84mn &12mn{M h^hgd% & F gd% gd"6 $/38<@ANOYfquz~ gdnh gdakF h^hgd%d *+,-KLuv²󛎪rnfnjhUhjhtwhEHUjH hCJUVaJjhtwhtwEHUjH htwCJUVaJjhtwUjhtwhtw56EHUjH htwCJUVaJjhtw56U htw56 htwhtw htw6hakFhtw ht6ht&/0CDEFYZ öק׋~sl h56jh56UjNhhEHUjrH hCJUVaJjhhEHUjH hCJUVaJjhtwhEHUjH hCJUVaJ h6hjhUj_hhEHUj[H hCJUVaJ& @MNef`zq{cfźŏŏŏŏŋ{ŋtpkpkp h'6h' hX]5h4E! h4E!hX]5hft h4E!6h4E! hX]56jhtwhX]556EHUjH hX]5CJUVaJ hX]556jhX]556UhX]5hnhhtwhjh56Ujhtwh56EHUjH hCJUVaJ*:; Pgd4E! Pgd` gdakF gdnh9;<BCVWXYefyz{|,-./0Y&'()@Cxi\xj hCihCiEHUjZH hCiCJUVaJjhCiU hCi6hCij hfthCi56EHUjOH hCiCJUVaJjVhfthCi56EHUj@H hCiCJUVaJjhfthCi56EHUj,H hCiCJUVaJjhft56U hft56h'hft$;<1XY gd Pgd` hi~HI#$y!'|ਖ਼򒎉|hC`, hL 6hL h'6h' h8Yh8YjBhfth8Y56EHUjOH h8YCJUVaJhft h8Y6jhfth8Y56EHUj@H h8YCJUVaJ h8Y56jh8Y56Uh8YhCi hCi60|}123WXY>??@STUVWXYdYԻԻԷhT7Jh<jh]eh<EHUjH h<CJUVaJjh]eUh9eh4h]e hb6hbh% h hL h 6 h]e6h h 5 h h jh h Uh'hL h2 #6W[fgtuXYXYTU gd]eYdg9RSTU:>+,48Om:>OQU𧣟|t|h%h%6h%hL h1y=he h9e5 h9e56 hT7Jh9ehhL;h9e hT7J6jb hT7Jh9eEHUj2.H h9eCJUVaJjhT7JhT7JEHUjw-H hT7JCJUVaJjhT7JUhT7J hT7J5 hT7J56-(q/a+,PQ h^hgd% & F gd% gd"6 gd]e gd & F gdL;UW_a79F \]S()*ACD޼⸭⣜⸌}jRH hCJUVaJjhUhhH* h6>* h6 hw5jHhwhwUh h1y=5j5h1y=h1y=U he6j"heh1y=6Uh1y=hw h8h8 h86h8h% h%6- \]RSDE ~F h^hgd & F gd gd gd"6 h^hgd%QRSUrs'(;<=>pqվբՍվqd] hh1jxdhh1EHUjRH h1CJUVaJjnbh1h1EHUh1h1H*je`h1h1EHUjH h1CJUVaJj[^h1h1EHUjYH h1CJUVaJjh1Uh1hhH* h6hjhUj\hhEHU$ XYlmno}~-.ABCDFLM`abcŸ|t|eXtjohhEHUjH hCJUVaJjhUhjnmh1hEHUjH hCJUVaJj*kh1hEHUj[H hCJUVaJjhh1h1EHUjH h1CJUVaJjfh1h1EHUjH h1CJUVaJjh1Uh1hw"c 6QRxy  <=UVnoz{Ÿ#hB*CJOJQJ^JaJphhOJQJ#hB* CJOJQJ^JaJph"" h6hjuhL3bhEHUjٴH hCJUVaJjDrh~hEHUj4H hCJUVaJjhUhwh356Ry =Vo{; 7$8$H$gd gd:;?CDab;<>?@J嫠jhUh h5jhhUjyhhUh#hB*CJOJQJ^JaJph #hB*CJOJQJ^JaJph#hB*CJOJQJ^JaJphhOJQJ#hB* CJOJQJ^JaJph""0;Db789:;=>@}~ gd gd 7$8$H$gd|   > { |  Ȼ׬כ{ngcc[cjh%FUh%F hgHhgHjhL3bhgHEHUjٴH hgHCJUVaJjhgHU hgH6hgHh$jNh1hEHUjH hCJUVaJj h1hEHUj[H hCJUVaJhjhUjh1hEHUjH hCJUVaJ     (*d8<hj/018=ABUVƿ׺׺׶}vqijh=U h=5 h=56 h=6jPh#qh=EHUjKH h=CJUVaJjh#qUh= h#q56 h#q5h#q hU6 hU56 hU5hgHh$h%FhUjh%FUjhh%FEHUjRH h%FCJUVaJ%fh78ij01[>hj` a   gd ( gd gdVWX}~devx 3456XYlmno涩暍ꉄ|jh&U h&6h&j$h=h&EHUjH h&CJUVaJjӰh=h&EHUjH h&CJUVaJjh=h=EHUjdH h=CJUVaJ h=6h=jh=Ujwh#qh=EHU+%&9:;<ABUVWXZ[abgh (*PȻ׬אzzzzsnjbjjhUh h5 h56 h&6h=jh&h&EHUjTH h&CJUVaJj h&h&EHUj$H h&CJUVaJjh&h&EHUj:H h&CJUVaJh&jh&Ujh&h&EHUjH h&CJUVaJ%PRTV 468:FGLSöק׋~objh=hEHUjTH hCJUVaJjh&hEHUj)H hCJUVaJjhh&hEHUjH hCJUVaJjh=hEHUjiH hCJUVaJ h6hjhUjh#qhEHUjKH hCJUVaJ$ frt,.TVXZ < ? _ ` a h l m n     }vqlq}djh (U h]W5 h (5 h (56 h (6h (jfhh (EHUjH h (CJUVaJjhhEHUjXH hCJUVaJ h6jdhhEHUjH hCJUVaJjhU h56 h5 hlN5hh&'   X>e???ARAlA gdlN8888888999H9I9\9]9^9_9c9k9p99999999999999D:E:::::::|mjH h$/CJUVaJj5hphpEHUjH hpCJUVaJ hp6 hphp hp5 hp56j]3hphpEHUjH hpCJUVaJjhpUj0h}!hpEHUjH hpCJUVaJjh}!Uhph}!':::);*;=;>;?;@;O;P;c;d;w;x;y;z;;;;;;;;;<<<<<<B<C<<<<˾ںګڏsfbb]b]b hAim6hAimjAh$/hAimEHUjH hAimCJUVaJjz?h$/h[W EHUj H h[W CJUVaJj<h$/h$/EHUjH h$/CJUVaJhpj:h$/h$/EHUjH h$/CJUVaJh$/jh$/Uh: jhpUj 8h$/h$/EHU#<<<<<<<<<<>=D=W=Y==V>W>X>`>e>h>p>|>>>>>>> ?????)?*?=?>???@?????ȷȷȷȷȷȷȷȯȠȈyjOH h[W CJUVaJjh[W 56UjlHh$/h[W EHUjH h[W CJUVaJjh[W U h[W 6 h[W 5 h[W 56h[W jTEh$/hAimEHUjH hAimCJUVaJjhAimU hAim6hAim hAim56+??????@@ @ @@@AA:A;ANAOAPAQAgAhAlAmAAAAAAAAAAAA%BŸܳܨܳ{wh[ܳwj Rhv`hv`EHUj"H hv`CJUVaJhv` hKhKjOhfthK56EHUj!H hKCJUVaJ hK56jhK56U hK6jMhKhKEHUjH hKCJUVaJjhKUhKh[W jh[W 56UjJhfth[W 56EHU#lAmAAABBBC?D@DiDnDDD!F"FtFxFFFHHIIII(IL gd' gdlN%B&B9B:B;BD?DPDözvqvv h'6h'jM[hv`hv`EHUj#H hv`CJUVaJjXhv`hv`EHUjW#H hv`CJUVaJh[W jVhv`hv`EHUj"H hv`CJUVaJ hv`6jThv`hv`EHUj"H hv`CJUVaJhv`jhv`U)PDQDdDeDfDgDnDoDDDDDDDDDDDDDDDDDE EEE\E]EyE}EEEEEEEEȻ~~~~~objFPFQF\F]FpFqFrFsFxFyFFFFFFFFFFFFFFFFF겥ꖉzmf h}uh}ujrh}uh}uEHUjo(H h}uCJUVaJjXph'h}uEHUjS(H h}uCJUVaJjmh}uh}uEHUj'H h}uCJUVaJ h}u6j`kh'h}uEHUj'H h}uCJUVaJjh}uUh}u h'6h'jh'U(F G!G4G5G6G7GEGFG{G|GGGGGH HhHiH|H}H~HHHHHHHHHHHHHIԸԜԀso`j,H hU1CJUVaJh'j|h}uh}EHUj'H h}CJUVaJjyh'h}EHUj3&H h}CJUVaJjwh}h}EHUj)H h}CJUVaJjh}U h}6h}j`uh}uh}EHUjO)H h}CJUVaJjh}uUh}u"IIIIIIIII$I%I&I'I(I1I5IKFLILLLLLLLLLLLLMMMOMMMMؽ̩ؤؠsogojh]Uh]j6h[wh[wEHUj0H h[wCJUVaJjh[wUhp h[w6h[w hU16 h$/hU1jhU1hU1EHUj -H hU1CJUVaJjhU1UhAimhU1 h[W h[W h}h}jh}Uj~hU1hU1EHU$LLvNNNO O OOO9P:PSSSSڃۃ gd_ gdU gdlNMMMMNNuNvNNNNNNNNNNNNOO OOOOP$P%P8PnPoPPPPPPPQ6Q׿׮צ{njh@j^hUh@EHUjU6H h@CJUVaJjhUU hU6>*hUh]6 hU6hUhphH1jh]h]EHUj2H h]CJUVaJh[w h]6h]jh]Ujjh]h]EHUj1H h]CJUVaJ&6Q7QJQKQLQMQRRRRRRRRRRRR.S3SASBSUSVSWSXSSSSSSSSSSSSSSSSSöywU h h  h 6jh@h EHUj8H h CJUVaJh hUjɖh@h@EHUjhUh@EHUjU6H h@CJUVaJ h@6jh@h@EHUj6H h@CJUVaJh@jh@U+ ones and the  EMBED Equation.3 zeros were distinctly different (say, different colors, or different aromas!), then there would be n! different possible ways to order them. However, all the ones look alike, and all the zeros look alike. And so there will be fewer than n! ways to order them. How many fewer? Well, how many ways can one order the k ones, assuming they are distinct? The answer is k! ways. And how many ways can one order  EMBED Equation.3 zeros, assuming they are distinct? The answer is  EMBED Equation.3  ways. But since the ones and zeros are not distinct, the number of ways we can position them into the n slots is:  EMBED Equation.3  (read as n choose k ) (2.10b) Now, each way we position the k ones in the n slots has a corresponding probability, as demonstrated above. And so, there can be a lot of probabilities to compute, even for a modest value of n. For example, if n=10, then for k=5 we have to compute  EMBED Equation.3  different probabilities, and then add them up to get  EMBED Equation.3 . And so, even if we were to now proceed to develop a general expression for this probability, it would be really ugly! Furthermore, given specified p-values  EMBED Equation.3  corresponding to the n Ber(pj) components of X, we would still need a calculator, if not a computer, to compute this probability for the events [Y=k] for all of the n+1 possible values of k: k=0, 1, , n. For these reasons, we will focus our attention on an algorithm for computing the elemental probabilities associated first with  EMBED Equation.3 . Then, having numerical values for these probabilities, we will develop an algorithm that uses them to compute the probability of each [Y=k] event. We do this in the Appendix to this chapter, since the development is mainly one of writing a program. We will use Matlab as our programming language. However, those familiar with other languages (e.g. C++) may prefer to write their own code. Recall, that the only assumption, thus far, has been that the n components of X are independent. We will now make the further assumption that they all have one and the same p-value. In this case (2.10) becomes  EMBED Equation.3  (2.12) However, since the p-values are identical, then so long as an element of  EMBED Equation.3 has k 1s (and, consequently, n-k 0s), that element has the probability (2.12). And the number of distinct elements of this type is given by (2.11). Hence, under the assumption that the components of X are iid , we have the following probability description for their sum, Y:  EMBED Equation.3  (2.13) The probability model (2.13) is known as the Binomial probability model. Notice that is entails two parameters: n, the number of Bernoulli random variables being added, and p, the p-value associated with each and every Bernoulli variable. Having (2.13), it is trivial to arrive at the probability model for our p-value estimator  EMBED Equation.3 . The sample space for  EMBED Equation.3 is obtained by dividing each element in  EMBED Equation.3  by n. Hence, we have the following equivalent elemental events:  EMBED Equation.3 . It follows that the probability description for  EMBED Equation.3  is  EMBED Equation.3 . (2.14) The following is a Matlab code to compute this theoretical probability model for  EMBED Equation.3  n=100; p = 0.7; xvec = 0; pvec = (1-p)^n; for k = 1 : n; xvec = [xvec , k/n]; pval = ( factorial(n)/(factorial(k)*factorial(n-k)) ) * p^k * (1-p)^(n-k); pvec = [pvec , pval ]; end stem(xvec, pvec) This code gives the following figure.  Figure 10. Graph of the Binomial distribution (2.13) for n=100 and p=0.7. A comparison of Figure 7 and Figure 10 shows that Figure 7 has a shape reasonably similar to the theoretical model in Figure 10. APPENDIX To begin, we should figure out just how many elemental events are associated with  EMBED Equation.3 . Well, in the first slot there can be a zero or a one. Then for each of these branches, the second slot can be a zero or a one, and so on. It turns out that there are a total of  EMBED Equation.3 branches ; that is, there are  EMBED Equation.3 elements in  EMBED Equation.3 . For example, if n=10, then  EMBED Equation.3 has  EMBED Equation.3  elements in it. Now lets compute the following numbers:  EMBED Equation.3 the number of elements that contain no 1s = 1  EMBED Equation.3 the number of elements that contain one 1s =  EMBED Equation.3   EMBED Equation.3 the number of elements that contain one 1s =  EMBED Equation.3  In general,  EMBED Equation.3 the number of elements that contain one 1s =  EMBED Equation.3 .     PAGE  PAGE 24  EMBED Equation.3   EMBED Equation.3   EMBED Equation.3   EMBED Equation.3   EMBED Equation.3   EMBED Equation.3  "#$%_`΁ρЁсADʂ˂ӂԂׂ߂|hH1 hvl6jh hvlEHUj;H hvlCJUVaJhvlhlNjh h EHUj:H h CJUVaJjŝh h EHU h 6jh h EHUj9H h CJUVaJh jh U0 dgƒŃكڃ./BCDEڄ܄()˴ˢˢ˓ˢˢˢˢˢ h6H*jhhEHUj@H hCJUVaJ h6jShhEHUj>H hCJUVaJjhUhjפh' hEHUj_=H hCJUVaJjh' Uhvl h' 6h' 2ŅƅȅGH[\]^ek%&56ΈψЈш#$789:>?X[ƽƵƦƵƊ}yhjchH1hH1EHUjZJH hH1CJUVaJjh]hH1EHUjIH hH1CJUVaJjhH1Uh' hH16hH1 h{6jެh{h{EHUjYAH h{CJUVaJjh{Uh{ h6h.وڈOPtuЋыʌˌab+:O gd_  LMNOdexyz{128:ϋЋы34GHIJrþ÷ÅvijYhghgEHUjMH hgCJUVaJjhgUjuhfthg56EHUjHMH hgCJUVaJjhg56U hg56 hg6hg h56jhhhEHUj"KH hCJUVaJjhUhH1h h6)rsEFYZ[\wxö~zvqvivZjMH hCJUVaJjhU h6hh>jhghgEHUjNH hgCJUVaJjhghgEHUjMH hgCJUVaJjdhghgEHUj&NH hgCJUVaJ hg6j]hghgEHUjMH hgCJUVaJhgjhgU"ŎƎǎ)+./359:ɏʏˏ1234׭{nj h{h{EHUjYAH h{CJUVaJjh{Uh{hH1hH15 h{5 hH15 h5 hH1hH1 h>6 h>56 h>5 h>h>jh>h>UhH1 hhh>hjhUjhghEHU'OƎǎ:;ʏˏ,- gd}^ gda gd_ !4567CDWXYZ\lnwxȻ׬כrcVכj-hahaEHUjCH haCJUVaJj(h{haEHUjYAH haCJUVaJjhaU ha6haj#h{h{EHUjYAH h{CJUVaJjh{h{EHUjBH h{CJUVaJh{jh{Ujh{h{EHUjrBH h{CJUVaJ!&-.ABCDKpqtuԒՒķӯӠӯӄwӯh[jh}^h}^EHUjFH h}^CJUVaJjEhah}^EHUj|FH h}^CJUVaJjh}^h}^EHUjLFH h}^CJUVaJjh}^Ujhah}^EHUjqFH h}^CJUVaJh}^jbhah}^EHUjFH h}^CJUVaJhajhaU#ABUVWX]^_`acdfgijlmstuwx~Ÿ{sjhUhC`,0JmHnHuh h0Jjh0JUhKjhKU h' h' h' hah}^juh}^h}^EHUj%GH h}^CJUVaJj0hah}^EHUjGH h}^CJUVaJjh}^Uhah}^)Z[\]^_`bcefhikluvwh]hgdl &`#$gdKZ gd_ gd}^͓̓ΓϓѓғȻ׬אtgXjH hCJUVaJjhQhEHUjtH hCJUVaJjh( hEHUj@H hCJUVaJjhEQhEHUjH hCJUVaJjh9hEHUjH hCJUVaJhjhUj hEhEHUjH hCJUVaJГѓ gd_  h' h' hKZhjhUjhh(zIhEHU,1h/ =!"#$% `!(KSZ'rN RXJxcdd``> @c112BYL%bpu @c112BYL%bpubޱUsi#?@Z*!5Hy F\Ps}v& `p021)W2ԡ-_`n LN`!-@%NHd`h0xcdd`` @c112BYL%bpu#1dBA%7\` ;FLLJ% I s: /2N`!-,[4 ``00xcdd`` @c112BYL%bpu#1dBA%7\` ;FLLJ% A2u(2tA4A!_ v120eC?N`!-l r7\v\ `XJ0xcdd`` @c112BYL%bpu#1dBA%7\` ;FLLJ% s: /25LPDd $Tb  c $A? ?3"`?2>ԢNAf ַvD`!n>ԢNAf ַȂ HD XJ<xcdd``vdd``baV d,FYzP1n:&lB@?b  ㆪaM,,He` @201d++&1X +|-KSeF\ YAZk+a|u0` WWbq W&00s9|F]L #l*H?!2B}6!ý^ \(8Zq%F&&\U @ ] @Y`yAEDd x@b  c $A? ?3"`?2yE"Ne ck`!cyE"Ne c, 1xcdd``cd``baV d,FYzP1n:&B@?b u 8 ㆪaM,,He` 01d++&1X +|-̛6Nh8W:v΂J߂ ďD75 Ma`:@${@F9 c$@aS 2"n%߰ʷb`S{P``cI)$5afE.jODd u0  # A"U[;sÎEDVÊ`ї~.;$kQ2HiX ]k)CX=TN{DQl)X.,T +mtBYN5>r`No.hh!`] D&l @6X,򄝇] †`c4+)oB>䃐_<] !B9AN9ANS)CCBN9Anwfnזպh5X R44\{=}} ՓOO'"|ʡo=tݎ0]lN2Cq,?FrY^!\^p%v8nW]ZI+P|XMשMyƾ>&q< xyX'bQB_Ug-gΗz)^fC`S aWyəF r@ùiU&aLY^x[0}d1&B+3a&縨k= t@ֲaϑ360gڭ*X-C9:W92^VD̚+I _sx<_Y>>F‹^*wrIv=sE!ZXJyQ>W) bx klL>1SCǧZ;>#|GN|Z YċOk6[ٷDکhYi^f-:gfzĀbbXXkU֙Z 갞QX`} 뻂g`!>X-a"(׆5ik[a 8pi(ȷVo·ZM _]6Y^97"sV[uLuLa3::`]ju1g]ºh}_Mu&:buAaκЅu#M"'I$g=Iu|$º9ַa7-d}|d=1zDzqr7\X_%\u&~uXkug=º;nM n5Yw+ Ӝg.O{dWedTX' NjN*X7d}~ׅC~YWhPXW`]ɺBa]a.u G/dUXG j*u}2VVYkeE wwwwyCIkaL+Cty=} YX>x9vd~%D GX~3=}nŭnʶiz/\Wό5{~U̶mz?xmR81:8~9<.a5Fo~ڂ¬ ss_=D^b-^Te{NjZnV]wy=Z9k#-tOy vq\Հ1\uRHsB)Gp-\ec-[ R e]4A%웮ƣyt=ӬdPDd $Tb  c $A? ?3"`?2>ԢNAf ַv `!n>ԢNAf ַȂ HD XJ<xcdd``vdd``baV d,FYzP1n:&lB@?b  ㆪaM,,He` @201d++&1X +|-KSeF\ YAZk+a|u0` WWbq W&00s9|F]L #l*H?!2B}6!ý^ \(8Zq%F&&\U @ ] @Y`yA>Dd T  !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]_`abcdejmnoqprtsuwvxzy{|}~Root Entryw F+Вl@Data ^EWordDocumentvcObjectPooly1В+В_1222629629F1В1ВOle CompObjfObjInfo $),-058;@CFILQTUX]`cfilorstwz} FMicrosoft Equation 3.0 DS Equation Equation.39q30CZ S X ={0,1} FMicrosoft Equation 3.0 DS EqEquation Native O_1222629788 F1В1ВOle CompObj fuation Equation.39q-pE[ Pr[X=1]=p FMicrosoft Equation 3.0 DS Equation Equation.39qObjInfo Equation Native  I_1222685951F1В1ВOle  CompObj fObjInfoEquation Native C_1222686118 ,F1В1В'V[ S X )=1 FMicrosoft Equation 3.0 DS Equation Equation.39q%V[ Pr()=0Ole CompObjfObjInfoEquation Native A_1222686192F1В1ВOle CompObjfObjInfo FMicrosoft Equation 3.0 DS Equation Equation.39q: ={} FMicrosoft Equation 3.0 DS Equation Equation.39qEquation Native 9_1222686231"F1В1ВOle CompObj fObjInfo! Equation Native !)_1222686361$Fd4Вd4ВOle " D  FMicrosoft Equation 3.0 DS Equation Equation.39qV[ S XCompObj#%#fObjInfo&%Equation Native &6_1222701953@)F1В1ВOle 'CompObj(*(fObjInfo+*Equation Native + FMicrosoft Equation 3.0 DS Equation Equation.39quV[ Pr(A*"B)=Pr(A)+Pr(B)"Pr(A)"B) FMicrosoft Equation 3.0 DS Eq_12226882341.F1В1ВOle .CompObj-//fObjInfo01uation Equation.39qV[ S X FMicrosoft Equation 3.0 DS Equation Equation.39q%V[ Pr(A)"B)Equation Native 26_12226885463F1В1ВOle 3CompObj244fObjInfo56Equation Native 7A_12227029998F1В1ВOle 9 FMicrosoft Equation 3.0 DS Equation Equation.39qV[ A)"B= FMicrosoft Equation 3.0 DS EqgCompObj79:fObjInfo:<Equation Native =9_12227033736=F1В1ВOle >CompObj<>?fObjInfo?AEquation Native Bquation Equation.39qUV[ Pr(A*"B)=Pr(A)+Pr(B) FMicrosoft Equation 3.0 DS Equation Equation.39q_1222703510;TBFd4Вd4ВOle DCompObjACEfObjInfoDGEquation Native HO_1222703714JGFd4Вd4ВOle JCompObjFHKf3V[ S X ={0,1} FMicrosoft Equation 3.0 DS Equation Equation.39q V[ ObjInfoIMEquation Native N)_1222704140OLFd4Вd4ВOle OCompObjKMPfObjInfoNREquation Native S_1222704324QFd4Вd4В FMicrosoft Equation 3.0 DS Equation Equation.39qu02[ ! X ={{0},{1},S X ,} FMicrosoft Equation 3.0 DS EqOle VCompObjPRWfObjInfoSYEquation Native Z6uation Equation.39qV[ ! X FMicrosoft Equation 3.0 DS Equation Equation.39q5V[ Pr({0})_1222704653EYVFd4Вd4ВOle [CompObjUW\fObjInfoX^Equation Native _Q_1222704692^[Fd4Вd4ВOle aCompObjZ\bf=0.3 FMicrosoft Equation 3.0 DS Equation Equation.39q5lF Pr({1})=0.7ObjInfo]dEquation Native eQ_1222704758`Fd4Вd4ВOle gCompObj_ahfObjInfobjEquation Native kI_1222704818'eFd4Вd4В FMicrosoft Equation 3.0 DS Equation Equation.39q-MN {0})"{1}= FMicrosoft Equation 3.0 DS Equation Equation.39qOle mCompObjdfnfObjInfogpEquation Native qM Pr({0}*"{1})=Pr({0})+Pr({1})=0.3+0.7=1.0 FMicrosoft Equation 3.0 DS Equation Equation.39q_1222704918jFd4Вd4ВOle uCompObjikvfObjInfolxRMD1 {0}*"{1}={0,1}=S X FMicrosoft Equation 3.0 DS Equation Equation.39qcV[ Pr({0,1Equation Native yn_1222705049hroFd4Вd4ВOle {CompObjnp|fObjInfoq~Equation Native _1222705502tFd4Вd4ВOle })=Pr(S X )=1.0 FMicrosoft Equation 3.0 DS Equation Equation.39qV[ S X FMicrosoft Equation 3.0 DS Eqb  c $A? ?3"`?2Լi!d`!\Լi!R `\XJ*xcdd``dd``baV d,FYzP1n:&,B@?b X ㆪaM,,He` @201d++&1X +|-Kʠ T3V_׬b> W&00dq.(|FɞL #l*H!2B}(6!ý^ \8a/)#RpeqIj.,\E.B ~`uBDd @b  c $A? ?3"`?2r2v 7Ä;h@`!`r2v 7Ä;  .xcdd``fcd``baV d,FYzP1n:&B@?b u  UXRY7S?&,e`abM-VK-WMcرsA V0ZɗT T߰TϘ@|JN(ߊ (Hb# I9 x;|a##d!fE悂B>e78Ҋ[pACM F&&\$ @ ]` "Xd3Dd H@b  c $A? ?3"`?2}֖FR"!Y`!Q֖FR"!@" xcdd`` @c112BYL%bpuurEid3O.Ad-Fmo6~+`cf8-oҟm9 @c112BYL%bpu @c112BYL%bpu @c112BYL%bpu~?Yjz3)S;!n~?Yjz3)SPNG  IHDRFrsRGB pHYs+IDATx^V8μ;3 vY׌Kw >?_ @;w: @> @ݔ @@ @@@`{tS @l @\nJ  P MI=@ p)  @ @@.@7%($@ @ݔ @@ @@@`{tS @l @\nJ  P MI=@ p)  @ @@.@7%($@ @ݔ @@ @@@`{tS @l @\nJ  P MI=@ p)  @ @@.@7%($@ @ݔ @@ @@@`{tS @l @\nJ  P MI=@ p)  @ @@.@7%($@7 4 & wk=$ ": DpDM H $r 55 @ )  @@D@G @N*'@QSC8 DpDM H $r 55 @ )  @@D@G @N*'@QSC8 DpDM H $r 55 @ )  @@D@G @N*'@QSC8 DpDM H $r 55 @ )  @@D@G @N*'@QSC8 DpDM H $r 55 @ )  @@D@G @N*'@QSC8 DpDM H $r 55 @ )  @@D@G @N*'@QSC8 DpDM H $r 55 @ )  @@D@G @N*'@QSC8 DpDM H $r 55 @ )  @@D@G @N*'@QSC8 DpDM H $r 55 @ )  @@D@G @N*'@QSC8 DpDM H $r 55 @ )  @@D@G @N*'@QSC8 DpDM H $r 55 @ )  @@D@G @-9aX.oV+nN=(>P'/"c12i-c' =8vsY9' =8R#?Pzxe]!w:鶮O;¹~MwA p"Na,2S yw]s&~6-5_[B .z5tq`~ؗ7]xJvyF,SDuÏ{ܯo!Gme>}!p~}a+{\'a,mD]o8 s{~ی9M .366` ]$~O@8nVt: q Ý$mpXv{鸿~"qjb;i>O'ٲ/V(!^çY;Уgp8'cxZ B zVb(<Y,|tg8rH2hV;@wK@%ieMepYǸ=o?ǦﱣjCa HH\3)VZ% 4h X\kyGfʉTU;WɛwG# @VUjsMR7;a[=ޒ^*4k6 8nr6 ML^`.xnO'lꌷ$g{"@p-^8v;l[\iw"mξ|ʚ'@]@ 4 ?4xλoxNrQ'6`Mԇ[psݭ# uNo/"vk\k;vvQ1}v/ 7rA;d,@*XWܦ$@x9U@:[SYIbu!{j8_|^Ql~yYz:K󛕾7]b-ෳg sO3$<źbN?ΫR@ٶ^>~}\ݳ\nVX\@/>w @x  @F@׸?\π+/|T@w"0:(!-rer; 2zRC)ꦎG֏ð{p :g|cۨ&6- @@Y!L( 'l["@p= A:yc!K#0[JiZFNy^F1Xt:~3Ogf{!p($@x=)tc;}qO Q(# 3zj  @@P@ @Q)tc{݂AOMa: @ . v*  @@X@F*[=h)%{\nҘ"@)!xfݗ;b׬Fe.p}@xfe"X_AWV . [Ww"$ [4u̚\\/ {` kgrqapnyMյ_jlp4U2~Jߞcmv;bjJu[nŽn>/"}\ܛ#ӡX)D`x<| 7;P7:6qCaS[ l}x8>[Bj#uZ `{[' W w|{]HmY'lC\??$SH+O@w,Hoc#nqyYlKo4S֗wٿ@=%>OJ7rV*z`ⓀC lUNvd u;* x+lʫm]m"mqc uje7cn:7ry2x~C6\a.u|+t9~2xݦ`tцī 6}[4:~3Sī ?.LWx`Gߐ{9?>[2.;z.3Hu&'6^>B_։aѻ{d+pSN8ZG/ݥbX~krwJ .J?}x2^8Y b+;I!F8%; ݉}W:wF .:da}W2@0,z~oP]T0‹x?bxopzңů p~@ΓX (p<ԡ}zW@[w6@I,wSX#h/RI7ܬ =T .2B7׏n}w\ηE .2Bqa/. v+"# ηܛF @L ༡ @@n&S@8oh ,  @4 f2 @ / F @L ༡ @@n&S@8oh ,  @4 f2 @ / F @L ༡ @@n&S@8oh ,  @4 f2 @ / F @L ༡ @@n&S@8oh ,  @4 f2 @ / F @L ༡ @@n&S@8oh ,  @4 f2 @ / F @L ༡ @@n&S@8oh ,  @4 f2 @ /py{{ˏ2e[~, >8 D @c112BYL%bpu 1,ЄJHDd TTb  c $A ? ?3"`?2Oh FX @c112BYL%bpu 1,ЄJH;Dd @b  c $A ? ?3"`?2uĐ Ql?a!A`!YuĐ Ql?  'xcdd``fcd``baV d,FYzP1n:&6! KA?H1:l ǀqC0&dT20 KXB2sSRsv,\~ HT TϱjVrBV @V@F* $? tdSo;a 0l+ssZ|=p{AF/₆8l 5v0o86+KRsePdk{> 1l0fWDd TTb  c $A? ?3"`?2OZ2 @c112BYL%bpu 1l0fW>Dd @b  c $A ? ?3"`?2(%dG`!\(%  *xcdd``fed``baV d,FYzP1n:&6! KA?H1:l ǀqC0&dT20 [X+ssT|bرsA V0ZnʟvZHq%0FVn+ Hs]m#d J.+br<'= c%4Ը! b;LLJ% G@0u(2t5= cDd TTb  c $A? ?3"`?2OZ2 @c112BYL%bpuDd @b  c $A ? ?3"`?2(%dK`!\(%  *xcdd``fed``baV d,FYzP1n:&6! KA?H1:l ǀqC0&dT20 [X+ssT|bرsA V0ZnʟvZHq%0FVn+ Hs]m#d J.+br<'= c%4Ը! b;LLJ% G@0u(2t5= cfDd < @b  c $A? ?3"`?2SoϽ EN`!SoϽ E`Hb Rxcdd```d``baV d,FYzP1n:&! KA?H1: @1aP5< %! `35;aR&br<K>b9i,@u@@ڈ+q?Hf%' (HVQSq]9VTV 0d$ɕ kgLp*op> DKhßA 27)?aB8C F;:AFhYq ".hqIИ``S#RpeqIj.C0^E.z0tODd Tb  c $A? ?3"`?23u5Fu^1`aa9uP`!m3u5Fu^1`aa9`  XJ;xcdd``vdd``baV d,FYzP1n:&6! KA?H1Z l ǀqC0&dT20 KXB2sSRsv,\~ KaF\ 0w ` WWbq W&y\ > p#._&Pse$џs>`^tȄJ.hlqc-и``#RpeqIj.\E.B ~`S|QDd TTb  c $A? ?3"`?2OZ2 @c112BYL%bpu @c112BYL%bpu @c112BYL%bpu @c112BYL%bpu @c112BYL%bpu @c112BYL%bpu @c112BYL%bpu p#._&Pse$џs>`^tȄJ.hlqc-и``#RpeqIj.\E.B ~`S|QDd 4Tb " c $A? ?3"`?!2}^8_*͠ĵ(g`!}^8_*͠ĵ: XXJ}xcdd`` @c112BYL%bpu/MNHq50ZV@|8 ;ɵ:0;H_W | T=>@ OpenR~>pD@(74 %) 2B}xdBcq? `Ȅ`,Ā.8q @Fߊ?Me\NN4&]F&&\= @ ]` bg!t?1dDd hTb # c $A? ?3"`?"2fj#l+@=:Bi`!:j#l+@=:@ |XJxcdd``> @c112BYL%bpu @c112BYL%bpu p#._&Pse$џs>`^tȄJ.hlqc-и``#RpeqIj.\E.B ~`S|Q?Dd @b & c $A? ?3"`?%21ԡ}"76e@p`!]1ԡ}"76  +xcdd`` @c112BYL%bpuDd @b ' c $A? ?3"`?&2]ҜO A=dr`!\]ҜO A=e *xcdd`` @c112BYL%bpu" i^yt`!q|>" i^J4 ?xcdd``Ved``baV d,FYzP1n:&B@?b u 30 UXRY7S?&lebabMa`XǵxG!K>b3γUsi#ul U yv6D@2w+Jߋ ?C2sSRspb#ܞE, #jHpfOcDU7 깠3a.%#RpeqIj.y;:@ĞB a oDd @b ) c $A? ?3"`?(2C?;үJw`!C?;үJ(G/ xcdd`` @c112BYL%bpu @c112BYL%bpu?@ABCDEFGHIJKLMOQSRTUVXWY[Z\^]_a`bcdefhijkmlnopqrtsuvwyxz{|}~Equation Native  ~_1222785168Fp6Вp6ВOle CompObjf)=p 01 +p 11 =p i1i=01 " FMicrosoft Equation 3.0 DS Equation Equation.39qH7[ p 1ObjInfoEquation Native 6_1222785191c:Fp6Вp6ВOle CompObjfObjInfoEquation Native 6_1222785706Fp6Вp9В FMicrosoft Equation 3.0 DS Equation Equation.39qh p 2 FMicrosoft Equation 3.0 DS Equation Equation.39qOle CompObjfObjInfoEquation Native  aEV[ X 1 ~Ber(p 1 ) FMicrosoft Equation 3.0 DS Equation Equation.39qEp: X 2 ~Ber(p 2 )_1222785755Fp9Вp9ВOle "CompObj#fObjInfo%Equation Native &a_1222785866Fp9Вp9ВOle (CompObj)f FMicrosoft Equation 3.0 DS Equation Equation.39qV[ X 1 FMicrosoft Equation 3.0 DS Equation Equation.39qObjInfo+Equation Native ,6_1222785929 Fp9Вp9ВOle -CompObj.fObjInfo0Equation Native 16_1222787586Fp9Вp9В`NN X 2 FMicrosoft Equation 3.0 DS Equation Equation.39qHV[ Pr[X 1 =1]=p 1`|:oK:]b m13b^?y` Ma`HZ@ V #VrA]!#t] `p021)W2ԡRYv] `rMDd hTb - c $A? ?3"`?,2fj#l+@=:Bǀ`!:j#l+@=:@ |XJxcdd``> @c112BYL%bpu @c112BYL%bpu/m P.P16z(Q 1y12ps@&WrA]!#t] `p021)W2lԡRYv] `DM_Dd hTb / c $A? ?3"`?.2fj#l+@=:B`!:j#l+@=:@ |XJxcdd``> @c112BYL%bpu @c112BYL%bpu @c112BYL%bpuDd <Tb 3 c $A? ?3"`?22C&0>Hd,`!\C&0>H<`  XJ*xcdd``cd``baV d,FYzP1n:&! KA?H1Z  ǀqC0&dT20 KXB2sSRsv,\~ K``8U kL ~]%>?}(װeH 02/efRRa*"@*"R ,#RpeqIj.fE.Y`5jn?Dd dTb 4 c $A? ?3"`?32RfĞ,=Nej`!]RfĞ,=N< ^ XJ+xcdd``cd``baV d,FYzP1n:&B@?b 8 ㆪaM,,He` @201d++&1X +|-OT T 4;Hf%׀c@J} ɳD1lQ%DAao:ȄJN(>33Z SR g.p\= ev0o8+KRsnlfPdk{> 1lTDd (Tb 5 c $A? ?3"`?42NufѷA:ߓXz `!rNufѷA:ߓX@  XJ@xcdd``dd``baV d,FYzP1n:&&! KA?H1Zq00 UXRY7S?&,e`abM-VK-WMcرsA V0Z^ϗT T 4Ufu|6f_bcd>`|2¨_VDAa"?pcFG0@X“ +ss:.(D]n[=.p w `p`dbR ,.IeԡRYݏ`Y}TDd (Tb 6 c $A? ?3"`?52NufѷA:ߓXz `!rNufѷA:ߓX@  XJ@xcdd``dd``baV d,FYzP1n:&&! KA?H1Zq00 UXRY7S?&,e`abM-VK-WMcرsA V0Z^ϗT T 4Ufu|6f_bcd>`|2¨_VDAa"?pcFG0@X“ +ss:.(D]n[=.p w `p`dbR ,.IeԡRYݏ`Y}ʧDd Tb 7 c $A? ?3"`?62KR3&=ɣen7VQ`!KR3&=ɣen7V xXJxcdd``~ @c112BYL%bpuzU0_ȍj{.T\sρ>~fTQ7DVTYPYP͏d+' W&00q}XQG|22H2j$Ps0ʃMp/ibׁdBp%4ss8YCӺ;+KRsZA2u(2tA4T}b@3XDd TTb 8 c $A? ?3"`?72Oa=3ޣcm<+`!#a=3ޣcm<  XJXJxcdd``> @c112BYL%bpu/m P.P16z(Q 1y12ps@&WrA]!#t] `p021)W2lԡRYv] `DM_Dd b 9 c $A? ?3"`?82pISNTA5v`!pISNTA5v@ xڕAKAꮦ!a"е$)h*N_ Ka;t3t[%q\̓7o 7a%C #X۶ͬ 4 p `N%VT Ȱ"? 8K5ƴp뗥T<T׵CW+sxdhf^)=oxɼ%x^U)or.0sa|9r'w8eks[w} "粷/9b1 ar+Iz!ySP!tKnl 8)}͞#: GwMfx_3~^/);~Bú^A}]{ N+ce a4 m$b X}t{*D`KIDd |b : c $A ? ?3"`?92bG -{gfo`!gbG -{gf` `05xcdd``ed``baV d,FYzP1n:n! KA?H1Z l@P5< %! `3);aR&br<K>bi,@u@@ڈ.VJ GYP,2ʫC7#  +8@FTh|&^F b/#  L`C3 |.hrc}h 0y{iI)$5E.z0W&zDd hTb ; c $A? ?3"`?:2fj#l+@=:B`!:j#l+@=:@ |XJxcdd``> @c112BYL%bpu @c112BYL%bpu 1,ؗJaDd @b = c $A"? ?3"`?<29Xݫ9.u%`! Xݫ9.u:@ x=N Aa=3/q+ ;'J]" (ݝP 6d\WӜ39s";"̋I(DA(S> [s( 0bςɢT:d/]o>:[O֤rat0N"Uj c $A#? ?3"`?=2p>۞(PL`!D>۞(P XJxcdd`` @c112BYL%bpubyӶUsi#&VJߊ?X 1_?|( br<32p{0M cF=0bdbR ,.Ie2C /2ՏPBDd TTb ? c $A!? ?3"`?>2Oi5lKt\n}+:`!#i5lKt\n}  XJXJxcdd``> @c112BYL%bpu 1,ؗJaDd @b @ c $A"? ?3"`??29Xݫ9.u?`! Xݫ9.u:@ x=N Aa=3/q+ ;'J]" (ݝP 6d\WӜ39s";"̋I(DA(S> [s( 0bςɢT:d/]o>:[O֤rat0N"Uj#H1CoG  Y #4+a| PPim`w^`N U~*H'M (HXOR@q<اp<r^6H$ Q 8n~G1O U>Db#& 6ίΗuATy5TH 'j@ v0_?*k ҁ] ;:p~3`>BO$He_3p)|6%0@penR~C ?CBD M ķPmPD@p n<D -c=ಋI)$5!NE. ,ĀF`Dd hTb C c $A&? ?3"`?B2fD^B#oP|EBV`!:D^B#oP|E@ |XJxcdd``> @c112BYL%bpu4ֹ)8``#RpeqIj.1;:@Dg!0fN Dd Tb E c $A(? ?3"`?D2TC"|6E0̵`!(C"|6E HXJxcdd``> @c112BYL%bpubi,@u@@ڈؽc$;vv0o8L+KRsA2u(2tA4Ag!!v120eoK+ Dd ,Tb F c $A)? ?3"`?E2Uf6Aq֟29i21ַ`!)f6Aq֟29i2 XJxcdd``> @c112BYL%bpu`|2¨_VDAa"?pcFG0@X“ +ss:.(D]n[=.p w `p`dbR ,.IeԡRYݏ`Y}ʗDd Tb H c $A*? ?3"`?G2W0A55`!W0A5r (XJxcdd`` @c112BYL%bpu'J^_`6D5,\T.WȎj^!yYQ dE5o: |$3HgBܤp?#L #l*HbBeQlB{I3ӽ 5 6=4Ĥ\Y\ d.P"CDHg!t?0eZDd X|b I c $A'? ?3"`?H2e$A:Lm ̾`!xe$A:Lm ` 70Fxcdd``Ned``baV d,FYzP1n:B@?b ؀깡jx|K2B* R vfjv ,L ! ~ Ay ;|.? _;ҎUsi#+\ 0~o`E31@J{Fi`wV8QQ`/ϊʟĂ U2#$+u^3PQb>4ֹ)8``#RpeqIj.1;:@Dg!0fNZDd X|b J c $A'? ?3"`?I2e$A:Lm &`!xe$A:Lm ` 70Fxcdd``Ned``baV d,FYzP1n:B@?b ؀깡jx|K2B* R vfjv ,L ! ~ Ay ;|.? _;ҎUsi#+\ 0~o`E31@J{Fi`wV8QQ`/ϊʟĂ U2#$+u^3PQb>4ֹ)8``#RpeqIj.1;:@Dg!0fN Dd Tb K c $A(? ?3"`?J2TC"|6E0`!(C"|6E HXJxcdd``> @c112BYL%bpubi,@u@@ڈؽc$;vv0o8L+KRsA2u(2tA4Ag!!v120eoK+ Dd ,Tb L c $A)? ?3"`?K2Uf6Aq֟29i21`!)f6Aq֟29i2 XJxcdd``> @c112BYL%bpu @c112BYL%bpubiN,@u@@ڈc(ؽc$;vv0o8L+KRs@2u(2tA4T}bb#3XJTDd (Tb N c $A? ?3"`?M2NufѷA:ߓXz `!rNufѷA:ߓX@  XJ@xcdd``dd``baV d,FYzP1n:&&! KA?H1Zq00 UXRY7S?&,e`abM-VK-WMcرsA V0Z^ϗT T 4Ufu|6f_bcd>`|2¨_VDAa"?pcFG0@X“ +ss:.(D]n[=.p w `p`dbR ,.IeԡRYݏ`Y} Dd @Tb O c $A+? ?3"`?N2T[=h})avȗ0`!([=h})avȗǒ  XJxcdd``> @c112BYL%bpubiN,@u@@ڈc(ؽc$;vv0o8L+KRs@2u(2tA4T}bb#3XJ Dd @Tb P c $A+? ?3"`?O2T[=h})avȗ0`!([=h})avȗǒ  XJxcdd``> @c112BYL%bpubiN,@u@@ڈc(ؽc$;vv0o8L+KRs@2u(2tA4T}bb#3XJ Dd @Tb Q c $A+? ?3"`?P2T[=h})avȗ0`!([=h})avȗǒ  XJxcdd``> @c112BYL%bpubiN,@u@@ڈc(ؽc$;vv0o8L+KRs@2u(2tA4T}bb#3XJDd TTb R c $A,? ?3"`?Q2R)'( } @c112BYL%bpu @c112BYL%bpubiN,@u@@ڈc(ؽc$;vv0o8L+KRs@2u(2tA4T}bb#3XJWDd Tb T c $A-? ?3"`?S2X~c*Yd#P}#`!uX~c*Yd#P  XJCxcdd``vbd``baV d,FYzP1n:&&N! KA?H1Z8 ㆪaM,,He` @201d++&1X +|-?ɛvNh8WHkl%7T ɳDQREX|I9 >.('s>Z2¶HXA&Db Sp0AcKNLLJ% A0u(2tA4T}b@#3XBZDd X|b U c $A'? ?3"`?T2e$A:Lm z`!xe$A:Lm ` 70Fxcdd``Ned``baV d,FYzP1n:B@?b ؀깡jx|K2B* R vfjv ,L ! ~ Ay ;|.? _;ҎUsi#+\ 0~o`E31@J{Fi`wV8QQ`/ϊʟĂ U2#$+u^3PQb>4ֹ)8``#RpeqIj.1;:@Dg!0fNaDd $b V c $A.? ?3"`?U2!ߝ]&!IG]`!!ߝ]&!IG].`pGHPMxcdd`` @c112BYL%bpuy'q?}Ϭ 2jn?7T ʗ叀"j %VtK 78⨦z LY(6/f5|>y:0>;؍pr^yp>7ol.5.-C#Z=}2R>3 YELGO/dZt@&}ʗc#,<d -#=ಗI)$5.E.Y=LRgDd $b W c $A/? ?3"`?V2iA<9XX5`!iA<9XX.@pGHSxcdd`` @c112BYL%bpu 1X +|-O+`*F\7k>yl\cdgva 5ws'\F L4!j 6E URU>YU~'*ߋ/Ʉa`#$37X/\!(?71 JXx LWu0@廠+UQTP͋f|-FK/DpB02hjBPQZ<{C习xP(Ҩրj! 5kQ.nd05o^L>AT3P| 8_l\=X=o`7|j O E0~oX >)J_˅"Xz)Ӆ #棽:  >7QA廲p~D ZJrKRp2 `pĤ\Y\PrP"CXY=Lb[ Dd Tb X c $A0? ?3"`?W2T r1@0`!( r1@ HXJxcdd``> @c112BYL%bpubUi,@u@@ڈؽc$;vv0o8L+KRs$@2u(2tA4T}bb#3XbFJ Dd ,Tb Y c $A1? ?3"`?X2T}$͉\F-0`!(}$͉\F- XJxcdd``> @c112BYL%bpu4ֹ)8``#RpeqIj.1;:@Dg!0fNTDd (Tb [ c $A? ?3"`?Z2NufѷA:ߓXz `!rNufѷA:ߓX@  XJ@xcdd``dd``baV d,FYzP1n:&&! KA?H1Zq00 UXRY7S?&,e`abM-VK-WMcرsA V0Z^ϗT T 4Ufu|6f_bcd>`|2¨_VDAa"?pcFG0@X“ +ss:.(D]n[=.p w `p`dbR ,.IeԡRYݏ`Y} Dd Tb \ c $A0? ?3"`?[2T r1@0^`!( r1@ HXJxcdd``> @c112BYL%bpubUi,@u@@ڈؽc$;vv0o8L+KRs$@2u(2tA4T}bb#3XbFJ Dd ,Tb ] c $A1? ?3"`?\2T}$͉\F-0h`!(}$͉\F- XJxcdd``> @c112BYL%bpu`|2¨_VDAa"?pcFG0@X“ +ss:.(D]n[=.p w `p`dbR ,.IeԡRYݏ`Y}>Dd <Tb _ c $A2? ?3"`?^29PZ +-JP0d`!\9PZ +-JP0<`  XJ*xcdd``cd``baV d,FYzP1n:&! KA?H1Z  ǀqC0&dT20 KXB2sSRsv,\~ ;򧹳U g0j`ҪY oe5|c&bcd>`kX 2Bb$_{gPP 23YNE0 \p؃P``cI)$5d3P"CXY`w4h?Dd xTb ` c $A3? ?3"`?_2Թ*_~Є"rm͋e`!]Թ*_~Є"rm͋<  XJ+xcdd``cd``baV d,FYzP1n:&B@?b 8 ㆪaM,,He` @201d++&1X +|-ΟT T 4#;Hf%׀c@J} ɳD1 lQ%DAao&ȄJN(>33Z SR g.p\= ev0o8+KRs@63u(2t5=} Ul Dd @Tb a c $A4? ?3"`?`2T >5(5( @c112BYL%bpub isXt9P{ +!5Hy  \Ps}v& `p021)W2ԡRYv] `LIDd TTb b c $A5? ?3"`?a2RW3L[L{V.M`!&W3L[L{V  XJXJxcdd``> @c112BYL%bpu`|2¨_VDAa"?pcFG0@X“ +ss:.(D]n[=.p w `p`dbR ,.IeԡRYݏ`Y} Dd @Tb d c $A4? ?3"`?c2T >5(5( @c112BYL%bpub isXt9P{ +!5Hy  \Ps}v& `p021)W2ԡRYv] `LIDd TTb e c $A5? ?3"`?d2RW3L[L{V.`!&W3L[L{V  XJXJxcdd``> @c112BYL%bpufObjInfo@Equation Native AG_1222788117&Fp9Вp9ВOle C+: [X 1 =1] FMicrosoft Equation 3.0 DS Equation Equation.39q{V[ p 1 =PrCompObjDfObjInfoFEquation Native G_1222788571Fp9Вp9В({(1,0),(1,1)}) FMicrosoft Equation 3.0 DS Equation Equation.39qYV[ Pr[X 1 =1)"X 2 =1]Ole JCompObjKfObjInfoMEquation Native Nu_1222788697!Fp9Вp9ВOle PCompObjQfObjInfo S FMicrosoft Equation 3.0 DS Equation Equation.39q V[ )" FMicrosoft Equation 3.0 DS Equation Equation.39qEquation Native T)_1222788757#Fp9Вp9ВOle UCompObj"$VfObjInfo%XEquation Native Y?_12227889350(Fp9Вp9ВOle Z#`NN X 2 =1 FMicrosoft Equation 3.0 DS Equation Equation.39qV[ X 2CompObj')[fObjInfo*]Equation Native ^6_1222789433-Fp9Вp9ВOle _CompObj,.`fObjInfo/bEquation Native c) FMicrosoft Equation 3.0 DS Equation Equation.39q V[ *" FMicrosoft Equation 3.0 DS Equation Equation.39q_1222789574+52Fp9Вp9ВOle dCompObj13efObjInfo4gEquation Native h)_12227899227Fp9Вp9ВOle mCompObj68nf V[ {(1,0),(1,1)}*"{(0,1),(1,1)}={(1,0),(0,1),(1,1)} FMicrosoft Equation 3.0 DS Equation Equation.39qObjInfo9pEquation Native qu_1222791806]<Fp9Вp9ВOle sYV[ Pr[X 1 =1*"X 2 =1] FMicrosoft Equation 3.0 DS Equation Equation.39q^hE[ Pr[X 1CompObj;=tfObjInfo>vEquation Native wz_1222792526AFp9Вp9В =1)"X 2 =1]=Pr({(1,0),(1,1)})"{(0,1),(1,1)})=Pr({(1,1)})=p 11 FMicrosoft Equation 3.0 DS Equation Equation.39qOle }CompObj@B~fObjInfoCEquation Native E)hE[ Pr[X 1 =1*"X 2 =1]=Pr({(1,0)}*"{(0,1)}*"{(1,1)})=Pr({(1,0),(0,1),(1,1)})_1223046859?IFFp9Вp;ВOle CompObjEGfObjInfoH FMicrosoft Equation 3.0 DS Equation Equation.39q9V[ [X 1 <X 2 ] FMicrosoft Equation 3.0 DS Equation Equation.39qEquation Native U_1223046951KFp;Вp;ВOle CompObjJLfObjInfoMEquation Native _1223047133DXPFp;Вp;ВOle `NN {(x 1 ,x 2 )"S X |x 1 <x 2 }={(0,1)} FMicrosoft Equation 3.0 DS Equation Equation.39qCompObjOQfObjInfoREquation Native U_1223047154UFp;Вp;В9(Q[ [X 1 d"X 2 ] FMicrosoft Equation 3.0 DS Equation Equation.39q?| {(x 1 ,Ole CompObjTVfObjInfoWEquation Native x 2 )"S X |x 1 d"x 2 }={(0,0),(0,1)} FMicrosoft Equation 3.0 DS Equation Equation.39q9Xg[ [X 1 =X_1223047541SbZFp;Вp;ВOle CompObjY[fObjInfo\Equation Native U_1223047870Nv_Fp;Вp;ВOle CompObj^`f 2 ] FMicrosoft Equation 3.0 DS Equation Equation.39qh[ {(x 1 ,x 2 )"S X |x 1 =x 2 }={(0ObjInfoaEquation Native _1223047716dFp;Вp;ВOle ,0),(1,1)} FMicrosoft Equation 3.0 DS Equation Equation.39qIXg[ [|X 1 "X 2 |=1]CompObjcefObjInfofEquation Native e_1223047913iFp;Вp;ВOle CompObjhjfObjInfokEquation Native  FMicrosoft Equation 3.0 DS Equation Equation.39qX|/ {(x 1 ,x 2 )"S X ||x 1 "x 2 |=1}={(0,1),(1,0)}_1223048202gqnFp;Вp;ВOle CompObjmofObjInfop FMicrosoft Equation 3.0 DS Equation Equation.39qAXg[ Pr[X 1 <X 2 ] FMicrosoft Equation 3.0 DS EqEquation Native ]_1223048224sFp;Вp;ВOle CompObjrtfuation Equation.39qj,k Pr({(0,1)})=p 01 FMicrosoft Equation 3.0 DS Equation Equation.39qObjInfouEquation Native _1223048294lxFp;Вp;ВOle CompObjwyfObjInfozEquation Native ]_1223048310}Fp;Вp;В,&A 3 Pr[X 1 d"X 2 ] FMicrosoft Equation 3.0 DS Equation Equation.39qL Pr({(Ole CompObj|~fObjInfoEquation Native 0,0),(0,1)})=p 00 +p 01 FMicrosoft Equation 3.0 DS Equation Equation.39qA Pr[X 1_1223048397{Fp;Вp;ВOle CompObjfObjInfoEquation Native ]_1223048414Fp;Вp;ВOle CompObjf =X 2 ] FMicrosoft Equation 3.0 DS Equation Equation.39qPQ4 Pr({(0,0),(1,1)})=p 00 +p 1ObjInfoEquation Native _1223048544Fp;Вp;ВOle 1 FMicrosoft Equation 3.0 DS Equation Equation.39qQhE[ Pr[|X 1 "X 2 |=1]CompObjfObjInfoEquation Native m_1223048618Fp;Вp;ВOle CompObjfObjInfoEquation Native  FMicrosoft Equation 3.0 DS Equation Equation.39qo Pr({(0,1),(1,0)})=p 01 +p 10_1223049224Fp;Вp;ВOle CompObjfObjInfo FMicrosoft Equation 3.0 DS Equation Equation.39q9V[ (x 1 ,x 2 ) FMicrosoft Equation 3.0 DS Equation Equation.39qEquation Native U_1223049313Fp;Вp;ВOle CompObjfObjInfoEquation Native U_1223049357Fp;Вp;ВOle    #(+.12347:=BEFINSVY^adiloruz9V[ (x 1 ,x 2 ) FMicrosoft Equation 3.0 DS Equation Equation.39qN S XCompObjfObjInfoEquation Native 6_1223049543F`K@В`K@ВOle CompObj fObjInfo Equation Native   FMicrosoft Equation 3.0 DS Equation Equation.39qV[ Pr[X 1 d"x 1 ]'=  F X 1  (x 1 )_1223049690F`K@В`K@ВOle CompObjfObjInfo FMicrosoft Equation 3.0 DS Equation Equation.39qxN x 1 FMicrosoft Equation 3.0 DS Equation Equation.39qEquation Native 6_1223049843Fp;Вp;ВOle CompObjfObjInfoEquation Native U_1223049902Fp;В`=ВOle 9Xg[ [X 1 d"x 1 ] FMicrosoft Equation 3.0 DS Equation Equation.39qX,k [X 1 d"x 1 ]={(u,v)"SCompObjfObjInfoEquation Native _1223193587F`=В`=В X |ud"x 1 } FMicrosoft Equation 3.0 DS Equation Equation.39qV[ X 1 FMicrosoft Equation 3.0 DS EqOle !CompObj"fObjInfo$Equation Native %6_1223193918F`=В`=ВOle &CompObj'fObjInfo)uation Equation.39qUV[ X 1 ~Ber(p 1 =0.7) FMicrosoft Equation 3.0 DS Equation Equation.39qEquation Native *q_1223194323F`=В`=ВOle ,CompObj-fObjInfo/Equation Native 01_1223194521F`=В`=ВOle 5V[ F X 1  (x 1 )=0forx 1 <01"p 1 for0d"x 1 <11forx 1 e"1{ FMicrosoft Equation 3.0 DS Equation Equation.39qCompObj6fObjInfo8Equation Native 9G_1223726681F`=В`=В+V[ p 1 =0.7 FMicrosoft Equation 3.0 DS Equation Equation.39q#p x 1 =0"`?e2NufѷA:ߓXz `!rNufѷA:ߓX@  XJ@xcdd``dd``baV d,FYzP1n:&&! KA?H1Zq00 UXRY7S?&,e`abM-VK-WMcرsA V0Z^ϗT T 4Ufu|6f_bcd>`|2¨_VDAa"?pcFG0@X“ +ss:.(D]n[=.p w `p`dbR ,.IeԡRYݏ`Y}WDd Tb g c $A6? ?3"`?f2#q7+ȈJ_b'o dEH 63m~2Ʒ`# +ssR,(D[@Ffcp@BcONLLJ% @0u(2tA4T}b@#3Xs4Dd Tb h c $A7? ?3"`?g2~Lnv¶Zf`!RLnv¶B  dXJ xcdd``Vdd``baV d,FYzP1n:&&! KA?H1Z ㆪaM,,He` @201d++&1X +|-ßVT T-AZ +!)'͵0"60f1L((₦'.p45 0y{I)$5.\E.B ~`CBggDd Tb k c $A:? ?3"`?j2Qg샹Mra `!Qg샹Mr XJSxcdd``bd``baV d,FYzP1n:&&! KA?H1Z ㆪaM,,He` @201d++&1X +|-?ΟT TøAZc+a-\ !/ sBV @V@Qt* s#w #`|SfEX|I9纺NBax'" ? @e +A&D`N`Ʈ;j+KRsA0u(2tA4T}b@33X䞂Dd b l c $A;? ?3"`?k29!ϾPGrF `! !ϾPGrF:@x=Na]GrD(tD x$DAHH:5( *KȡT:d·m [#`Cqo2ֶn.,U=9{ "jH/XABf'R˟c܃(X(w_~?ժ74Dd Tb m c $A7? ?3"`?l2~Lnv¶Z`!RLnv¶B  dXJ xcdd``Vdd``baV d,FYzP1n:&&! KA?H1Z ㆪaM,,He` @201d++&1X +|-ßVT T-AZ +!)' @c112BYL%bpu @c112BYL%bpu? ?3"`?u29+&2|hF4#`! +&2|hF:@x=Na]GrD(tJB( \VyC(tJ췎/~3;CHFECL b)^'WP1j#ߐ|TޓC#dI_;|F4i{l\m8T\5Q7,Ēk#zVbiҫ_1N moNsc<=\|=HM~B63Dd @b w c $A?? ?3"`?v2&~%?{FfŮ4#%`!~%?{FfŮ4b"5 xuSM(DQ?f! KA?H1Zx ㆪaM,,He` @201d++&1X +|-?͟NHq50VWx@|C8_T F@F` +ss\|S=pa[˲'|a<$'Ȅ=L>4~i``S #RpeqIj.= @ ] U W4Dd Tb y c $A7? ?3"`?x2~Lnv¶Zg*`!RLnv¶B  dXJ xcdd``Vdd``baV d,FYzP1n:&&! KA?H1Z ㆪaM,,He` @201d++&1X +|-ßVT T-AZ +!)'<,5*Td faUM,a ={*Dd $Tb { c $AB? ?3"`?z2t;P vtPVP/`!H;P vtPV. pGHXJxcdd``.`b``baV d,FYzP1n:&zB@?b  ㆪaM,,He` @201d++&1X +|-O`q3YafX u|mmT3Z VIMzMz8<8 77̓󷨡UUTUT~@@PQ99atP}A!62 WUk%˿@UYռ_`_PA5/DU!T" |Ǐ5LM /HMlgad 6#@.Mr0*!6cIL@(\+T  #l>$⟀KDQv|pQ @HQ'Ȅ=fL>,h `p Ĥ\Y\ːC b> 13XrTDd (Tb | c $A? ?3"`?{2NufѷA:ߓXz 3`!rNufѷA:ߓX@  XJ@xcdd``dd``baV d,FYzP1n:&&! KA?H1Zq00 UXRY7S?&,e`abM-VK-WMcرsA V0Z^ϗT T 4Ufu|6f_bcd>`|2¨_VDAa"?pcFG0@X“ +ss:.(D]n[=.p w `p`dbR ,.IeԡRYݏ`Y}ZDd X|b } c $A'? ?3"`?|2e$A:Lm Z5`!xe$A:Lm ` 70Fxcdd``Ned``baV d,FYzP1n:B@?b ؀깡jx|K2B* R vfjv ,L ! ~ Ay ;|.? _;ҎUsi#+\ 0~o`E31@J{Fi`wV8QQ`/ϊʟĂ U2#$+u^3PQb>4ֹ)8``#RpeqIj.1;:@Dg!0fNKDd Tb ~ c $AC? ?3"`?}2Rc;jiQq7`!iRc;jiQr@ 8 XJ7xcdd``dd``baV d,FYzP1n:&&6! KA?H1Z10 UXRY7S?&,e`abM-VK-WMcرsA V0Z>?NHq50Naie@J 3D/ J 8 +H? 0dB?G |,I9 *\ > ƙL #l*Ap0AFsF&&\6 @ ] U yDd Tb  c $AD? ?3"`?~2݁:M<(|[9`!݁:M<(|[ X!XJxcdd``~ @c112BYL%bpuz0.Q);Ȅ .h.ptC;+KRs@cA D|b@f~{KDd Tb  c $AE? ?3"`?2 lx '?q<`!i lx '?r@ 8 XJ7xcdd``dd``baV d,FYzP1n:&&6! KA?H1Z10 UXRY7S?&,e`abM-VK-WMcرsA V0Z7 P.P56j` [ 0ѕg>#_F0Ap8VD@a3Ȅ3@X‹ +ss.(Dg0X\.p 7 `p321)W2| A 2TDd Tb  c $AF? ?3"`?2Tw?ӣY/D@?`!Tw?ӣY/D@*@ $'XJxڥ+qbwvc,֏PMa%7Q+ʠ.E9:!I!μ?i>}oB T]E*_Ru]ڰTOmBKMeP.TKDY̳hn10ı_US- a謓Y3Ykd~9}v:N#5u=v5qCC9%ZE.e{+-)7*^9%$r'|g _9XT0^(UPO[=h`i: 7,ҷ9S s/Ft!c_ y\t>O{‘"/q_n ?ֺJDd Tb  c $AG? ?3"`?2"ZI%4E=dpA`!h"ZI%4E=dr@ 8 XJ6xcdd``dd``baV d,FYzP1n:&&6! KA?H1Z10 UXRY7S?&,e`abM-VK-WMcرsA V0Zn"vNHq50bie@J 3DlQ%N`${y 2! >bBܤ\3|"? @FVrAc `ƍ;LLJ% A2u(2tA4T}b@3Xݲ{Dd Tb  c $AH? ?3"`?20" 5D^x1!D`!0" 5D^x1* &XJxڥ?K@߻jk " D[CU!Z ~O 8⨳7PqPUԄ˽_߼CR A/+!24]Lřɠ;ɥG`p_6q.W 0+r())Ւ3vŜ(rɗ9R9N,;an7ĭ5uLeu xxPIxT+8+.[;u~Dd'E4616h\ 0y{iI)$5 dP"CD|b@#3XJT.Dd 0Tb  c $AJ? ?3"`?24j5tU$g#hOI`!j5tU$g#hj *XJxڥKQg^]cma[h@"Q(x^#DZjL@!]z1sIʳîsaO:d^Gյj Sd_g;1 G ZDd X|b  c $A'? ?3"`?2e$A:Lm 9L`!xe$A:Lm ` 70Fxcdd``Ned``baV d,FYzP1n:B@?b ؀깡jx|K2B* R vfjv ,L ! ~ Ay ;|.? _;ҎUsi#+\ 0~o`E31@J{Fi`wV8QQ`/ϊʟĂ U2#$+u^3PQb>4ֹ)8``#RpeqIj.1;:@Dg!0fNPDd Tb  c $AK? ?3"`?2Y(gVL#!BvN`!nY(gVL#!Bt x XJ<xcdd``bd``baV d,FYzP1n:&B@?b  ㆪaM,,He` @201d++&1X +|-OT TAZc+9|+f +(:bl`d6=`gaT3E>a$'{>dQ1AXB +ssx/(DY@FqA `Ǝ;LLJ% A2u(2tA4T}b@3X|{yqDd \|b  c $AL? ?3"`?2wVgMZ|azP`!wVgMZ|az` `00]xcdd``bd``baV d,FYzP1n:^! KA?H1Z l@P5< %! `3);aR&br<K>bSjYt9M< 0&oP 1y32p{AFhV2l ~-NJ*] `N ׀=@JN(ߊ (HE#!#g9   W&00YQ2¶ \4h 0y{I)$5d.P"CDHg!t?0ey,PDd Tb  c $AM? ?3"`?2Wke&>vTS`!nWke&>t x XJ<xcdd``bd``baV d,FYzP1n:&B@?b  ㆪaM,,He` @201d++&1X +|-&T TAZc+9|+f +(:bl`d6=`gaT3E>a$'{>dQ1AXB +ss pq/(DY@F,.8v0o8+KRs@2u(2tA4T}b@3XyDd |b  c $AN? ?3"`?2tT U`!tT d``0xcdd`` @c112BYL%bpua$'{>*fQ[0AXB +ssr]ZQH40ʱ-8v0o8+KRstA2u(2tA4T}b@3X.yDd |b  c $AP? ?3"`?2| lUDB:GZ`!| lUDB:Gd `20xڝK@]#I=S -FS؎V`li+%Q:8tp?RKr8}ݽG@Pn Y/ΧF#Z/e2KI]RsB"3n]9$>jҰY+nhB:vܲvéCj},w~-uK\uU,12LA~ *Ȼ537_U#IdKr!9I $X &%lI~RFsB^[V)J/EK ܡي?|5T{3~]:[,<4zKQ=+ v#{09P54`|cbDd |Tb  c $AQ? ?3"`?2-xq4q?]`!-xq4qӤ` XJNxcdd``bd``baV d,FYzP1n:&.! KA?H1Z \ ǀqC0&dT20 KXB2sSRsv,\~ IUsi#U 0>obk*9|+ E5('`s>]1" 3%EX|I9 +&.(ӧ{>fa[0RƳ "aspAcSN%LLJ% {: @> 1, Dd |b  c $AR? ?3"`?2-)_ҒQ`_`!-)_ҒQ`d``0xڝK@]+i1v(QPĩ?EZ!RVJ!u bw8;RKrAM8}r߻˽G@$'ȆLE:E.F X4$8\ *ݰ'BL41(6JyjTa٬fSߩй53MK=hn#l^R8ߚ|E^Iջ Ma]|.ɜF_yۤl~ m /E@`$u,|j/ĢZ)J7EMkjΨ?TWYֈv"1~Ĝ8Y,׍*Uoehq`;nઞ(7};TDd (Tb  c $A? ?3"`?2NufѷA:ߓXz Gb`!rNufѷA:ߓX@  XJ@xcdd``dd``baV d,FYzP1n:&&! KA?H1Zq00 UXRY7S?&,e`abM-VK-WMcرsA V0Z^ϗT T 4Ufu|6f_bcd>`|2¨_VDAa"?pcFG0@X“ +ss:.(D]n[=.p w `p`dbR ,.IeԡRYݏ`Y}ZDd X|b  c $A'? ?3"`?2e$A:Lm d`!xe$A:Lm ` 70Fxcdd``Ned``baV d,FYzP1n:B@?b ؀깡jx|K2B* R vfjv ,L ! ~ Ay ;|.? _;ҎUsi#+\ 0~o`E31@J{Fi`wV8QQ`/ϊʟĂ U2#$+u^3PQb>4ֹ)8``#RpeqIj.1;:@Dg!0fN0Dd Tb  c $AS? ?3"`?2z<:H p :בعVf`!N<:H p :בع* XJxcdd``ed``baV d,FYzP1n:&! KA?H1Z, ǀqC0&dT20 KXB2sSRsv,\~ _Iʠ Tw1jVׁM@|J} ɳDQlQ%װ_$ b#UL *sAC `@T+F&&\|= @ ]` "i0Dd Tb  c $AT? ?3"`?2zI&Һ  EV%i`!NI&Һ  E* XJxcdd``ed``baV d,FYzP1n:&! KA?H1Z, ǀqC0&dT20 KXB2sSRsv,\~ E eF\ AZ5+a`& F%>?} רOkX/F*& p\`𹠡ywa*#RpeqIj.CE.hbDd TTb  c $AU? ?3"`?2P.ߎP;RF#\,Uk`!$.ߎP;RF#\  XJXJxcdd``> @c112BYL%bpuĥ=Pw3P2`@[Ț>?{yYrٍ9Ve^O&( Kx3p$>0Frb_:VqR9K{!+ņ9$m)roj.}IMٛY̊($!NZ]7Dq[L0Q'5I Dd Tb  c $AW? ?3"`?2T eV>RI0o`!( eV>RI RXJxcdd``> @c112BYL%bpu 1,{Dd Tb  c $AY? ?3"`?2ca>a7g;t(St`!ca>a7g;t( 8\ XJxcdd`` @c112BYL%bpu @c112BYL%bpub/Usi#`VBk3$@  "*L=0adbR ,.Ie2C 2 OloDd XTb  c $A[? ?3"`?2ԧ@nŵy`!ԧ@nŵ  7XJ[xڥ=K@w ]$"BN-RHN~App_Cg't\|Y4_ciГWf㌥qkg7at%(+o0)$x+eU2jJjtja[;;>t 8q@vmv[Awރ22꽈}?tKJ='byAa'7"X3c 0^p#닷sH03-/Wk(C;S>,m) E]:y;N^"\5te*CE̢jX׿'(Dd `b  c $A\? ?3"`?2O Q+u{`!# Q`X xڭ1K@ߛM\twB" Z(zV)*DNpJ+D-'~-֯PDA0Λzר C/o?0fF U"#daʨ Ha " BCVŘi"Gk20$;=p:0e%Lxk_N:_}4OsILVj(V K1>'/%\5D4ﭸ,OY/iR,{:#5/RTxnNml&=['d3@Yqu-.UnP}y)<>Dd HTb  c $A]? ?3"`?2rF/ѠfHMɰdz~`!\rF/ѠfHMɰb@ "XJ*xcdd``6dd``baV d,FYzP1n:&&V! KA?H1Zz h7T obIFHeA*CL N`A $37X/\!(?71aǒXky6 P.P56j`bi5o1zpoP O?y12Ole ;CompObj<fObjInfo>Equation Native ??_1223726661F`=В`=ВOle @CompObjAfObjInfoC FMicrosoft Equation 3.0 DS Equation Equation.39qpNO Pr[X 1 =0]=Pr({(0,0),(0,1)})=0.3Equation Native D_1223726802F`=В`=ВOle GCompObjHf FMicrosoft Equation 3.0 DS Equation Equation.39qpF[ p 1 FMicrosoft Equation 3.0 DS Equation Equation.39qObjInfoJEquation Native K6_1223726833 F`=В`=ВOle LCompObjMfObjInfoOEquation Native P6_1223727178F`=В`=В} X 1 FMicrosoft Equation 3.0 DS Equation Equation.39q/pF[ ("",x 1 ]Ole QCompObjRfObjInfoTEquation Native UK_1223727233F`=В`=ВOle WCompObjXfObjInfoZ FMicrosoft Equation 3.0 DS Equation Equation.39q#xOO x 1 <0 FMicrosoft Equation 3.0 DS Equation Equation.39qEquation Native [?_1223727429F`=В`=ВOle \CompObj]fObjInfo_Equation Native `__1223727361F`=В`=ВOle bCpb F X 1  (x 1 ) FMicrosoft Equation 3.0 DS Equation Equation.39q#} x 1 =0CompObjcfObjInfoeEquation Native f?_1223727475F`K@В`K@ВOle gCompObjhfObjInfojEquation Native k_ FMicrosoft Equation 3.0 DS Equation Equation.39qCp[ F X 1  (x 1 ) FMicrosoft Equation 3.0 DS Equation Equation.39q_1223727530F`=В`=ВOle mCompObjnfObjInfopPQ Pr[X 1 =0]=1"p 1 FMicrosoft Equation 3.0 DS Equation Equation.39q x 1Equation Native ql_1223727614F`=В`=ВOle sCompObjtfObjInfovEquation Native w6_1223727779F`=В`=ВOle x FMicrosoft Equation 3.0 DS Equation Equation.39q"pF[ 1"p 1 FMicrosoft Equation 3.0 DS Equation Equation.39qCompObjyfObjInfo{Equation Native |>_1223727845 F`K@В`K@ВOle }CompObj ~fObjInfo Equation Native ?#vO x 1 =1 FMicrosoft Equation 3.0 DS Equation Equation.39q0[ p 1_1223727924 F`=В`=ВOle CompObj fObjInfoEquation Native 6_1223727991F`=В`=ВOle CompObjf      !#"$'%()*l+m-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijkonpqrtsuwvxyz|{}~ FMicrosoft Equation 3.0 DS Equation Equation.39qHQ Pr[X 1 =1]=p 1 FMicrosoft Equation 3.0 DS Equation Equation.39qObjInfoEquation Native d_1223728108F`K@В`K@ВOle CompObjfObjInfoEquation Native a_1223728182F`K@В`K@ВEpF[ F X 1  (1)=1.0 FMicrosoft Equation 3.0 DS Equation Equation.39qXO X 1Ole CompObjfObjInfoEquation Native 6_1223728301a"F`K@В`K@ВOle CompObj!#fObjInfo$ FMicrosoft Equation 3.0 DS Equation Equation.39qpF[ x 1 FMicrosoft Equation 3.0 DS Equation Equation.39qEquation Native 6_1223728845'F`K@В`K@ВOle CompObj&(fObjInfo)Equation Native s_1223891539/,F`K@В`K@ВOle WpF[ Pr[Xd"x]'=  F X (x) FMicrosoft Equation 3.0 DS Equation Equation.39qXg[ [X 1 d"xCompObj+-fObjInfo.Equation Native _12238921451F`K@В`K@В 1 ]={(u,v)"S X |ud"x 1 }={(u,0),(u,1)|ud"x 1 } FMicrosoft Equation 3.0 DS Equation Equation.39qOle CompObj02fObjInfo3Equation Native HP x 1 <0,[X 1 d"x 1 ]=!Pr[X 1 d"x 1 ]=0 FMicrosoft Equation 3.0 DS Equation Equation.39q_1223892243M6F`K@В`K@ВOle CompObj57fObjInfo8Equation Native 8_1223894517WR;F`K@В`K@ВOle CompObj:<f 0d"x 1 <1,[X 1 d"x 1 ]={(0,0),(0,1)}!Pr[X 1 d"x 1 ]=p 0jj=01 " FMicrosoft Equation 3.0 DS Equation Equation.39qObjInfo=Equation Native _1223892635@F`K@В`K@ВOle hE[ x 1 e"1,[X 1 d"x 1 ]={(0,0),(0,1),(1,0),(1,1)}!Pr[X 1 d"x 1 ]=p 0j + j=01 " p 1jj=01 " FMicrosoft Equation 3.0 DS Equation Equation.39q@V[ p 00 +p 01 FMicrosoft Equation 3.0 DS EqCompObj?AfObjInfoBEquation Native \_1223893071>HEF`K@В`K@ВOle CompObjDFfObjInfoGEquation Native uation Equation.39qV[ {p ij wherei"S X andj"S Y } FMicrosoft Equation 3.0 DS Equation Equation.39q_1223893390JF`K@В`K@ВOle CompObjIKfObjInfoLV[ S (X,Y) ={x,y)|x"S X andy"S Y }'=  S X S Y FMicrosoft Equation 3.0 DS Equation Equation.39qEquation Native _1223893724C9OF`K@В`K@ВOle CompObjNPfObjInfoQEquation Native _1223894782TF`K@В`K@ВOle : {p xy wherex"S X andy"S Y } FMicrosoft Equation 3.0 DS Equation Equation.39qCompObjSUfObjInfoVEquation Native _1223894081YF`K@В`K@ВkhE[ Pr[X=x]=p xyy"S Y  " FMicrosoft Equation 3.0 DS Equation Equation.39q[V[ [X=x]a"{Ole CompObjXZfObjInfo[Equation Native w(x,y)"S XY } FMicrosoft Equation 3.0 DS Equation Equation.39q%V[ Pr[X=x]_1223895025^F`K@В`K@ВOle CompObj]_fObjInfo`Equation Native A_1223738783%fcF`K@В`K@ВOle CompObjbdf FMicrosoft Equation 3.0 DS Equation Equation.39q3pF[ S U =[0,1] FMicrosoft Equation 3.0 DS Equation Equation.39qObjInfoeEquation Native O_1223739040hFPBВPBВOle CompObjgifObjInfojEquation Native C_1223739562\mF`K@ВPBВ  #&),/258;>ADGJMRUX[\]`cdehknqrstux{~'pF[ f U (u) FMicrosoft Equation 3.0 DS Equation Equation.39q-pF[ Pr[Ud"u]Ole CompObjlnfObjInfooEquation Native I=u FMicrosoft Equation 3.0 DS Equation Equation.39q_pF[ Pr[Ud"u]'=  F U (u)=u_1223739672rFPBВPBВOle  CompObjqs fObjInfot Equation Native  {_1223739939pzwFPBВPBВOle CompObjvxfp{0 ɰ?P 27)??W΂B81`sm1eȽ Y  *1p0@BcF&&\; @ ] U 1v3Dd u0  # A^"4Ы g@=Ы g1cQ =xx!!ч(ȳT J %C-zOAz EJP P iB (sw!{;i7wٻYv736h"%)5Y¸-{)M͟TJuItz6yt;| QjϪ[USU;KuWm%I'%x4o^ruH؜vݵ)ѷ칓 =-T [L撲%eCۺmcfIyO$U[<=Tg/GϿP}u~pXfحC]3ߜ}k/6zKʾ  C= PjS2S7)t"Jޡ&i|I4vD}jtӺUg e/q&:\!ɥ~7j;⟚ܩ&FkMtQ'V{@W?:8hCx<0ϗ銲c\J%$(ǿٗ[DD^),". / o  _ mJDIJI$H$KH%=]S$=Y$=Nc%=J#$=D҃$=@}%Gҽ%K+IW$]It%Jҕ]S”t%Jҕ+Iwo:&GG"~WgUYQ)nċQ낄J;ڪ66#OF~1\~TVΜWen?ӳa<Xm۶LmmȢzN-ߒ.}w.xgcCl|+E1U~qz^Ay0S[rr,˿[tkBm\ i[?MZ~pfܾnݞOrҦb>+F>J K?58su[J+V n36WaO5LχvW*;=sPp[Pp[Pո5,]aYX~uԸ*^Y;w;w{cz1j2z/.5N38͂5N38͂pLF/eQ9>4ukyoڸz|zLYSﺰtMnΖ͘a}hA}hA}kYT XAYX'͹ˑd#M֑d#M֣,ˣPϘ,j=*c\H7TD H7TD ±5ܖE}Wp,l{3L9t"MnAY8dQk9M++W_23LyeXכ,7Xgk0]_w[P_wm`n(g}0XgӵZUk=Vfڔa&cucy$j=Y>G*^!w rs >ǩ}Y5 %cs^s~aܐmӳk^7Bsm{ 2n^Cil^>ꛃg'pjpjpHڤԄ!ԂSt#pN8 H.SN#ҩ14ӄt4%pN#8I1 i4ӒtiE:&pڒNK8H`i =鴁ӁtH:t"`8I=.NW't:F:] pzN^ N(tӛtzC:=%^p>"P8H70?1A:apN8Ic8H'`҉3tJ: #Ap`8#Hg3 hg 錀I:#D(8Ѥ3N 錁3t"|B:QpƑN4g錅3tL:L! pD8Hg3 ҙ't™I:"pf 8sH'Χ3 \ҙ ǵ3t>t>tYD:|N:|A: ,&pHg%9/Ig1g,O:_YN:_YA:K$ep&x8Hg9դY g-鬂@:#5p֓Z8H8I'N"鬃-鬇lt6L:pηp&8Hg3$g;lL:A:$$8?v8?N2]n g'g솳t9@:?9H:{"}p~8)s9(st9N:)pRI(s I99M:?9C:'ऑI8)8gI4ssN:9O:g\$sp.N:ˤsҹ't.¹J:\#p~%+p~# 8I*s ;\lst~F:C:v8W;ctxN8H}~񄓟t)@:yt<Njtyt yt/yNA(< <1)qySΓ"SS8I 8ϐΓpIgI)8EIi8ϑ7,ySN yNI)St销"锄StJ)K:D:/!2pʓNY8H%8IˤSN%)ҩ2ToyΫS k I27HU8okp|Iu8UH 8UIM8o[p!_8N8H*Hm8~.I=85H?TStއSt>@:5&8uH&IԆSti@:u4$zpN}8I&)4ӌtiN:N8-H) N+ ӆtZiK:-#VpI5Ni #鴃Ӊtt&pN8]I# ;tӃt2w/tJ:&pwWH'N? 'tO: '~p"H' g | gL:p8CIg a3p g 3tM:!p"Ig$('tF18=_X҉ DG:pƓN I3dg L3t&™F:L'pf83LҙgL3tfC:3|F:%p8IS8 H38 Ig.E33bY'tYB:_tYJ:qp8%JYk҉tYM:+!p֒*8 :Yg=鬅tt$:8ߒz8ߑ8Hg#ͤg |{glD:[l'pI{8;HgGItvM:;!%]pn8Ig!0쇓B:!p!8H0sϤs 9$stR&!pH$_Hs99't'p.98H'e9 \A:\%Kpe88Ns 8]e0ϻZԉ9[Kwj \ɦk' v=>wzN^J9MپSo<<~BgO^r\,w7ϛS{6T}lGLXIޔIyO$r?OY "oSIHc˨LCu9}{kmuzKrdT6h?U]\tXC= J,9S71]ǧq'UD9Zuv}2-^:]It%Jҕ+IWB$$Pҕ+IW8W (G#@_|Dd ` b  c $AV? ?3"`?2BM_V\s.p`!BM_V\s.@@ xڥ;KP=3mm$D bB*h1YN88E"B=7m m=_r޹A@ze@W82I %$$Hg4I8 gK-1t]P+R[ !pf5uGoxF/uTJכ1/ns3I<!>ĥ=Pw3P2`@[Ț>?{yYrٍ9Ve^O&( Kx3p$>0Frb_:VqR9K{!+ņ9$m)roj.}IMٛY̊($!NZ]7Dq[L0Q'5I5Dd lTb  c $A_? ?3"`?2C(>Ѿ\4[`!SC(>Ѿ\4B XJ!xcdd``Vdd``baV d,FYzP1n:&B@?b 030 UXRY7S?&,e`abM-VK-WMcرsA V0Z#m P.P56j`|jP 1O?y12ps0aaXŝL@(\uG!w.pbH{}䂆68F kv0o8+KRsePdh,Āf UwQDd H Tb  c $A`? ?3"`?2)|㬗#H`!)|㬗#Z@ H XJxڥJ@Lz1mH-Hq*H TEPPB.* X+iRڕ!ܻp/-Bj9IF, aΗ?9g ] G2 "J.F92SN&-& EbAg|â N {f ksbpw_3)(ú47٨׎|оem~z͋JT'y09'wdݘĢL7c W,tN!gOq/xS2ـg5 SOzoQϒEU0TmQrX s;^Mo}$gG,a7·G/;$/ƯQQQC;CKUOPe+-Tb;C6t4[VXF N6v('dr Dd Tb  c $Aa? ?3"`?2T :GA_QnL0`!( :GA_QnL HXJxcdd``> @c112BYL%bpubi,@u@@ڈؽc$;vv0o8L+KRs A2u(2tA4T}bb#3X^K% Dd @Tb  c $Ab? ?3"`?2T?%l2?)0`!(?%l2?)  XJxcdd``> @c112BYL%bpubxdYt9P{ +!5Hy  \Ps}v& `p021)W2ȂePdh,s;.Ff tKDd ` b  c $AV? ?3"`?2BM_V\s.`!BM_V\s.@@ xڥ;KP=3mm$D bB*h1YN88E"B=7m m=_r޹A@ze@W82I %$$Hg4I8 gK-1t]P+R[ !pf5uGoxF/uTJכ1/ns3I<!>ĥ=Pw3P2`@[Ț>?{yYrٍ9Ve^O&( Kx3p$>0Frb_:VqR9K{!+ņ9$m)roj.}IMٛY̊($!NZ]7Dq[L0Q'5IDDd Tb  c $Ac? ?3"`?2Ǐ_"LMTj`!bǏ_"LMTb 8XJ0xcdd``6dd``baV d,FYzP1n:&&V! KA?H1ZX ㆪaM,,He` @201d++&1X +|-ȝ4AHq50VK@|8߄רا<@10D#܊J,I9@<\O|"ҽ @Q \4.=8fdbR ,.IeHԡRY`}zb5Dd lTb  c $Ad? ?3"`?2/f5x~;c[`!S/f5x~;cB XJ!xcdd``Vdd``baV d,FYzP1n:&B@?b 030 UXRY7S?&,e`abM-VK-WMcرsA V0ZNHq50ci5<@00N& Ma` q(ӝs_ s)roؽ\8a-!#RpeqIj.+ @ ] @Y`u/ADd |b  c $Ae? ?3"`?2_^/cD?flg$`!__^/cD?fl``\0-xcdd``ed``baV d,FYzP1n:,B@?b X؀깡jx|K2B* R vfjv ,L ! ~ Ay ;|.? _r eF\ L, 0~Q 1_?y32p{000\wCe+t\Dx0R7p.*؄J.h,sS8Xq,F&&\ @ ]` bg!t?1N5Dd lTb  c $Af? ?3"`?2MzSh[fǂY[e`!SMzSh[fǂYB XJ!xcdd``Vdd``baV d,FYzP1n:&B@?b 030 UXRY7S?&,e`abM-VK-WMcرsA V0Z'MNHq50>ai5<@00N& Ma`XsG!w.pbH{}䂆68F kv0o8+KRsA2u(2tA4T}b@3XWwuADd |b  c $Ae? ?3"`?2_^/cD?flg`!__^/cD?fl``\0-xcdd``ed``baV d,FYzP1n:,B@?b X؀깡jx|K2B* R vfjv ,L ! ~ Ay ;|.? _r eF\ L, 0~Q 1_?y32p{000\wCe+t\Dx0R7p.*؄J.h,sS8Xq,F&&\ @ ]` bg!t?1NeDd Tb  c $Ag? ?3"`?2p9wwz#kˀ۪`!p9wwz#kˀ` XJQxcdd``bd``baV d,FYzP1n:&n! KA?H1Z ǀqC0&dT20ͤ KXB2sSRsv,\~ 'fF\sV>?i`<ˎlO_V?η *9|+f +(:%$FK>.(-@",>fBܤ\ >  #tgm|a \4hh 0y{I)$5a6^E.B ~f4S#ADd |b  c $Ae? ?3"`?2_^/cD?flg@`!__^/cD?fl``\0-xcdd``ed``baV d,FYzP1n:,B@?b X؀깡jx|K2B* R vfjv ,L ! ~ Ay ;|.? _r eF\ L, 0~Q 1_?y32p{000\wCe+t\Dx0R7p.*؄J.h,sS8Xq,F&&\ @ ]` bg!t?1N Dd Tb  c $Ah? ?3"`?2T PƢ5mb0`!( PƢ5mb RXJxcdd``> @c112BYL%bpu 1,KADd |b  c $Ae? ?3"`?2_^/cD?flg`!__^/cD?fl``\0-xcdd``ed``baV d,FYzP1n:,B@?b X؀깡jx|K2B* R vfjv ,L ! ~ Ay ;|.? _r eF\ L, 0~Q 1_?y32p{000\wCe+t\Dx0R7p.*؄J.h,sS8Xq,F&&\ @ ]` bg!t?1N.Dd DTb  c $Ai? ?3"`?2xGS7R'T̳`!LGS7R'B XJxcdd``Vdd``baV d,FYzP1n:&B@?b  ㆪaM,,He`I? @201d++&1X +|-WHdF\?1VBkGy F2Nps-^& Ma`Zvn%41hX 0y{qĤ\Y\ː 2C 2 \s3Dd DTb  c $Aj? ?3"`?2}=4=rnXrxY`!Q=4=rnXrxB XJxcdd``Vdd``baV d,FYzP1n:&B@?b  ㆪaM,,He` @201d++&1X +|-OT T0VBSOy wEq' W&00:NwBew8|m1eȽ >`VTrAC #`;LLJ% A2u(2tA4T}b@3XguADd |b  c $Ae? ?3"`?2_^/cD?flg-`!__^/cD?fl``\0-xcdd``ed``baV d,FYzP1n:,B@?b X؀깡jx|K2B* R vfjv ,L ! ~ Ay ;|.? _r eF\ L, 0~Q 1_?y32p{000\wCe+t\Dx0R7p.*؄J.h,sS8Xq,F&&\ @ ]` bg!t?1N Dd Tb  c $Ak? ?3"`?2T-xAP/K0n`!(-xAP/K HXJxcdd``> @c112BYL%bpubi!,@u@@ڈؽc$;vv0o8L+KRsB@2u(2tA4Ag!!v120eKJWDd Tb  c $Al? ?3"`?2>I~qUa' %}x`!u>I~qUa' %@ PVXJCxcdd``bd``baV d,FYzP1n:&&N! KA?H1Z-:47$# !lo&`'0LY ZZǰc@`w3:]j mհ7e!7#|FnOnV0$+N(ߊ (NEDAlfdBAoGa! W&00p9-(D[@Ffcp@BcONLLJ% @0u(2tA4T}b@#3X<3Dd DTb  c $Aj? ?3"`?2}=4=rnXrxYϾ`!Q=4=rnXrxB XJxcdd``Vdd``baV d,FYzP1n:&B@?b  ㆪaM,,He` @201d++&1X +|-OT T0VBSOy wEq' W&00:NwBew8|m1eȽ >`VTrAC #`;LLJ% A2u(2tA4T}b@3XgubDd |b  c $Am? ?3"`?2RĽT$BȌ2UtO`!RĽT$BȌ2UtO``hn 0Nxcdd``.ed``baV d,FYzP1n:v! KA?H1Z l@P5< %! `35;aR&br<K>bKyYt9WcHA%׃M|C8?ׄ70%'} ܝL!`7 W&00\[Q!22jܽ*؄ 2OucVM\^h``#RpeqIj.C;\E. Dd @Tb  c $An? ?3"`?2TW+aQVdPq 0d`!(W+aQVdPq   XJxcdd``> @c112BYL%bpub_ӎUsi#`VBk3$@  "*L=0adbR ,.Ie8 2C 2JN Dd Tb  c $Ao? ?3"`?2TUHx-K:0n`!(UHx-K: RXJxcdd``> @c112BYL%bpu 1,KADd |b  c $Ae? ?3"`?2_^/cD?flgx`!__^/cD?fl``\0-xcdd``ed``baV d,FYzP1n:,B@?b X؀깡jx|K2B* R vfjv ,L ! ~ Ay ;|.? _r eF\ L, 0~Q 1_?y32p{000\wCe+t\Dx0R7p.*؄J.h,sS8Xq,F&&\ @ ]` bg!t?1N3Dd DTb  c $Aj? ?3"`?2}=4=rnXrxY`!Q=4=rnXrxB XJxcdd``Vdd``baV d,FYzP1n:&B@?b  ㆪaM,,He` @201d++&1X +|-OT T0VBSOy wEq' W&00:NwBew8|m1eȽ >`VTrAC #`;LLJ% A2u(2tA4T}b@3XguADd |b  c $Ae? ?3"`?2_^/cD?flg`!__^/cD?fl``\0-xcdd``ed``baV d,FYzP1n:,B@?b X؀깡jx|K2B* R vfjv ,L ! ~ Ay ;|.? _r eF\ L, 0~Q 1_?y32p{000\wCe+t\Dx0R7p.*؄J.h,sS8Xq,F&&\ @ ]` bg!t?1N Dd Tb  c $Ao? ?3"`?2TUHx-K:0-`!(UHx-K: RXJxcdd``> @c112BYL%bpu 1,K~Dd b  c $Ap? ?3"`?2[8Yot,7`![8Yot,  8>jxcdd``ncd``baV d,FYzP1n:&fn! KA?H1Z VsC0&dT20 KXB2sSRsv,\~ OcF\ L\ 0>;'ac+9|+f +(:$D@rbE0~;`A`# PO;`!vsA I9QH11fp)s(m.{e3 ni @FNLLJ% z {:@Dg!t?1YDDd ` b  c $AV? ?3"`?2BM_V\s.`!BM_V\s.@@ xڥ;KP=3mm$D bB*h1YN88E"B=7m m=_r޹A@ze@W82I %$$Hg4I8 gK-1t]P+R[ !pf5uGoxF/uTJכ1/ns3I<!>ĥ=Pw3P2`@[Ț>?{yYrٍ9Ve^O&( Kx3p$>0Frb_:VqR9K{!+ņ9$m)roj.}IMٛY̊($!NZ]7Dq[L0Q'5I Dd Tb  c $AW? ?3"`?2T eV>RI0X`!( eV>RI RXJxcdd``> @c112BYL%bpu!/0%ۘw0/;ȩGnGnKҷCHْ)Ld]X>Ae8D ['!B޸Dd hTb  c $Ar? ?3"`?2ad.Oa_`!ad.Oa@ (XJxcdd``~ @c112BYL%bpu"d0QѦ6KKdJ=[- ݐzHt̝SwS)ߜsswVHhHؒBhK0 :+Z&K+j.S2pB GqUYԨ܄1i<^^&}}{CV7xvՉ[}g{^X/SQnq-(A8A.u` \{nw=ۉZGS{ [%/ҍysȟ?7)3f!1_~@B]Q Moc?~ǹ OG,tuyM&i4Պxώ#eiCaްMפ(#)2hr ILs8.EX:Aet#J,Ȣm=dDd b  c $At? ?3"`?2hO4i ]ʯO`!hO4i ]ʯ`.`GPwxcdd``vcf``baV d,FYzP1n:=! KA?H1 z ,@=P5< %! vf: KP 27)?B ;|.? _?Ƞ Tn2%k>U!| qN ܞVT!|= c">@aԤ 2BSAG_ J\kQofltwHfnj_jBP~nb+8| Ӥ @u1UEU_OO Y&T?'*)*%H7f|(-eY!(:8(h`@|8?Z U(ӁE!ۃp}!y yQs@0?yPcCUռd[DBCPJDTn(p  #B/W} ,eRQk,8$ͭ3\4IȗVg-`K~C%Af 1iB/rL[F{P"-4$o`_a߭oo1wMֹΜ峑iز7(M_EɑAy47>) UXJ''vd mq!<5HJI +>b,iYt9WHkm%/WWBW3$@=A&DVe\ ~W6VTDB pvAp3Yy)09:`tvfP|gmł ,I9 >  E #e>4p81@S;+KRsaPdhB ! \Dd Db  c $Ay? ?3"`?2ð*I_>`!ð*I_>μ@ hxcdd`` @c112BYL%bpu(5g>HJ}+μg'(~tBI3W F={AFqAÍ ;LLJ%  s:@Dg!t?1dODd hb  c $A|? ?3"`?2}ץ3Vut`!m}ץ3V @~ |;xcdd``vdd``baV d,FYzP1n:&&6! KA?H1Zʞ ㆪaM,,He`H @201d++&1X +|-wKT TYAZc+a, ! A|8̏& Ma`%02Hda 5W?\F 1jƟ B1Ku\-.pW `p`dbR ,.Ie2C 2%}O%Dd lhb  c $A}? ?3"`?2o"/¹`zKSK`!C"/¹`zKS @|xcdd``fed``baV d,FYzP1n:&B@?b 030< UXRY7S?&,e`abM-VK-WMcرsA V0ZŸVT TAZ5+aK`kTH =L J41iP{gF=_ 䂆8d 3v0o8.+KRsJ@2u(2t5B ~bIePODd hb  c $A|? ?3"`?2}ץ3Vu`!m}ץ3V @~ |;xcdd``vdd``baV d,FYzP1n:&&6! KA?H1Zʞ ㆪaM,,He`H @201d++&1X +|-wKT TYAZc+a, ! A|8̏& Ma`%02Hda 5W?\F 1jƟ B1Ku\-.pW `p`dbR ,.Ie2C 2%}OBDd O@b  c $A~? ?3"`?2(T$=P2v>h7`!`(T$=P2v>,0, .xcdd``cd``baV d,FYzP1n:&! KA?H1: ǀqC0&dT20 `[YB2sSRsv,\~ 'Y g0J`,c,񷱠MDU Ma`@${@F /fIdDl%'o dErAÕ `*#RpeqIj.5&E./OgDd 4b  c $A? ?3"`?2xdw̻a*By`!xdw̻a*B, Xnxcdd`` @c112BYL%bpu_1223915878 FPwGВPwGВ FMicrosoft Equation 3.0 DS Equation Equation.39q"V[ p 11 FMicrosoft Equation 3.0 DS Equation Equation.39qOle CompObj fObjInfoEquation Native 0N p 00 p 11 =p 10 p 01 FMicrosoft Equation 3.0 DS Equation Equation.39qXg[ p 00 _1223916584 FPEВPwGВOle CompObjfObjInfoEquation Native _1223916971FPwGВPwGВOle CompObjf=p 10 =p 01 =p 11 =0.25 FMicrosoft Equation 3.0 DS Equation Equation.39qaI[ p 10 ObjInfoEquation Native }_1223918022.FPwGВPwGВOle =p 01 =0.2 FMicrosoft Equation 3.0 DS Equation Equation.39q"V[ p 00 FMicrosoft Equation 3.0 DS EqCompObjfObjInfoEquation Native >_1223918141!FPwGВPwGВ乇Dsvds1 W&00Lt(ӟs2~%6T$f1MJm/]`Iy4?k ~l%'o dErA8MU `pjedbR ,.IeC D|b@53X?%Dd lhb  c $A}? ?3"`?2o"/¹`zKSK`!C"/¹`zKS @|xcdd``fed``baV d,FYzP1n:&B@?b 030< UXRY7S?&,e`abM-VK-WMcرsA V0ZŸVT TAZ5+aK`kTH =L J41iP{gF=_ 䂆8d 3v0o8.+KRsJ@2u(2t5B ~bIeP%Dd lhb  c $A}? ?3"`?2o"/¹`zKSK `!C"/¹`zKS @|xcdd``fed``baV d,FYzP1n:&B@?b 030< UXRY7S?&,e`abM-VK-WMcرsA V0ZŸVT TAZ5+aK`kTH =L J41iP{gF=_ 䂆8d 3v0o8.+KRsJ@2u(2t5B ~bIeP%Dd hb  c $A? ?3"`?2owC>~Z夀KE`!CwC>~Z夀 @@2|xcdd``fed``baV d,FYzP1n:&&! KA?H1Z ㆪaM,,He`H @201d++&1X +|-ƑNHq503jVרD7$@${R@&qcݠ('=P{0Z 5.pȂf `p\021)W2lԡ"b> 1ڦe%Dd hb  c $A? ?3"`?2o`[iyD7̋Kj`!C`[iyD7̋ @@2|xcdd``fed``baV d,FYzP1n:&&! KA?H1Z ㆪaM,,He`H @201d++&1X +|-?ʝNHq503jVרD7$@${R@&qcݠ('=P{0Z 5.pȂf `p\021)W2|ԡ"|b@3X?B>hT%Dd lhb  c $A}? ?3"`?2o"/¹`zKSK `!C"/¹`zKS @|xcdd``fed``baV d,FYzP1n:&B@?b 030< UXRY7S?&,e`abM-VK-WMcرsA V0ZŸVT TAZ5+aK`kTH =L J41iP{gF=_ 䂆8d 3v0o8.+KRsJ@2u(2t5B ~bIeP|Dd 0  # A"PS& @=PS&p)1cQ =x lURT l%Z" FbQA cFB1>RȖV5<(B0i A*TPޡinA27;{yryI(%"7Q)c9PlNpNHeų| )rLd=Ne̒@t{ z <4f(afQWZg/M<_2&$qHE%WO]E*:SME60(IP e'TA-A=4>h1o|Mc^y-UW`^y)0/|gs\0s\0%nTs\0DmolloM+l_n58@JIk2ǖm9VPL̑rɉ{Rج{f;YH#2 f4&oT/}8Q&]cS&=L+Δ0CELfJF<ѽֈ-khhhVs|F{餭fxw+عo\TqHra'm0}e5̷*9}#ڒN_LRw&cnSkON899iw2Jsm\m߾ĬI:m*Ĭgn] OwܶP6~my>z_,"2s b Liٙiẉw,c>y}e4]ۉNv$;oϹػuIJ@k:~ڔ[j} kG}997>zuԧQ^eVNvRi}\E{ԣm p,85Qߖ4.qOV"c 깷n xB~;xZ7u3f瓨OO?5F[`+lO`4BOa=  hߠ~#'AF2 p&ސ }!΅<` @!\`0 `8p\ W5Pzf([`2S`w]P tx`̇rXX O<Mwr$wrČdyDD^֍2G7l"3uܯۈ'r4DS&{^_M_}@ek'*EFkP~G#2TD8ʪ^zF|ԁz^z\~W=[>Y?qFO„x&G֒#ɑɑȑ:r"9&99:99RKJLH@4rx>+54y\khGAR녌O}*m?igEMWCgP"+4㼷\RFo1%Dd hb  c $A? ?3"`?2o`[iyD7̋K0`!C`[iyD7̋ @@2|xcdd``fed``baV d,FYzP1n:&&! KA?H1Z ㆪaM,,He`H @201d++&1X +|-?ʝNHq503jVרD7$@${R@&qcݠ('=P{0Z 5.pȂf `p\021)W2|ԡ"|b@3X?B>hT%Dd lhb  c $A}? ?3"`?2o"/¹`zKSKU`!C"/¹`zKS @|xcdd``fed``baV d,FYzP1n:&B@?b 030< UXRY7S?&,e`abM-VK-WMcرsA V0ZŸVT TAZ5+aK`kTH =L J41iP{gF=_ 䂆8d 3v0o8.+KRsJ@2u(2t5B ~bIeP|Dd Db  c $A? ?3"`?2k.H:x^+Yz`!k.H:x^+Y  hxcdd``ncd``baV d,FYzP1n:&B@?b NsC0&dT20$ KXB2sSRsv,\~ 糧ųUsi#\ P5+3P S RY33E.`$ K~rL( '3ʻ1nPw(' Pw0Bq?^,!I9xJZQh~kL序t31Ƃu)₦.p'h``S##RpeqIj.C<\E.Y$Dd hb  c $A? ?3"`?2n]Ā٬\ J`!B]Ā٬\ `@P|xcdd``fed``baV d,FYzP1n:&! KA?H1Z , πqC0&dT20$ KXB2sSRsv,\~ 'pʠ TAZ5+a|f&_|Fgd 6nG?y0@a?J.hqC<0``ゑI)$5\E.me%Dd hb  c $A? ?3"`?2o]Uǽ<1K`!C]Uǽ<1 @@|xcdd``fed``baV d,FYzP1n:&&! KA?H1Z00< UXRY7S?&,e`abM-VK-WMcرsA V0Z!6h(.P56j`aiլ?ݯQn>#I3ɞ& p{@4= ɳj#ԞoWrAC ;LLJ% 3@2u(2t5= cEDd hb  c $A? ?3"`?28sZTAk?`!c8sZTAr@@8 |1xcdd``dd``baV d,FYzP1n:&&6! KA?H1Z10< UXRY7S?&meabM-VK-WMcرsA V0Z7͉NHq50tVL|7߭bcd>`67 Bܤ^.pb.#?, #lK{ 2B.!Q.p ƍ;LLJ% N {: @> 1,]z6HDd hb  c $A? ?3"`?2]{cFpLv|ln!`!f]{cFpLv|lr@ |4xcdd``dd``baV d,FYzP1n:&B@?b = UXRY7S?&,e`abM-VK-WMcرsA V0Z“NHq50V* &J,1@penR~C悏B8cde`aa.#77 dB)M ~كoVrAc hƍ;LLJ% A2u(2tA4T}b@3Xp{b'Dd @b  c $A? ?3"`?2q'f+)4M#`!E'f+)4 xcdd``~ @c112BYL%bpuFcd lbԞjOȄJ.h(rC\0``㆑I)$5>\E.rh_Dd @b  c $A? ?3"`?25-jk&UD*`!}5-jk&U@ Kxcdd``v`d``baV d,FYzP1n:&&~! KA?H1:30 UXRY7S?&,e`abM-VK-WMcرsA V0ZT T@Z5+9@V@F*L."[*αb@w%#Idd\ 2ƿ ;",Ly, ܤe\ > -;X2nO3 W\G 4=Ĥ\Y\ C D,Ā`3pDd Thb  c $A? ?3"`?2Q_ա 2hx-)-,`!%_ա 2hx-) @XJ|xcdd``> @c112BYL%bpubIiXt9`|2¨_VDAa"?pcFG0@X“ +ssr|" w.8;v0o8M021)W2ePdh,ĀGf ! {Dd b  c $A? ?3"`?2;&*LV0`!;&*LV"xڝOKAjjmClbA IAYlds BEs_>@t fNhz]fvyW@ae+@]HZR :߂B/DAIc]a+dR-3PeAG'N(II08ACAIRtID^5*lEFh+azLS:"tps\K^^ ߟ c?܃41dMMigd^QxZQdCkaR -VcF!~gi{eܦWJmªtvݩŬ0h泮f6mm#rsR~G/VD{PIqZ](C|JGSF 4ZC֚$TDd b  c $A? ?3"`?2ãQ|CKM<ݑpF3`!ãQ|CKM<ݑpF@}"xڝ;KPϽmk_CTUjAWE **FK*"..8 4s\iA{' 0=WxTK1ObqFXQE8(1! u|/+v+D`zmsR~\ B1eerL&oYkpsY?LF% vX)m/XJ+qf,a粁ouG_(K~l" S +20j,2y}Wb) *WEyCtZ5-k8L]L WZ~rC5y󨯗GSc+âMFB/]g,`pB+Ǡ&?.KDd @b  c $A? ?3"`?2Zl9;Wiq6`!iZl9;Wi ` 7xcdd``fbd``baV d,FYzP1n:&B@?b u  UXRY7S?&,e`abM-VK-WMcرsA V0Z͗&T Tdd 㷱҃󏱁p Hf- 7|8Dʷb Za \5G!>`'sXAFqAË ; LLJ% s: @> 1B b#3XVDd Tb  c $A? ?3"`?2gF]0Vx PC8`!;F]0Vx P, h5DXJ xcdd``Nab``baV d,FYzP1n:&&! KA?H1Z ㆪaM,,He` @201d++&1X +|-H{T TAZc+aZ a%'P (N Q[E0qr:dd@*L:Hzp)DUMU7qTDQ]A"?ďobb+k`|g0__ 85 Xd7k0*}|!/DKjbBܤǂ\) > LMw0S"MoMPdQ`!bƧAo%R)b  pXJ0xcdd``6dd``baV d,FYzP1n:&&V! KA?H1ZX ㆪaM,,He` @201d++&1X +|-#h(.P56j`,di3p ] O?y12p{0Q%0@penR~AhB81L #l1eȽ GQ .p `p321)W2ԡ1 c| Dd @Tb  c $A? ?3"`?2Tc‚]f-H:f:z0|@`!(c‚]f-H:f:z  XJxcdd``> @c112BYL%bpub厂iXt9P{ +!5Hy  \Ps}v& `p021)W2ԡRYv] `qLz?Dd HTb  c $A? ?3"`?2^a6·O辭M.:eB`!]^a6·O辭M.:b@ "XJ+xcdd``6dd``baV d,FYzP1n:&&V! KA?H1Zz h7T obIFHeA*CL N`A $37X/\!(?71aǒXky` P.P56j``iO2p ] O?y12p{0a%0@penR~N> > \F30"60CD%461h\0y{qĤ\Y\2C 2vRADd Tb  c $A? ?3"`?2Ughi#XBV gD`!_Ughi#XBV b 8XJ-xcdd``6dd``baV d,FYzP1n:&&V! KA?H1ZX ㆪaM,,He` @201d++&1X +|-?"4AHq50VKA|C8_ďا<@2B& MG!|&2R#p8 v0o8+KRsA2u(2tA4Ag!t?0e%xm Dd TTb  c $A? ?3"`?2SKM )JFN>/G`!'KM )JFN>  XJXJxcdd``> @c112BYL%bpu @c112BYL%bpub厂iXt9P{ +!5Hy  \Ps}v& `p021)W2ԡRYv] `qLz Dd TTb  c $A? ?3"`?2SKM )JFN>/O`!'KM )JFN>  XJXJxcdd``> @c112BYL%bpu`|2¨_VDAa"?pcFG0@X“ +ssr|" w.8;v0o8M021)W2ePdh,ĀGf ! {ZDd D|b  c $A? ?3"`?2<(>PS`!x<(>P `0Fxcdd``Ned``baV d,FYzP1n:B@?b ؀깡jx|K2B* R vfjv ,L ! ~ Ay ;|.? _]eF\ @Zk+a|_cE?`B1Օ('= ]]2p|8/ *U?FF=\I W?vwcBܤ\|"2<?KnO*?E@|J.h@pBӖ;f+KRs@`Pdh,ĀF`nlADd Tb  c $A? ?3"`?2Ughi#XBV gX`!_Ughi#XBV b 8XJ-xcdd``6dd``baV d,FYzP1n:&&V! KA?H1ZX ㆪaM,,He` @201d++&1X +|-?"4AHq50VKA|C8_ďا<@2B& MG!|&2R#p8 v0o8+KRsA2u(2tA4Ag!t?0e%xmDDd 4Tb  c $A? ?3"`?2ƧAo%R)j[`!bƧAo%R)b  pXJ0xcdd``6dd``baV d,FYzP1n:&&V! KA?H1ZX ㆪaM,,He` @201d++&1X +|-#h(.P56j`,di3p ] O?y12p{0Q%0@penR~AhB81L #l1eȽ GQ .p `p321)W2ԡ1 c|Dd Tb  c $A? ?3"`?2Y f8ҭbK7Z]`!Y f8ҭbK7  h+XJxcdd``> @c112BYL%bpu}dɘG B<"3yq 2H4 MpD))9qX.w c?p)@6صHVb.{ٷF)mFH ɎF1G rwDo1|0gq~b!0B~ORZr%G񪉆9M4HjaB79 }H USdD4JlU\U1.^n:1HKV9_G)/V`6wlxҡ=TDޭmLȉq8Ь|$QyDd H |b  c $A? ?3"`?2z w_P^rb`!z w_P^rr@`H 0|xcdd`` @c112BYL%bpuobCWO  0A * U};|#*_GgFOFxxOPO~T**?L@(\gAڈt o/qW0\NdM `pgdbR ,.IehC b> 13X(Dd |b  c $A? ?3"`?2{ ad E5e`!{ ad E2`0lxcdd`` @c112BYL%bpucBܤ\|"2<?KnO*?E@|J.h@pBӖ;f+KRs@`Pdh,ĀF`nlDd |b  c $A? ?3"`?2..3v0qYkD  g`!.3v0qYkD %`S:0xڝM(DQϽ309>F"+P#df^YLD)BJB-|$Js}onu{s \SBŦf,JmjI/ uA:Jw4f{BP&Ylx>`k;0518?E 75:}>0ӽzk34f&MIZ`dX*y@pDVG־n/|}yݐW̗!Q0?boa_-ĜH aVCX<%?w ^_!5uCX7=Y? `na`>uЈlۮg&[U;v0o8+KRs>ePdh, .Ff PWZDd |b  c $A? ?3"`?2b̉!trEl`!xb̉!trE `x0Fxcdd``ved``baV d,FYzP1n:`|2¨_VDAa"?pcFG0@X“ +ssr|" w.8;v0o8M021)W2ePdh,ĀGf ! {ZDd D|b  c $A? ?3"`?2<(>Pu`!x<(>P `0Fxcdd``Ned``baV d,FYzP1n:B@?b ؀깡jx|K2B* R vfjv ,L ! ~ Ay ;|.? _]eF\ @Zk+a|_cE?`B1Օ('= ]]2p|8/ *U?FF=\I W?vwb?Yt9Wc?IF0>?(=8߁70ا<@-x@FQ9PAw],0ʫ1"%ܘP 27)?97䂏B8 Fx񂌰NNT*3F³Q~p{YPY >4uqS 8ZiKNLLJ% w0u(2tA4T}b@#f G9^Dd |b  c $A? ?3"`?2Q#'' N2Qw}`!|Q#'' N2Qw` `0Jxcdd``dd``baV d,FYzP1n:N! KA?H1Z @؀깡jx|K2B* R vfjv ,L ! ~ Ay ;|.? _dF\ Q F0/v_η *!)'>FnF#V0J=0?BEHKNQTWXYZ[^abcdgjklmpux{~ FMicrosoft Equation 3.0 DS Equation Equation.39q6V[ p 00 =12[1"(p 10 +p 01 ) 1"(p 10 +p 01 )] ObjInfo-Equation Native R_1223918989$30FPwGВPwGВOle  2 "4p 01 p 01 ] FMicrosoft Equation 3.0 DS Equation Equation.39q?Xg[ p 00 =12[0.6 CompObj/1 fObjInfo2 Equation Native [_12239195075FPwGВPwGВ0.36"0.16  ]=12[0.60.4472]=0.5236or0.0764 FMicrosoft Equation 3.0 DS Equation Equation.39qOle CompObj46fObjInfo7Equation Native :      !$"%'&(*)+-,./021345768:9;<=?>@BACDEGFJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~V[ p 00 FMicrosoft Equation 3.0 DS Equation Equation.39qV[ p 11 FMicrosoft Equation 3.0 DS Eq_1223919610:FPwGВPwGВOle CompObj9;fObjInfo<Equation Native :_1223919751?FPwGВPwGВOle CompObj>@fuation Equation.39qV[ p 10 FMicrosoft Equation 3.0 DS Equation Equation.39q: p 01ObjInfoA!Equation Native ":_1223919773=QDFPwGВPwGВOle #CompObjCE$fObjInfoF&Equation Native ':_1223920289LIFPwGВPwGВOle (CompObjHJ)fObjInfoK+Equation Native ,6 FMicrosoft Equation 3.0 DS Equation Equation.39qV[ S X FMicrosoft Equation 3.0 DS Equation Equation.39q_1223920335NFPwGВPwGВOle -CompObjMO.fObjInfoP0%`NN Pr(B)>0 FMicrosoft Equation 3.0 DS Equation Equation.39q%V[ Pr(A|B)Equation Native 1A_1223920422GVSFPwGВPwGВOle 3CompObjRT4fObjInfoU6Equation Native 7A_1223920457XFPwGВPwGВOle 9 FMicrosoft Equation 3.0 DS Equation Equation.39q: Pr(A|B)'=  Pr(A)"B)Pr(B)CompObjWY:fObjInfoZ<Equation Native =_1223920982Bo]FPwGВPwGВOle @CompObj\^AfObjInfo_CEquation Native DA FMicrosoft Equation 3.0 DS Equation Equation.39q%V[ Pr(A)"B) FMicrosoft Equation 3.0 DS Eq_1223921494bFPwGВ@IВOle FCompObjacGfObjInfodIuation Equation.39q=V[ Pr(A|B)=Pr(A) FMicrosoft Equation 3.0 DS Equation Equation.39qEquation Native JY_1223922345`gF@IВ@IВOle LCompObjfhMfObjInfoiOEquation Native Py_1223922428lF@IВ@IВOle R]V[ Pr[X 2 =j|X 1 =i] FMicrosoft Equation 3.0 DS Equation Equation.39qRp: Pr[X 2 =j|X 1 =i]=CompObjkmSfObjInfonUEquation Native Vn_1223923135eyqF@IВ@IВPr[X 2 =j)"X 1 =i]Pr[X 1 =i]=p ij p i0 +p i1 FMicrosoft Equation 3.0 DS Equation Equation.39qOle \CompObjpr]fObjInfos_Equation Native `( Pg[ Pr[X 2 =1|X 1 =0]=p 01 p 00 +p 01 '=  p 2 |X 1 =0 FMicrosoft Equation 3.0 DS Equation Equation.39q_1223923325vF@IВ@IВOle eCompObjuwffObjInfoxhX |/ Pr[X 2 =1|X 1 =1]=p 11 p 10 +p 11 '=  p 2 |X 1 =1 FMicrosoft Equation 3.0 DS EqEquation Native i$_1223923460t~{F@IВ@IВOle nCompObjz|ofuation Equation.39qV[ X 2 FMicrosoft Equation 3.0 DS Equation Equation.39q+`NN [X 1 =0ObjInfo}qEquation Native r6_1223923513F@IВ@IВOle sCompObjtfObjInfovEquation Native wG_1223923541[(F@IВ@IВ] FMicrosoft Equation 3.0 DS Equation Equation.39q+pTV [X 1 =1]Ole yCompObjzfObjInfo|Equation Native }G_1223922802jF@IВ@IВOle CompObjfObjInfo FMicrosoft Equation 3.0 DS Equation Equation.39qV[ X 1 FMicrosoft Equation 3.0 DS Equation Equation.39qEquation Native 6_1223922850F@IВ@IВOle CompObjfObjInfoEquation Native 6_1223922909F@IВ@IВOle `NN X 2 FMicrosoft Equation 3.0 DS Equation Equation.39q`NN X 2 FMicrosoft Equation 3.0 DS EqCompObjfObjInfoEquation Native 6_1223787186F@IВ@IВOle CompObjfObjInfoEquation Native uuation Equation.39qYV[ X'=  [X 1 ,& ,X n ] FMicrosoft Equation 3.0 DS Equation Equation.39q_1223787258F@IВ@IВOle CompObjfObjInfoEquation Native a_1223787440F@2LВ@2LВOle CompObjfEX: X k ~Ber(p k ) FMicrosoft Equation 3.0 DS Equation Equation.39q=V[ {p k } k=1nObjInfoEquation Native Y_1223787704*F@2LВ@2LВOle  FMicrosoft Equation 3.0 DS Equation Equation.39q#V[ 2 n "1 FMicrosoft Equation 3.0 DS Equation Equation.39qCompObjfObjInfoEquation Native ?_1223788122F@2LВ@2LВOle CompObjfObjInfoEquation Native V[ {Pr{(x 1 ,& ,x n )}'=  p x 1 x 2 "x n  ;x k "{0,1}} FMicrosoft Equation 3.0 DS Eq_1223743907F@2LВ@2LВOle CompObjfObjInfouation Equation.39qopF[ U'=  [U 1 ,U 2 ,& ,U n ] FMicrosoft Equation 3.0 DS Equation Equation.39qEquation Native _1223743992F@2LВ@2LВOle CompObjfObjInfoEquation Native 6_1223745161F@2LВ@2LВOle } U k FMicrosoft Equation 3.0 DS Equation Equation.39qpF[ mnCompObjfObjInfoEquation Native 1_1223745566F@2LВ@2LВOle CompObjfObjInfoEquation Native E FMicrosoft Equation 3.0 DS Equation Equation.39q)pF[ X~Ber(p) FMicrosoft Equation 3.0 DS Equation Equation.39q_1223745673F@2LВ@2LВOle CompObjfObjInfoA7[ U~Uniform[0,1] FMicrosoft Equation 3.0 DS Equation Equation.39q%pF[ [Ud"1"p]Equation Native ]_1223745794F@2LВ@2LВOle CompObjfObjInfoEquation Native A_12237458834F@2LВ@2LВOle  FMicrosoft Equation 3.0 DS Equation Equation.39q)O 1"p<Ud"1]CompObjfObjInfoEquation Native E_1223746014F@2LВ@2LВOle CompObjfObjInfoEquation Native Y FMicrosoft Equation 3.0 DS Equation Equation.39q=pF[ Pr[Ud"1"p]=1"p FMicrosoft Equation 3.0 DS Equation Equation.39q_1223746064F@2LВ@2LВOle CompObjfObjInfo5pl= Pr[X=0]=1"p FMicrosoft Equation 3.0 DS Equation Equation.39q-pF[ Pr[X=1]Equation Native Q_1223746162F@2LВ@2LВOle CompObjfObjInfoEquation Native I_1223752236F@2LВ@2LВOle =p FMicrosoft Equation 3.0 DS Equation Equation.39qIpF[ U=[U 1 ,& ,U n ]0$`!,gHBi!E m=`h0xcdd`` @c112BYL%bpu+$!x/{u}kRgAYc1"C(-pRj9ZowɓSNZ 4bĵ{A@PU(4%ӂ$,cjsDd |b  c $A? ?3"`?2XgHBi!E m=4`!,gHBi!E m=`h0xcdd`` @c112BYL%bpucN98%0Yno4?vtt6ZzX t#0XSlDd Hlb  c $A? ?3"`?2iʨ0 #\OCEI`!=ʨ0 #\OC@%9 xڝKA߼[/z{zp'W BE T 5rX,,R,RXHXΛYxͼ TA#C5Nbxf elnuW7@ $>v2 hb0<0V.je}U|d݄uT-}Y܎K_|GgA~3WH1&m1:-}Eiڗ?X++d>5X,:o 3\߾\y|8ߝyP6hVR!wvM\jx%84?ɀ7`+<"_~ }wQ_n.CeV7_ f=LƞynCIJn;^R?^\1u~oރ5Z.-/? ۩DV͓zIJx;A5m/ ^,' sV( xF 6E lx|ȿ!^Dd lb  c $A? ?3"`?2 ctYd,Bh`!| ctYd,B/JJxڝMhA6m>%HWm#blqsPAiJRczTVC$ DɯЋ7;SxP}>A z DĉqeqB ȚdC/uI@-#nY"&$rUh *?G &sEe7*1YP(vI7w8>eoPV=<]䫿djrg/ժMRm9뵅%xz!n.lo<9엢gjM73RSOJ^Dd |b  c $A? ?3"`?2Q#'' N2QwƑ`!|Q#'' N2Qw` `0Jxcdd``dd``baV d,FYzP1n:N! KA?H1Z @؀깡jx|K2B* R vfjv ,L ! ~ Ay ;|.? _dF\ Q F0/v_η *!)'>FnF#V0J=0 @c112BYL%bpu @c112BYL%bpu @c112BYL%bpu 1,H M Dd hhb   c $A? ?3"`? 2S.:m#@ɞ_0/@`!'.:m#@ɞ_0@@||xcdd``> @c112BYL%bpu @c112BYL%bpu @c112BYL%bpu @c112BYL%bpu @c112BYL%bpu @c112BYL%bpu @c112BYL%bpuޏ~_{`!Wb9>ޏ~  ~ %xcdd``fcd``baV d,FYzP1n:&&6! KA?H1:ʎ ㆪaM,,He` @201d++&1X +|-ȗvNHq%0*T2 f%'o dibܤ[|\ > ᰑD@&"tsI \FjL [pACM F&&\ s:@ĞB ~`d Dd @b  c $A? ?3"`?2jN~#DP;qF`!>N~#DP;q  xcdd``~ @c112BYL%bpu@b/G0My6² ɼ"`\do;{NUyaaϷ+]$ׂQժI.;ތ#i G^+ s3?-KlzOs3eATq:ʎ : L1Bz+o҄;Dd @b  c $A? ?3"`?2sEi"@< Xax`!YsEi"@< X  'xcdd``fcd``baV d,FYzP1n:&6! KA?H1:l ǀqC0&dT20 KXB2sSRsv,\~ L{T TϱjVrBV @V@F* $? tdSo;a 0l+ss9V-('{18^ 7.p؂j `pl021)W2<ԡ"|b@3X?g9Dd @b  c $A? ?3"`?2b9>ޏ~_`!Wb9>ޏ~  ~ %xcdd``fcd``baV d,FYzP1n:&&6! KA?H1:ʎ ㆪaM,,He` @201d++&1X +|-ȗvNHq%0*T2 f%'o dibܤ[|\ > ᰑD@&"tsI \FjL [pACM F&&\ s:@ĞB ~`dSDd @b  c $A? ?3"`?2U0PǧnLj_y`!qU0PǧnLj_N w ?xcdd``Vgd``baV d,FYzP1n:&\B@?b u  ㆪaM,,He` @201d++&1X +|-?ʛ&T TqjVrB,@V@F*L"?į)b@w#Inbdv#f&K| &<.@penR~C4/قB8b/#+ #l!pC]OF&&\I @ ]` bg!t?2-jITDd (Tb  c $A? ?3"`?2NufѷA:ߓXz ?`!rNufѷA:ߓX@  XJ@xcdd``dd``baV d,FYzP1n:&&! KA?H1Zq00 UXRY7S?&,e`abM-VK-WMcرsA V0Z^ϗT T 4Ufu|6f_bcd>`|2¨_VDAa"?pcFG0@X“ +ss:.(D]n[=.p w `p`dbR ,.IeԡRYݏ`Y}ZDd X|b  c $A'? ?3"`?2e$A:Lm `!xe$A:Lm ` 70Fxcdd``Ned``baV d,FYzP1n:B@?b ؀깡jx|K2B* R vfjv ,L ! ~ Ay ;|.? _;ҎUsi#+\ 0~o`E31@J{Fi`wV8QQ`/ϊʟĂ U2#$+u^3PQb>4ֹ)8``#RpeqIj.1;:@Dg!0fNjDd DTb  c $A? ?3"`?2]fdvmܐiG`!]fdvmܐiG XJVxcdd``bd``baV d,FYzP1n:&B@?b  ㆪaM,,He` @201d++&1X +|-ÚfT TpVl ~M%'o dEBlTO  # `|?fߨg$ b#܇Z`f ~ς- XB +ss rv(D8AFeN`Ʈ;j+KRs A0u(2tA4Ag!0`<7Dd $b  c $A? ?3"`?2,"1QEN]W`!U,"1QEN& ;(+#xڥk@߼IMIe-mZ5VD=((jГ*B-ƶia xR<'/X=xAO.@=ЃxQ0ΏL,%}3o^C0b*BB`e":CXogcjǢdpcKvW sl>0| {|GKD]IܷyϢ5Rcst bgf1 aӿ?k:֘8M_9ltC29'rTt5*uYV/|)nӍ>u)nƳh͆Ȉ͜j9#}Kf(^(wx/-Ǣb;QK?zgv1>Jy|)^gV9ߎUϝ{?}HOSt'{.ݟ9o.d?g:-?8o[S_?|?mzYTΓAΗ}tnzC(z[e62_4$[aEi@ՁA[D"z60<po /VٵDd b  c $A? ?3"`?2?XF& `)9Z`!XF& `)9ZH `1Pxcdd``Va 2 ĜL0##0KQ* WÔ d3H1)fY[< PT obIFHeA*p  t!f010X@}Q;35V ZZǰc@`(w*LF]F\ Lr 0~4_cGUP;P0LS!.VOLb``.)|[10J~F>7 gAdn͇b y`0W&00rs(3!`?l aHqd~ A_.UT- %QyK;Û. 3/)2! ~r"|?>d~ 2?.yL>4q%81@"dF&&\U:@ b> 13X?8TDd b  c $A? ?3"`?29T~*{5 'Lq`! T~*{5 'Lq8@@q0xڝM,A߼ZU⣴N" DRE&M Gq!nnN M*Bb[Mf~;?ofx=N:hFHuG=Va|8h骂FЙY]0 K4`b):r_?QdAG7xWɢ2_-ٵLjfli.O[:"}WQQT5m}#2Ev}ˮuySM8s9y3!ɹH#A1js]]8G7%:Mwtlys-vZFͬĐjM]!IՌL]Cp|x>~ǓV&VamZq}B@qd~qܜ%m3DR+ 4y\P#Dd TTb  c $A? ?3"`?2R81 ~[>G椏b_.r`!&81 ~[>G椏b_  XJXJxcdd``> @c112BYL%bpu`<'J,`Bܤ Apb.#?@FbH{! \4.=8fdbR ,.IeX2C b> 1,4ֹ)8``#RpeqIj.1;:@Dg!0fN Dd @Tb " c $A? ?3"`?!2TX1O 1!pK%0U`!(X1O 1!pK%  XJxcdd``> @c112BYL%bpub38ҤYt9P{ +!5Hy  \Ps}v& `p021)W2HePdh,s;.Ff J Dd TTb # c $A? ?3"`?"2S=jxuEXs8a/_`!'=jxuEXs8a  XJXJxcdd``> @c112BYL%bpu @c112BYL%bpub38ҤYt9P{ +!5Hy  \Ps}v& `p021)W2HePdh,s;.Ff J Dd TTb % c $A? ?3"`?$2S2N .^Q;/r`!'2N .^Q;  XJXJxcdd``> @c112BYL%bpu#͖NHq=`רb^?y$?m``Qu=؇`gB. #RpeqIj.-\E.B 0Cbd`VK Dd @Tb & c $A? ?3"`?%2TX1O 1!pK%0{`!(X1O 1!pK%  XJxcdd``> @c112BYL%bpub38ҤYt9P{ +!5Hy  \Ps}v& `p021)W2HePdh,s;.Ff J Dd TTb ' c $A? ?3"`?&2S=jxuEXs8a/`!'=jxuEXs8a  XJXJxcdd``> @c112BYL%bpu @c112BYL%bpu9ⓟ ]ƺ#Vsq9I=T%_ ?0E~.h-?9+/J* WCU Sa|'\>RчQeؿuSѴlfػVL5]͖Vl?jQDd |b * c $A? ?3"`?)2CICO_":%wX`!oCICO_":%`0=xcdd``Ned``baV d,FYzP1n:! KA?H1, @P5< %! `3);aV&br<K>bW e*F\_^0tUB L~6‡<@ 0L(Dw?3C 2P^kpVb`Wcs? W&00:Qho[u.p; `pZbdbR ,.Ie2C D|b@3X?0Dd X,b + c $A? ?3"`?*2z¶ !Ӊ2V`!N¶ !Ӊ2xڕPJA}3< 3]DSZ@' ^bH.m AGRVbqODp}y3 x؄[e <"\4 Ul wdDHJĪSAgtҶ k7/t\(1i $iyv'fkxP^C+r7 ݳ+ݳE7/,;jٴ?LX`!6ۇKAt6W@# xcdd``> @c112BYL%bpu'/rq@QL؆"H$'/@xH`aT[}G?! j dsQb +ss|" LLB #8A|[lGGY=n{2\F Ȅ"?įosyHQ|%0 ۓ$aG? ᣧOF ->d'\׊D!p"%=.ₖ_\2};\*221)W2\ԡRY`QDd |b - c $A? ?3"`?,2CICO_":%w`!oCICO_":%`0=xcdd``Ned``baV d,FYzP1n:! KA?H1, @P5< %! `3);aV&br<K>bW e*F\_^0tUB L~6‡<@ 0L(Dw?3C 2P^kpVb`Wcs? W&00:Qho[u.p; `pZbdbR ,.Ie2C D|b@3X?Dd b . c $A? ?3"`?-2# ywB`!# yw@ pxcdd``~ @c112BYL%bpuqLȫDOFܟpZ˂_DŽc+! %E \> k?L@(\ 5cb\!E6Z )k[M\NN4/%F&&\ s:@Dg!t?0hgDd @hb / c $A? ?3"`?.2PTJV"k=,`!$TJV"k=@ |xcdd``> @c112BYL%bpubi,@u@@ڈXgv%ļ?m`cZu=؇`!v 0y{aĤ\Y\ 2C 2JN Dd Db 0 c $A? ?3"`?/2jN`mR{F`!>N`mR{Ң`! xcdd`` @c112BYL%bpuaiլXA| 8?u1d#dނJN(_rJ-J`H F`B}/*#RpeqIj.b @ ] U`,NU!6Dd @b 2 c $A? ?3"`?12% 7# +7\+`!T% 7# +7 w "xcdd`` @c112BYL%bpuqp9v?]%Ir#=SL@Vh^fZ~Q.b `Q.hq``CI)$5;6E.B ,]BDd L@b 3 c $A? ?3"`?22Ƌ5rgnha`!`Ƌ5rgn* .xcdd``ed``baV d,FYzP1n:&lB@?b u 10 UXRY7S?&,e`abM-VK-WMcرsA V0ZE ͋NHq%0jV* !/GWH} q  4 /`H1W& rY;|/=p{X@FcWrAC ;WLLJ% ^ {:@Dg!t?2xpe"DDd <@b 4 c $A? ?3"`?32aJkJ郆Pj`!baJkJ郆P:` 0xcdd``ed``baV d,FYzP1n:&! KA?H1:  ǀqC0&dT20 KXB2sSRsv,\~ iU g0J`[ ㋁p>+ss*<a#dȈp{2A|8^] {I'^F%, Bx1\P88a,#RpeqIj.&E.qMfYDd @b 5 c $A? ?3"`?427n(XǴ4K{&WU`!w7n(XǴ4K{&WUl x Excdd``6cd``baV d,FYzP1n:&xcdd``Vcd``baV d,FYzP1n:&\B@?b u  ㆪaM,,He` 01d++&1X +|-7L{T T7ptTL ~D% @penR~[.p? ٓ2BnOo aK 2-cag+ ?c *9|+f +(: \; `pl221)W2C D,Ā*`jmEDd d@b 7 c $A? ?3"`?62%(?fAnNk`!c%(?fAnN,^ 1xcdd``cd``baV d,FYzP1n:&B@?b u 8 ㆪaM,,He` 01d++&1X +|-+T T 4+CompObjfObjInfoEquation Native e_1223752256F@2LВ@2LВOle CompObjfObjInfoEquation Native e FMicrosoft Equation 3.0 DS Equation Equation.39qIHT> X=[X 1 ,& ,X n ] FMicrosoft Equation 3.0 DS Equation Equation.39q_1223752271F XВ XВOle CompObjfObjInfo( 2p '=  1nX k '=  2X k=1n " FMicrosoft Equation 3.0 DS Equation Equation.39qEquation Native _1223752538F@2LВ@2LВOle CompObjfObjInfoEquation Native S_1223786271F@2LВ@NВOle    %*-0369<?@CFGHIJKNQRSTUVY\_behknqtwz}7pF[ X k ~Ber(p) FMicrosoft Equation 3.0 DS Equation Equation.39qV[  m CompObjfObjInfoEquation Native 2_1223961975F@NВ@NВOle CompObjfObjInfo Equation Native  ] FMicrosoft Equation 3.0 DS Equation Equation.39qAV[ {X t } t=""" FMicrosoft Equation 3.0 DS Equation Equation.39q_1223962162F@NВ@NВOle  CompObjfObjInfoEV[ {X k } k=tt+m FMicrosoft Equation 3.0 DS Equation Equation.39qApE[ X=(X 1Equation Native a_1223995218F@NВ@NВOle CompObjfObjInfo Equation Native ]_1223995481 F@NВ@NВOle  ,X 2 ) FMicrosoft Equation 3.0 DS Equation Equation.39qpE[ X 1 FMicrosoft Equation 3.0 DS EqCompObj  fObjInfoEquation Native 6_1223995533F@NВ@NВOle CompObjfObjInfo!Equation Native "6uation Equation.39qXNN X 2 FMicrosoft Equation 3.0 DS Equation Equation.39qpE[ p 00_1223995799F@NВ@NВOle #CompObj$fObjInfo&Equation Native ':_1223995925F@NВ@NВOle (CompObj)f FMicrosoft Equation 3.0 DS Equation Equation.39qMpE[ p 10 =p 01 =0.01 FMicrosoft Equation 3.0 DS EqObjInfo+Equation Native ,i_1223995995# F@NВ@NВOle .CompObj!/fObjInfo"1Equation Native 2O_1223996032%F@NВ@NВuation Equation.39q3y p 11 =0.05 FMicrosoft Equation 3.0 DS Equation Equation.39qOle 4CompObj$&5fObjInfo'7Equation Native 8O3 p 00 =0.93 FMicrosoft Equation 3.0 DS Equation Equation.39qpE[ p 1 =Pr[X 1 =1]=p 10 +_1223996150 <*F@NВ@NВOle :CompObj)+;fObjInfo,=Equation Native >_122399672427/F@NВ@NВOle ACompObj.0Bfp 11 =0.06 FMicrosoft Equation 3.0 DS Equation Equation.39qyXd0 Pr[X 2 =1|X 1 =0]=p 01 p 00 +ObjInfo1DEquation Native E_12239966334F@NВ@NВOle Lp 01 '=  p 2 |[X 1 =0]=0.010.93+0.01=0.0106 FMicrosoft Equation 3.0 DS Equation Equation.39qCompObj35MfObjInfo6OEquation Native P_12243164919F0PВ0PВu/ Pr[X 2 =1|X 1 =1]=p 11 p 10 +p 11 '=  p 2 |[X 1 =1]=0.050.01+0.05=0.8333Ʒ`#*y +ss||a>#d[={!|,=p{RXAF9VrBV @V@Qt*4\a `pl121)W24lfPdk{> 1ʢi'Dd @b 8 c $A? ?3"`?72qn_*?թ`~րSM`!En_*?թ`~րS xcdd``~ @c112BYL%bpuaiլXA| 8?u1d#dނJN(_rJ-J`H F`B}/*#RpeqIj.b @ ] U`,NU!'Dd @b 9 c $A? ?3"`?82qn_*?թ`~րSM`!En_*?թ`~րS xcdd``~ @c112BYL%bpuaiլXA| 8?u1d#dނJN(_rJ-J`H F`B}/*#RpeqIj.b @ ] U`,NU!uDd hb : c $A? ?3"`?92h8y`Nݒ%`!h8y`NݒB @`|axcdd``^ @c112BYL%bpui7:piT)&?bgdx \F1a.yH{A&ŀ/c'&! %E \|"? # I9@\pVrAS8E=4Ĥ\Y\2C 2t_xDd @hb ; c $A? ?3"`?:2N"JCo)@`!N"JCo)@B @p|dxcdd``^ @c112BYL%bpu7\w)"3uS0IytE{|]tt-vZx@Ǫ2IzN Z,c$׆y/mvVL9Wco'>ư3<ݸ"{/ ρl?G% ^X_sT~Ӹ  x9Iq3 Љ A'ȉ:Dd hb = c $A? ?3"`?<2oVR5ɁRᠤq` `!XoVR5ɁRᠤq, @ |&xcdd``cd``baV d,FYzP1n:&&! KA?H1Z ㆪaM,,He`H @201d++&1X +|-_fT TsAZ5+ag UH}  @&TrB˘,ԢTT ɳj3#y`S{pBCU-F&&\ @ ]` bg!t_2ixDd @hb > c $A? ?3"`?=2N"JCo)@`!N"JCo)@B @p|dxcdd``^ @c112BYL%bpu2  t+Q`! t+Q @MxڥSMKQΘΤd"`rѮ-BhQ hM_6*(@lpm.gsӢU1jz R8{=x)s ;dm2qjn7͚̂!Hqf4T)iuj{dKDpOGȲ)$Q{EIQabKL߲if.VnVᙆQP'-C%O5<`>7\w)"3uS0IytE{|]tt-vZx@Ǫ2IzN Z,c$׆y/mvVL9Wco'>ư3<ݸ"{/ ρl?G% ^X_sT~Ӹ  x9Iq3 Љ A'ȉDd 0 @ # A?"Y+$%Ѹr5H@=-+$%Ѹr481cQ =xAhWǿ;c"6JH/KQL(1MYZ5 5hkNFL!-DzXDK -B!6hafs_^&[T'gg|y3YAD_BuP ]xi ^%JնHP}#?gZyGĉZ{wZVƩvaQ:E*ZUAR+usj߆Z1rڅQS\N&,׋ߙۖ7R7\-m FhMDTA jڡN04 MB,'G4#|FU =Dx;[^«8N' pB8ez pB8!r _Ģ0jߊIoϙL&*Vg±`q};nPCuofcz,^ܵςU 򂶔؉YJ et QjԈ|y$Ur<ܾO^M~W^_oV^;-oC@i}>3!:#_K1µ+'='ՇZ9<r)VصwRwA͖iQuVt~:ck2_3>u;R˸f'o- Bgɻw%>wiG;e_t /wdz̒z1Kc1;%{!G O08^mjv9^֭O9۳ lFıd4X'NZNXo6-wնB7:T3Ռǭ\7)ss!U}i8w;ri5h T%k5ChTC% jy:52!K\#}HZUS%Q y7@Q ycb#X孑ެՈ&-[#ӟ/Qqx=Ո6hcF??_skĹBgqb852!FtE=#N+[#ӟo)zQ֫UYWyqo)0Dd hb A c $A? ?3"`?@2z4miA)V%`!N4miA)@@C|xcdd``~ @c112BYL%bpu@==xlB!г'! zR_P`l{x ο~L'52+&OXDd |b C c $A? ?3"`?B2]+@#W5~ `!v]+@#W5`80Dxcdd``dd``baV d,FYzP1n:&V! KA?H1Xā깡jx|K2B* RvfRv,L ! ~ Ay ;|.? _r2si#/ , 0 3_30ٲpF➆乇Dk# 1 W&xn8|Op6ݯ w0  dDm%/Ou%461 `padbR ,.Ieԡ1 G0Dd 0 D # AC"ifIQOu "@=ifIQOu 1cQ =Nx\ß,qj&jF|]䜔LLXaND#hf( XҙAJgQNgVDu><<]ryV{mws}}~qJ%.AZxR%:~RaW(JjSJ%tT,.RiC 6JZ~)y*AݨnUC4NE*]Yj}KڹF_:KKAhl juo-/z57cd´ _Sr}JUV*߿J/JU+yIkG*:KGKZiڔTZ i<5xKyIG+BK|JyHyGKyg]\Ir%Jʕ+)W^Md \Ir%J}ۀ`*zs1G#e R?5ϱCdLQr9qSOSszM?Z.gj;j0{SUZ>V !jwE]\:mh+Ln'^kRJmϿ@"|dn[numwC3 _V+ Gq)q-R2.%3.e\@x9r|,@˃̸2!3e\@5d5kxoGx{hCMdMȸ̸ɖq78qr< 3mC=ޚyfl^fe8q ,coׅ!cHk`N Ne@ d & y MAgݷYgYgٲr ,2,[Yd=!{d=-9222[ed]Ff]f˺́r0뇐Y?tڜc@2k-kYp0sOwulv}g8/I['Ⱥl= {f_{ =&{M=P:߃[uNM"M@IdI|>ӿ;-w-_}UDofCfc:ƁcȬclY8Y ێ#ɬ#mYG:u$u-H`Ⱥ[#̺_;W\eϚSѲOe6#ʹ*>˺;!e]@5d5k~Y Af}u;.'.e]@d嶬I^+d2Ȭ#|2|[dOfo:߁w0yY 2kڑu*u-TN%Ne@f':9Ȭcۑuu-8#e@?u0u| 2kۑu4u-h&ei ˩ʢE+3_nx<8%+f_ܖ ZsSsBn/<6>mg8't$apF8cHV8ɤsIg4g<$I%pHgtҹdҙg*N:pf8nҙ't2dL8sI 't2#9pp=pH'Bo: O:خrYF:csN(|'tp"HGv:N(sNs6Τs.s. N7 't·s!|Ť8I8΅pO:߃҉ӓtzE:M:z\UN!]W¹t~҉s-s=\ ҉"đΏ1p 3tL:?@:?E^ȼ '[$N3 (g 'tns;8H!ya'I z9ti$#4Gp8'HS o+{ e k>VEfn6ǗvZ˴:C #N:pHg3hg N2K8)3xgI#;ᤓD8Ig3tҙg&̀&d,8Y3\ҙ't<8I'ҹN^ag=-gyB -BYZe{w 9n) ,#p$B8E|(BvEd0-f,f Y"K%{cpJIQ8Hg%դy N99W1-s\ʉ9m-OYG:OYO:l l$Y@:#yYy#}do-}[,}[LYs\",Y`1 , p)Ar)""8dbXX_bYB+`+\Ad0ưQ8Hg2Y g <t~qucs2'+dNVsr=Ƨl$\"i#T3|s`ԧo7c[_sҽu]u͹9pL1w;8Qsq]oAoe49ua [w*INgʥ .t.UNy7ɥi2jz_[w>ˡX_6r;.Y^owgXw\Y|*e_r3}RS 2RYZ>\HЦJUHV'\N=R^)R^*K.˖eI^HU'XR^o2df@fo/1=VL;4Z3ѵLztt}W&:D&iYro I d,sEe)Cì+0[]r5xDKbF7K4tHeY78uԿMgbֽ;T{cF/~ r-w1Mw t2t[l5k>뺗NM2ԬȬlY'8uu-`ݑubu6dCfc:ƁcȬclY8uYG!A 1>mȺNqYשY)>kOF>٬+>YP -mȺ̺ږuYWYW۲v 7ud'H֯UmȺ̺ԖuYYڲ.u z%. ׆ ɬ mY:u!u-B^`ֳcAbW! 2 [dAfa:Áz4$!f؆ɬmY';u2u-dEd}mY_ӆɬmY;uA.d| $i9 G:c`:d08't΁M:p'vp.$ '8H"8s1%RoN'8&o7&Ob1م0j1h>rd I:=$N/8}H7H/IkH'usC8I#8ɤs=HgHF8)g'tB:?3tओ08Ig83( Ѥs;;I8.o .>%h%1N& 't@:L"p8Hg*7't%pfL8y'tfÙC:p΃p&#O$pтc=Wd7c1Btk_}V0ϧyYaL -^=jܘsj( ܳpſGϯsϚEgV&ک S[*pf]e.qY/Pxi"0Qȵ[y[w>3FJy;ZH54rIޮ̚(Ux,/v1wƢ?HK|{=6 m9[N67S!ܲ綎Ts϶v[܈upuD㻵8]v1(U\O{c}r^5Eū4"۱{e܉*lnqn`Nc~?²le(Ѷכ)?BP*8) G}#~/~[/c,K%-IZ4lmJ[,#LZ4Zi>R^/R )/r/)ϖrIyx)o˕+)WR\Ir%ʧ)[KZ4Y)WR>ZQЃ5.X igzDd 0 F # AE"Ҕ\2i0mb06H@=Ҕ\2i0mb06(1cQ =x\U'$3GdΖ'fF9j0Q2s ! z%",4JOF,rJ,9ő6 M˘rs9r8]lz{>zסZ.JiBZP.[)2PےoWʡlU*R}Ҳ%cur9{d5BݩgQ,<}I%zzZn[ %[@)5XY=^J{*USjV&Z)-IZ8ңiKK&-WVJ+V-F[Z~r"ݛ[Hj^&WJb+Ӥ{t{tﭻ+鮤J+鮤ʣǔ+M&R+鮤J{ۂѸ1jVsmPd8NZMJ&ܥ}([@rOlT˪Bsbּ&bw[l ]U}ovF+ˉa*G#oܧ"z{y?ZV<g6twx^rŴx{W|c\>)5h?)AETZ+˪"CU\/vYDTQ$>¡BdOߨ*ddZ% 07g.e+df{&E}3}$ED'Ld?YhG&eyPr'WK5wlе\B\QC7&SGsřs?$ C3j }P^?hk~jշW0ͅyL[|~<w2U~jckHmj d,z:tsM.Wa05͓5eESP.[\G0g:RS˜'- *cC֭6f݊k6Gǚl'}YSOg}Lnd]Of]oɺކɬ-Yې6f >'Wnd]If]iɺ҆+ɬ+-YWڐ 6f4f=YYX.!2K%6dƬ Gd oFd閬m::ݒu Yg٘dd=O֓:Y'Y'XN!2K 6dYf}S7!dcC1d1ٚz,Y_>^YQLdwv>aݕ :sSrB 'uA9猂3tFI%d8Ig 3$ҹdҹ ݤ3NL3t&I')p2Ig*,ҙgd!L8sH' \Ɇ$p\|3uPOYN!, {,$0ϋyh|KAe)k[<ԖOq>ҹN!)"s^d"Y*"-"HA8ɹZZlŲm99epV#pJIg%GIgI18kHg uYg#< tSNkMZ,3m9gTΏTsU2U,UsjL8[Hg mS8/ pvN8Ig=SGjԚZY%WP۫#:8:M:stހ&st9Lnۇm6mۇe0mڎcwHp%&8GI(c'8'H}8Ο4v3fӶ,KĶ݂Nclst>F:| 4Y9 C:ppy8qN0ҹN8ùtz¹tzM:pΗDepH'  8_&+uphrutwWQ[R[Pr3 qid1~]G:8c1Xce1s# stn3t't 'tFtF¹tnH:pFpI' .'tO:L$ p&L&ùt~'tF:dN:LҹǸ3tf!l8sHg<ҙ I:?"ypIg>Y^^kY!j+"ǸB)t<g1YJ:K,'epV#pJIg%GIg}m5զ}mk}m j[Gq- FyN<tT3p6γp*IpH'p'l&p^$-pKpOL:?<1m阶Ci;cNԶm7jmmԶՒK8{I8>8uSt^@:Ipp$p!8I-8>ۈ}Ѵ6>H쳿Cmc=wI Q9 8 yg8ͤ!istZ"O഑_|F:9M:=L!|x1f|ӱm,[gcՏelu|kœq^8ѪūoeR9jVSS2s=3Et~(bԭL$Y)e}z}<6O|"ķ71ͯݬ>Fp>iٷĺ^ط#{ӻgS{{m|Wm wu֟Kzaq1̆~/XH޺J+鮤J+?Nh8Wc;Hf% l F%>?} dQ%7D#E"Ynjʏ`' W&00b]QH50ܶ {\4=4Ĥ\Y\ 2C 2en Dd @Tb H c $A? ?3"`?G2TF?&SǨS{#0^`!(F?&SǨS{#  XJxcdd``> @c112BYL%bpubӎUsi#`VBk3$@  "*L=0adbR ,.Ie82C 2.NB Dd TTb I c $A? ?3"`?H2S m3J]/``!' m3J]  XJXJxcdd``> @c112BYL%bpu @c112BYL%bpubӎUsi#`VBk3$@  "*L=0adbR ,.Ie82C 2.NBTDd (Tb K c $A? ?3"`?J2 "t%\7Hzd`!r "t%\7Hђ@  XJ@xcdd``dd``baV d,FYzP1n:&&! KA?H1Zq00 UXRY7S?&,e`abM-VK-WMcرsA V0Z>?Nh8Wc;Hf% l F%>?} dQ%7D#E"Ynjʏ`' W&00b]QH50ܶ {\4=4Ĥ\Y\ 2C 2en Dd hhb L c $A? ?3"`?K2SBoʙd#/g`!'Boʙd#@@||xcdd``> @c112BYL%bpu}2DDd Tb N c $A? ?3"`?M2ѯZjQ2 s&jnk`!bѯZjQ2 s&b`  XJ0xcdd``6dd``baV d,FYzP1n:&6! KA?H1Z l ǀqC0&dT20 KXB2sSRsv,\~ O[T TWd` {҃g##^CC,`Bܤ-\W> \F@FbH{@&rAc c`ƅ;njLLJ% +@2u(2tA4Ag!t?0ewEDd hb O c $A? ?3"`?N2Td`fNJ]{w_.(`sSY1Cy e^-2st"Q2蜻ܻxAN͝rlo.$ 5: sik5z77zn-!fyvsZ+I! Qyd/IlՀMEѺ+4)DqvԶCnaVc >0)_vj9uRTb >C<#y__Q_u|*e-q=Z_A!)Vl-26Uj7 @:ߘce o3SD.|cDd b Q c $A? ?3"`?P2twh;sp;r`!twh;sp;n1`KPOxڝkA߼Mc[M1Z[Q*7 m% BDe AAœC zW*zؓXJ/ fvta7o޼)>RZX`1}_Xlg0׫t}rk8<$s[/r1hTF=WI҃.1&c琧O6n}MsX11F}޾Po[ziB\Qlhz6>d-י_׽ExN?l=VDůq=^%dK+ȽXVw q`=߬7` \]Bw  iDd b R c $A? ?3"`?Q2I4S,}\fU@Kyu`!I4S,}\fU@Ky^ 0@HJUxcdd``^$d@9`,&FF(`TɁE@RcgbR }/@=P5< %! 8 :@u!f010,WQX2LD L '0`bM-VK-WMcرsA V0Zɟ F\ L/t@"Pazp m`^ SGQgD?Vo'!_l~tUdAX8o;Kpq)ą'~U6TάyXZSC@Q1$N'L470T̎"24%*AdLQ~` %`cMhB8L 296{("'0ECկ,UT- %>P/nC\0‹ļ^)4~}p<?SÇ/b$O`ˆj-8y2@"oLLJ% A w3u(2t5|b@#f~9UZ Dd X0 S # AR""ӑ#[b_JbTy@=Z"ӑ#[b_J1cQ =(x \eg8#5J+s]2<0zs\ /m9'Zv?ro|&ذ̮=O -ˬ!nJr ,unmunښ&VQ:fʾO)w_g}Jyujd]@f]`ɺ Ȭ ,Yؐ6fYUA=̺U5%εdkCֹdֹsm)ބ*zYFd閬m::ݒu Ygؘ,dgyujdMfm:چɬ-YGېuYFc*zYF֝Ȭ;YdC֝Ȭ;YdCژu;dݵy::Ȓu YYOle WCompObj8:XfObjInfo;ZEquation Native [E FMicrosoft Equation 3.0 DS Equation Equation.39q)[ X~Ber(p) FMicrosoft Equation 3.0 DS Equation Equation.39q_1224316772-F>F@NВ@NВOle ]CompObj=?^fObjInfo@`5[ Y=aX+b FMicrosoft Equation 3.0 DS Equation Equation.39q3[ S X ={0Equation Native aQ_1224317063CF@NВ0PВOle cCompObjBDdfObjInfoEfEquation Native gO_1224317103AHF0PВ0PВOle i,1} FMicrosoft Equation 3.0 DS Equation Equation.39q;(L S Y ={b,a+b}CompObjGIjfObjInfoJlEquation Native mW_1224317204MF0PВ0PВOle oCompObjLNpfObjInfoOrEquation Native sA FMicrosoft Equation 3.0 DS Equation Equation.39q%[ {0}!{b} FMicrosoft Equation 3.0 DS Equation Equation.39q_1224317242URF0PВ0PВOle uCompObjQSvfObjInfoTx-XL {1}!{a+b} FMicrosoft Equation 3.0 DS Equation Equation.39qu[ Pr[Y=a+Equation Native yI_1224317476WF0PВ0PВOle {CompObjVX|fObjInfoY~Equation Native _1224317524Pd\F0PВ0PВOle b]=Pr{a+b}=Pr[X=1]=p FMicrosoft Equation 3.0 DS Equation Equation.39q5L Pr[Y=b]=1"pCompObj[]fObjInfo^Equation Native Q_1224317801aF0PВ0PВOle CompObj`bfObjInfocEquation Native w FMicrosoft Equation 3.0 DS Equation Equation.39q[[ Y=aX 2 +cX+b FMicrosoft Equation 3.0 DS Eq_1224317993_ifF0PВ0PВOle CompObjegfObjInfoh      !"%#&(')*+,-/.pr123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnoqstuvwyx{z}|~uation Equation.39q5 [ {1}!{a+c+b} FMicrosoft Equation 3.0 DS Equation Equation.39qEquation Native Q_1224318036kF0PВ0PВOle CompObjjlfObjInfomEquation Native __1224318184ZpF0PВ0PВOle CDA S Y ={b,a+c+b} FMicrosoft Equation 3.0 DS Equation Equation.39q[ X~Ber(p 00 ,p 10 ,p 01CompObjoqfObjInforEquation Native _1224318296uF0PВ0PВ ,p 11 ) FMicrosoft Equation 3.0 DS Equation Equation.39qAA S X ={(0,0),(1,0),(0,1),(1,1)}Ole CompObjtvfObjInfowEquation Native _1224318359s}zF0PВ0PВOle CompObjy{fObjInfo| FMicrosoft Equation 3.0 DS Equation Equation.39quL' {p 00 ,p 10 ,p 01 ,p 11 }Equation Native _1224318496F0PВ0PВOle CompObj~f FMicrosoft Equation 3.0 DS Equation Equation.39qT[ Y=aX 1 +bX 2 FMicrosoft Equation 3.0 DS Equation Equation.39qObjInfoEquation Native p_1224318590xF0PВ0PВOle CompObjfObjInfoEquation Native _1224319053F0PВ0PВDA {(0,0)}!{0}!Pr[Y=0]=p 00 {(1,0)}!{a}!Pr[Y=a]=p 10 {(0,1)}!{b}!Pr[Y=b]=p 10 {(1,1)}!{a+b}!Pr[Y=a+b]=p 11 FMicrosoft Equation 3.0 DS Equation Equation.39qK[ S Y ={0,a,b,a+b}Ole CompObjfObjInfoEquation Native g_1224319263F0PВ0PВOle CompObjfObjInfo FMicrosoft Equation 3.0 DS Equation Equation.39q[ a=b=1 FMicrosoft Equation 3.0 DS Equation Equation.39qEquation Native 9_1224319387F0PВ0PВOle CompObjfObjInfoEquation Native W_1224319401nF0PВ0^SВOle ;@A S Y ={0,1,2} FMicrosoft Equation 3.0 DS Equation Equation.39qCd[ S Y ={0,1,1,2}CompObjfObjInfoEquation Native __1224319450F0^SВ0^SВOle CompObjfObjInfoEquation Native 6 FMicrosoft Equation 3.0 DS Equation Equation.39q S Y FMicrosoft Equation 3.0 DS Equation Equation.39q_1224319672F0^SВ0^SВOle CompObjfObjInfo[ S X FMicrosoft Equation 3.0 DS Equation Equation.39q4[ Pr[Y=1]=Pr{(1,0),(0,1)}Equation Native 6_1224319757F0^SВ0^SВOle CompObjfObjInfoEquation Native P_1224320227F0^SВ0^SВOle =Pr({(1,0}*"{(0,1)})=Pr{(1,0)}+Pr{(0,1)}=p 10 +p 01 FMicrosoft Equation 3.0 DS Equation Equation.39qCompObjfObjInfoEquation Native Y_1224320742F0^SВ0^SВ=[ X=[X 1 X 2 ] FMicrosoft Equation 3.0 DS Equation Equation.39qi[ Pr[X 1 =1]=Pr[X 2 ]=1=Ole CompObjfObjInfoEquation Native p FMicrosoft Equation 3.0 DS Equation Equation.39qA X 1 FMicrosoft Equation 3.0 DS Eq_1224320832F0^SВ0^SВOle CompObjfObjInfoEquation Native 6_1224320851F0^SВ0^SВOle CompObjf      #(+,-./2569<=@CDEFGHKNQTUVWZ]`cdefinqrsvy|uation Equation.39qL' X 2 FMicrosoft Equation 3.0 DS Equation Equation.39q"A Pr[Y=0ObjInfoEquation Native 6_1224321018F0^SВ0^SВOle CompObjfObjInfoEquation Native _1224322709F0^SВ0^SВ]=Pr{(0,0)}=p 00 =(1"p)(1"p)Pr[Y=1]=Pr{(1,0),(0,1)}=p 10 +p 01 =2p(1"p)Pr[Y=2]=Pr{(1,1)}=p 11 =p 2Ole CompObjfObjInfoEquation Native q FMicrosoft Equation 3.0 DS Equation Equation.39qU[ Y=|X 1 "X 2 | FMicrosoft Equation 3.0 DS Equation Equation.39q_1224323019F0^SВ0^SВOle CompObjfObjInfo+[ [X 1 =1] FMicrosoft Equation 3.0 DS Equation Equation.39q+AA [X 2 =1Equation Native G_1224323073F0^SВ0^SВOle CompObjfObjInfoEquation Native G_1224323186F0^SВ0^SВOle !] FMicrosoft Equation 3.0 DS Equation Equation.39q[ [Y=1] FMicrosoft Equation 3.0 DS EqYfegeȺgeB~|=xʎ72arۖJ9{\ȕzr\ڝxmv=*sLNtGnpzNw8/<?3tzD:} &~p8Q3pyH't%(8q3h҉@:1pƒN,g錁3t$88ɤg*L3t&A:$)pRIg٤3I3tfI'48 Ig6GHg. ҙg YJ: ,#Epb8+Ig U g dYG:+'p6j8Z8H'fY?N8[I18Hg3'I'vyӤNl Ny s4Ig]'8/γpsp^"'?F g?z9Hg/CΫNN!tyt^6]) ( .HIpN18q8HIp>%p>#&9K:t>st>stt|C:_t=|"tSJ:q88o7_UxéM:pꐎҩ Zҩ'tStq;O ٟk@:t~ҹm'tnӀtnӐtns1)]ݤsN0 iN s/鴀ӎtZiO:t pBI^8I>8Ip pN(0<'ttӋtÉ$pNO8H' gDytB: #p 8#Hg0h g K:ēH8cH'XgI$p&N$ g2錇3t&F: $8) gLF:!pL8I'ItYD:,&t|ζmLy"Ǖ *Yq&ǵ ZY'tV@:l$5pc g3lC:yt6%lażq\V7 \d'ߣSveQW=*Ěp8N/҉I:%>pN_8H?A3`yP g 3t$pbHg$Q'tb&88cHg4g<錃3tÙH:$$8ɤ3TI3t™A:$83N™C:#pIgY'tt2,%%pN&夳 Yg鬄tVYG:kd:8Hg=GIg#M:3is-zm89pNN.l$ltlG:OytvI:ytvytt^"삳ƶhi[[n&E{з|r/Gq/Ƹ4ƽrk/1}r$p^!p^%Cp H58Su)ytބ6y{.ss1ys·sI?I$SIOHc8ΧpNpΒi8Ťs9yפsN | [=E8}^%(M:8> *StStjM:!N8uINۇ (ۇ p$;߇}OI>H'Ms#[H&8-pH68 Hv8 IFNcҹNSi Ni nҹ Nsi't !`8N 8H%6 N[i =鴇#L:O:t!΃pN N8ӋtӛtzC:pN_8H3ä3 g E: pIg҉K:ēN1'tG:c$x8I'$1ίL:I0N2i3t(LB:3"pHg٤g.́3tI'p83E9=GTيeKE]iA҂J%-Q29I˗V$턴RR^,'HFĈӰˠwDd e0 T # AS"Kk ~n^@=Kk ~n1cQ =x \TU30Zk B{X=E3EC%CT(DF " S ۞ۋma!Q=nT,zX3r Vϙsg9Ό3C)Bک:JQ6:rRWDSʡmQNJ'HK'U*Bj+iSEtUj| VTJRs,uvKiqh[[oZQ"tK˳ށԘi롲|s;s[c>W*}TurNJЏV$%J(NniHEiK#-NZ6IsIV-Nni^wKyWKyHh?*V(͔mtKIn~j\.ԹsVC9eZo,dcZ,67grD}2Lm$[S9]Ȥ6weDļ,w }7nhl1<2ҜuَClQ'7s TxM,IuF_pێ;Uc~-U_?Z{i.sgz;xyjzLx\=`f>ײ%}LGʹaΎuq}@:>ϸ:s 't'<8Hi)b[ s\,Kn1{39op8Ig)*Y ܮ bY*&%&DJs5&s,&̵0ך̵0KaRY*%Rd]Nn3 4 Y mu&s,#L\&%K."û,6H:p6F8Ig{Hg {I8νpH~8V8p"8{I8^8Gp>%O# }pI9CH 75H[8ߓwp~ 4Ώp9Gs >|GgptLNGgx;v Ng9NtӅtt#pI$8I'ɤ)y}i!lb큾N48ss&^Y N `1m! @v9>p#s%/檯i\%'f?bc6N9oacia20bap1Éy㽄\F:D: 3t"\N: %ϡؖ- %a0ab#Hr""pI' Ε3ҹXg™@:L" p&$8W8WT8Hj8q3 ε3Ny1-tLcZƿgyw}.5nwpRTJtxw~}T/bjܧ,>;/7m<=#e i*[γdD:KF(ۻW#37_%׺Gt D]pe:Sk+׭6![O׵M﹯c.s>h?*V(͔F|iAlu8;R'qi~6w*>Wyr6osb]k<9BdɖbnӲ׷yuGA90n;sPfUϒkj\Neȵ`#zrz56]%x}׉>˾X^w4rNcZ4O=otZT˱8B *|9.҂!-FZLmJ+V%ZZKy:)*)wIyKyIyGHy).\Ir%Jʕ+)WR2I&Ñr%JݟڍUc.8siUDd hb U c $A? ?3"`?T2k),*ߪep,{`!sk),*ߪep, @|Axcdd``dd``baV d,FYzP1n:&B@?b = UXRY7S?&,e`abM-VK-WMcرsA V0Z?NHq50qd`c糁g#c A|C,bBܤ-\|/=paak2A0RƋ  d1@\08ؠq' F&&\v= @ ] U >}2DDd Tb V c $A? ?3"`?U2ѯZjQ2 s&jN`!bѯZjQ2 s&b`  XJ0xcdd``6dd``baV d,FYzP1n:&6! KA?H1Z l ǀqC0&dT20 KXB2sSRsv,\~ O[T TWd` {҃g##^CC,`Bܤ-\W> \F@FbH{@&rAc c`ƅ;njLLJ% +@2u(2tA4Ag!t?0ewEDd hb W c $A? ?3"`?V2Td`fNJ]P/nC\0‹ļ^)4~}p<?SÇ/b$O`ˆj-8y2@"oLLJ% A w3u(2t5|b@#f~9UZTDd (Tb Y c $A? ?3"`?X2 "t%\7Hz@`!r "t%\7Hђ@  XJ@xcdd``dd``baV d,FYzP1n:&&! KA?H1Zq00 UXRY7S?&,e`abM-VK-WMcرsA V0Z>?Nh8Wc;Hf% l F%>?} dQ%7D#E"Ynjʏ`' W&00b]QH50ܶ {\4=4Ĥ\Y\ 2C 2en'Dd @b Z c $A? ?3"`?Y2qbL(C>4M`!EbL(C>4 xcdd``~ @c112BYL%bpuF^ P33Z SR?8^UF&&\ :  020eV'Dd @b [ c $A? ?3"`?Z2qbL(C>4M`!EbL(C>4 xcdd``~ @c112BYL%bpuF^ P33Z SR?8^UF&&\ :  020eV5Dd l@b \ c $A? ?3"`?[2Y9.Whk[`!SY9.Whk Xh !xcdd``~ @c112BYL%bpu ᰟD@r p{&1\PsClnv0o8L+KRsA0u(2tA4T}bb7#3X!UQDd Tb ] c $A? ?3"`?\2)}*uLw`!o)}*uL΂`  XJ=xcdd``vdd``baV d,FYzP1n:&6! KA?H1Z l ǀqC0&dT20 KXB2sSRsv,\~ cI;T TYAZk+a, !ׁ|8?į& Ma`¥Q{@$w2f.#5<؄ f.{@&WrAc hƕ;+KRsNePdhB ~`·~[Dd xTb ^ c $A? ?3"`?]2fђuH7(BZh`!yfђuH7(BZ  XJGxcdd``dd``baV d,FYzP1n:&B@?b 8 ㆪaM,,He` @201d++&1X +|-Nf`ogu|Uf>FcdۛO3;0Pw(' Pw0BlBd%dBܤ|\2m%@|J.hlrcmи``#RpeqIj.C5E. ,Ā'f  >Dd @b _ c $A? ?3"`?^2{ ־vȰdõ`!\{ ־vȰ*` *xcdd``ed``baV d,FYzP1n:&6! KA?H1: l ǀqC0&dT20 KXB2sSRsv,\~ KccF\ 5 0 _ 1c |1zt0F]HO`1W&00ZQ?!2M` \4L=bdbR ,.Ie`ԡ"|b@3X?zgtNDd <@b ` c $A? ?3"`?_2y9Kt Ft`!ly9Kt FJ` :xcdd``Ved``baV d,FYzP1n:&! KA?H1:  ǀqC0&dT20 KXB2sSRsv,\~ Osc`ĕXZ[ b|FTY !/QF? Ȅ$=3X@J,$@penR~^pb#ܞ5 #1+pB\KF&&\7= @ ]` bg!t?2l?Dd @b a c $A? ?3"`?`2k8<r_]O`!k8<r_]& }xcdd```d``baV d,FYzP1n:&B@?b u 5 UXRY7S?&meabM-VK-WMcرsA V0ZϛT TtTB ~O[AD8$Ty&&?ݽBܤ`r]_Q{@$w׉#ʏGTeIy,&)!f{(ȈX=B`a%'% dET$TT4pBTTǗbM;\v<40y{)MJ% . 3u(2t5=crxQDd |@b b c $A? ?3"`?a2YY0+JUxbw`!oYY0+JUxbL`  =xcdd``Vcd``baV d,FYzP1n:&.! KA?H1: \ ǀqC0&dT20 `[YB2sSRsv,\~ Nb*F\ a 0~ 31 I9 R|\- > ᰏD@d.16ObK?!2aaLJďT.hsl14=RpeqIj.fE.z(0eh'Dd @b c c $A? ?3"`?b2qbL(C>4M1`!EbL(C>4 xcdd``~ @c112BYL%bpuF^ P33Z SR?8^UF&&\ :  020eVTDd hb d c $A? ?3"`?c2f4P|9)և izX`!rf4P|9)և iZ@|@xcdd``ed``baV d,FYzP1n:&!! KA?H1@@øjx|K2B* Rvfjv,L ! ~ Ay ;|.? _񧅳Ձ\06t&Ux@8OP/pY>P@penR~#>pD@r?m=L -^H.{~adaT.pLƁ;LLJ% s:@ĞB ~duo>Dd @b e c $A? ?3"`?d2{ ־vȰd`!\{ ־vȰ*` *xcdd``ed``baV d,FYzP1n:&6! KA?H1: l ǀqC0&dT20 KXB2sSRsv,\~ KccF\ 5 0 _ 1c |1zt0F]HO`1W&00ZQ?!2M` \4L=bdbR ,.Ie`ԡ"|b@3X?zgtXDd |@b f c $A? ?3"`?e2S[& 2Vх~`!vS[& 2Vхj`  Dxcdd``6ed``baV d,FYzP1n:&.! KA?H1: \ ǀqC0&dT20 KXB2sSRsv,\~ M eF\ } 0+fWaDb a$= rLHs OgX I9 Z<\ > p{І۳/⯮ 8v0o8+KRsBA2u(2t5=ÀKpfDd Tb g c $A? ?3"`?f2T8'H\yYB`!T8'H\yY XJRxcdd``Ndd``baV d,FYzP1n:&\B@?b p10 UXRY7S?&,e`abM-VK-WMcرsA V0ZT TY@Zk+a6_We+c$>FpN Ip{Ad8O3w`ROb#؄J,I9 \|"ڿ #WdCK2\pBZNCLLJ% {: @> 1,kDd hb h c $A? ?3"`?g2Qv}}cOk`!Qv}}cOk@j|Wxcdd``cd``baV d,FYzP1n:&B@?b  ㆪaM,,He`H @201d++&1X +|-IT T?jVsx@|8ߜ  kwO?ycd|t0pPf(04񯲁 Ép^!  `\>T 13YNE0 \xpAcYN=LLJ% A.ePdk{> 1"3X?|,Dd Tb i c $A? ?3"`?h2@_ eQ*3\m`!@_ eQ*3\mr (XJxcdd`` @c112BYL%bpuZK3@penR~p?#L #l*HbBeQlB{I3ӽ 5 6=4Ĥ\Y\ˠ2C 2cRQDd hb j c $A? ?3"`?i2mkׄmbnVCHw`!omkׄmbnVCH @(|=xcdd``ved``baV d,FYzP1n:&\B@?b  ㆪaM,,He`H @201d++&1X +|-OT T/qV= /ϊƄc+!QO{@0~!? 7eX0fFz0.w0ǃdB_ČsAc ƙ;+KRsԡ"b> 13X? Yv=QDd Tb k c $A? ?3"`?j2wm/q opw`!owm/q op: @PXJ=xcdd``ed``baV d,FYzP1n:&B@?b x ㆪaM,,He`I? @201d++&1X +|-IsdF\yAZ*a|Av߰b~?$?i`{=)a_b|%?2 Bܤ ^pF;sІ3 ķ28& cv0o8+KRsA0u(2t5=ÀfRDd b l c $A? ?3"`?k2иr}іL`!иr}і` ;$ xڝkAǟK/_Fm:v,f`J*j$Hqu J'qrpp_'xw8 /O}/OK  0>}ehD+B{]w.G!s}WygPZ tD\/֖ZGMҳi ) ڍVc2X\k}UK/͔֝j]d&hȳdr8 7X?`J\ 2DJ#Vj'}WoSĵQ/38 xSEx,  p?Q"ϣDHM8Ɖ)6HJNN0;*ghFD<`E %H([PAˁJ,KF%3P8q_Jy}~TƼS67̀NHq50沁VGYA|#8?ׁp~; YfW+ +sssXQ{@$wK2f.#1jF %\L:0L&8KPpadbR ,.Ie0ԡRY`d~cDd Tb p c $A? ?3"`?o2KN d71dJD`!KN d71dJD   XJOxcdd``Ndd``baV d,FYzP1n:&&! KA?H1Z ㆪaM,,He` @201d++&1X +|-ǛNHq50Vs@|#8ׁgp~<+aTvT  WWb W&00l2YQ@$I2f.#1jF %\L:0L68E `pbdbR ,.Iex2C 2Dd ,Tb q c $A? ?3"`?p2Q?/}ͦ)E-U`!%?/}ͦ)E XJxcdd``> @c112BYL%bpu @c112BYL%bpu @c112BYL%bpu AaІۣIʨdP@p~T+h1C\в \~3)d``KǕ+KRsNԡRY=L2NDd Tb u c $A? ?3"`?t2/Z詥bt`!l/Z詥b  XJ:xcdd``vdd``baV d,FYzP1n:&v! KA?H1Z ǀqC0&dT20 KXB2sSRsv,\~ ;񧱳Usi#3l 0;&?bgd<`4cT Of +H? 0# 2!įK1@penR~#n_m+QpAJNLLJ% s: @> 1,z{Dd c Tb v c $A? ?3"`?u2yzgE D`!yzgE D XJgxcdd``fd``baV d,FYzP1n:&B@?b c@øjx|K2B* Rvfjv,L ! ~ Ay ;|.? _y^si#.~΂J3'[0A I9 \l > ᰏD@Wd--T~+*_ q# # $pPVvf +(:b7+XE/ tX1t@ܪ<Ɠ\ #`|Sf\NE`kCNwLLJ% A0u(2tA4T}b@'f W Dd @Tb w c $A? ?3"`?v2Tm2zJ@Ss0d`!(m2zJ@Ss  XJxcdd``> @c112BYL%bpub,@u@@ڈc(ؽc$;vv0o8L+KRs|@2u(2tA4Ag!!v120eSJy Dd TTb x c $A? ?3"`?w2S QVYW8Ǟ/n`!' QVYW8Ǟ  XJXJxcdd``> @c112BYL%bpu @c112BYL%bpub,@u@@ڈc(ؽc$;vv0o8L+KRs|@2u(2tA4Ag!!v120eSJy Dd TTb { c $A? ?3"`?z2S QVYW8Ǟ/!`!' QVYW8Ǟ  XJXJxcdd``> @c112BYL%bpu|?yxdQ%VD@agȄ YQJ ~d%cBܤ{\_c ]=@|J.hqcи``#RpeqIj.C?E. ,Āgf BDd Tb } c $A? ?3"`?|2|i-h`!`|i-b 8XJ.xcdd``6dd``baV d,FYzP1n:&&V! KA?H1ZX ㆪaM,,He` @201d++&1X +|-I[4AHq50VKA|C8_ďا<@2B& Ma`ϵaG!|&2R#p8 v0o8+KRsրePdh,Āf M yICDd 4Tb ~ c $A? CompObj"fObjInfo$Equation Native %9_1224323653F0^SВ0^SВOle &CompObj'fObjInfo)Equation Native *euation Equation.39qIG[ {(0,0),(1,1)}!{0}!Pr[Y=0]=p 00 +p 11 {(1,0),(0,1)}!{1}!Pr[Y=1]=p 10 +P 01 _1224323783F0^SВ0^SВOle 0CompObj1fObjInfo3 FMicrosoft Equation 3.0 DS Equation Equation.39qqDA Y~Ber(p'=  p 10 +p 01 )Equation Native 4_1224323886F0^SВ0^SВOle 7CompObj8f FMicrosoft Equation 3.0 DS Equation Equation.39quV {p 00 ,p 10 ,p 01 ,p 11 } FMicrosoft Equation 3.0 DS EqObjInfo:Equation Native ;_1224334238F0^SВ0^SВOle >CompObj?fObjInfoAEquation Native B_1224334876F UВ UВuation Equation.39q|[ Pr[X 2 =1|X 1 =0]=p 01 p 00 +p 01 Pr[X 2 =0|X 1 =1]=p 10 p 10 +p 11 FMicrosoft Equation 3.0 DS Equation Equation.39qG[ X 1 ~Ber(p=0.5)Ole ICompObjJfObjInfoLEquation Native Mc_1224334953F UВ UВOle OCompObjPfObjInfoR FMicrosoft Equation 3.0 DS Equation Equation.39q!@A Pr[X 2 =1|X 1 =0]=p 01 0.5Pr[X 2 =0|X 1 =1]=p 10 0.5Equation Native S=_1224335187KF UВ UВOle XCompObjYf FMicrosoft Equation 3.0 DS Equation Equation.39q8[ p 10 =p 01 FMicrosoft Equation 3.0 DS EqObjInfo[Equation Native \T_1224335274F UВ UВOle ^CompObj_fObjInfoaEquation Native b(_1224335644F UВ UВuation Equation.39q [ e bit '=  Pr[X 2 =1|X 1 =0]+Pr[X 2 =0|X 1 =1]=p 01Ole gCompObjhfObjInfojEquation Native k6 FMicrosoft Equation 3.0 DS Equation Equation.39q[ 2 n FMicrosoft Equation 3.0 DS Equation Equation.39q_1224335878F UВ UВOle lCompObjmfObjInfooEquation Native p_1224335979 F UВ UВOle tCompObj  uf[ S X ={(x 1 ,x 2 ,& ,x n )|everyx k "{0,1}} FMicrosoft Equation 3.0 DS Equation Equation.39qObjInfo wEquation Native x_1224336037F UВ UВOle zc[ {(x 1 ,x 2 ,& ,x n )} FMicrosoft Equation 3.0 DS Equation Equation.39qPDA p x 1 x 2 "x n CompObj{fObjInfo}Equation Native ~l_1224336260F UВ UВOle CompObjfObjInfoEquation Native  FMicrosoft Equation 3.0 DS Equation Equation.39q[ {(x 1(j) ,x 2(j) ,& ,x n(j) } j=1m_1224336501F UВ UВOle CompObjfObjInfo FMicrosoft Equation 3.0 DS Equation Equation.39q[E[ (x 1 ,x 2 ,& ,x n ) FMicrosoft Equation 3.0 DS Equation Equation.39qEquation Native w_1224336784 1F UВ UВOle CompObj fObjInfo!Equation Native v_1224337011$F UВ UВOle Z[ p x 1 x 2 "x n  =Pr[X 1 =x 1 )"X 2 =x 2 )"")"X n =x n ]=Pr[X k =x k ] k=1n "CompObj#%fObjInfo&Equation Native a_1224337064",)F UВ UВ FMicrosoft Equation 3.0 DS Equation Equation.39qEDA X k ~Ber(p k ) FMicrosoft Equation 3.0 DS Equation Equation.39qOle CompObj(*fObjInfo+Equation Native x Pr[X k =x k ]=1"p k forx k =0p k forx k =1{ FMicrosoft Equation 3.0 DS Eq_1224337379.F UВ UВOle CompObj-/fObjInfo0uation Equation.39qI[ X=[X 1 ,& ,X n ] FMicrosoft Equation 3.0 DS Equation Equation.39qEquation Native e_1224337614';3F UВ UВOle CompObj24fObjInfo5Equation Native ?_12243498278F UВ UВOle #[ x k =1 FMicrosoft Equation 3.0 DS Equation Equation.39qC[ S Y ={1,2,& ,n}CompObj79fObjInfo:Equation Native __12243498516@=F UВ XВOle CompObj<>fObjInfo?Equation Native 6 FMicrosoft Equation 3.0 DS Equation Equation.39qxt S X FMicrosoft Equation 3.0 DS Equation Equation.39q_1224350232BF XВ XВOle CompObjACfObjInfoDEquation Native _1224351497OTGF XВ XВOle CompObjFHfH(A [Y=k]![X 1 =0)"X 2 =0)"")"X k"1 =0)"X k =1] FMicrosoft Equation 3.0 DS Equation Equation.39qObjInfoIEquation Native e_1224350385mLF XВ XВOle IpE[ X=[X 1 ,& ,X n ] FMicrosoft Equation 3.0 DS Equation Equation.39qDy Pr[Y=k]=Pr[X 1 =0)"XCompObjKMfObjInfoNEquation Native `_1224350693QF XВ XВ 2 =0)"")"X k"1 =0)"X k =1]=(1"p j )" p kj=1k"1 " FMicrosoft Equation 3.0 DS Equation Equation.39qOle CompObjPRfObjInfoSEquation Native V[ Pr[Y=k]=(1"p j )" p kj=1k"1 " =p(1"p) k"1 ;1d"kd"n FMicrosoft Equation 3.0 DS Equation Equation.39q_1224351506VF XВ XВOle CompObjUWfObjInfoXIpE[ X=[X 1 ,& ,X n ] FMicrosoft Equation 3.0 DS Equation Equation.39qpE[ 2p Equation Native e_1224351685Ec[F XВ XВOle CompObjZ\fObjInfo]Equation Native -_1224352221`F XВ XВOle  FMicrosoft Equation 3.0 DS Equation Equation.39qZpE[ Y'=  X kk=1n " FMicrosoft Equation 3.0 DS EqCompObj_afObjInfobEquation Native v_1224352274^heF XВ XВOle CompObjdffObjInfogEquation Native uation Equation.39qkf[ S Y ={0,1,2,& ,n"1,n} FMicrosoft Equation 3.0 DS Equation Equation.39q_1224352429jF XВ XВOle CompObjikfObjInfolpE[ S X FMicrosoft Equation 3.0 DS Equation Equation.39q N S YEquation Native 6_1224352500YoF XВ XВOle CompObjnpfObjInfoqEquation Native 6_1224352599tF XВ XВOle CompObjsufObjInfovEquation Native }_1224352697r|yF XВ XВ  "'*-258;<?BEHILORUX[\]^_`abcdehklmnopqrstux} FMicrosoft Equation 3.0 DS Equation Equation.39qapE[ [Y=0]!{(0,0,& ,0)} FMicrosoft Equation 3.0 DS Equation Equation.39qOle CompObjxzfObjInfo{Equation Native  }ay [Y=n]!{(1,1,& ,1)} FMicrosoft Equation 3.0 DS Equation Equation.39qkXR[ Pr[Y=0]_1224352995~F XВ XВOle  CompObj} fObjInfoEquation Native _1224353193wF XВ XВOle CompObjf=Pr{(0,0,& ,0)}=Pr[X 1 =0)"")"X n =0]=Pr[X k =0]=(1"p k ) k=1n " k=1n " FMicrosoft Equation 3.0 DS Equation Equation.39qY(i Pr[Y=n]=Pr{(1,1,& ,1)}=Pr[X 1 =1)"")"X n =1]=Pr[X k =1]=p kk=1n " k=1n "ObjInfoEquation Native u_1224353331F ZВ ZВOle   FMicrosoft Equation 3.0 DS Equation Equation.39q  [Y=1] FMicrosoft Equation 3.0 DS Equation Equation.39qCompObj!fObjInfo#Equation Native $9_1224353353F ZВ ZВOle %CompObj&fObjInfo(Equation Native )A%D [Y=n"1] FMicrosoft Equation 3.0 DS Equation Equation.39qpE[ n"1_1224353480F ZВ ZВOle +CompObj,fObjInfo.Equation Native /1_1224353694JF ZВ ZВOle 0CompObj1f FMicrosoft Equation 3.0 DS Equation Equation.39q%pE[ [Y=1]! FMicrosoft Equation 3.0 DS EqObjInfo3Equation Native 4A_1224353727F ZВ ZВOle 6CompObj7fObjInfo9Equation Native :_1224353875F ZВ ZВuation Equation.39qHN ={(1,0,& .),(0,1,0,& 0),& ,(0,& ,0,1} FMicrosoft Equation 3.0 DS Equation Equation.39qOle =CompObj>fObjInfo@Equation Native AI-pE[ [Y=n"1]! FMicrosoft Equation 3.0 DS Equation Equation.39q#\i ={(0,1,_1224353903F ZВ ZВOle CCompObjDfObjInfoFEquation Native G_1224354127F ZВ ZВOle JCompObjKf& .,1),(1,0,1,& 1),& ,(1,& ,1,0} FMicrosoft Equation 3.0 DS Equation Equation.39q-pE[ (1,0,& ,0)ObjInfoMEquation Native NI_1224354193F ZВ ZВOle P FMicrosoft Equation 3.0 DS Equation Equation.39q5(N (0,1,0,& ,0) FMicrosoft Equation 3.0 DS EqCompObjQfObjInfoSEquation Native TQ_1224354969F ZВ ZВOle VCompObjWfObjInfoYEquation Native Zuation Equation.39qf[ Pr[Y=1]=Pr{(1,0,& ,0),(0,1,0,& 0),& ,(0,& ,0,1}=Pr{(1,0,& ,0)}+& +Pr{(0,& 0,1)}=p 1 " (1"p j )+& +(1"p j )" p nj=1n"1 " j=2n " =[p k " (1"p j )] j=1(j`"k)n " k=1n " FMicrosoft Equation 3.0 DS Eq     gE "!#%$&'(*)+-,./0124356789;:<=>@?ACBDFGIHJKLNMOQPRSTVUWYXZ[\^]_a`bdcehijklmnopqrstuvwxyz{|}~?3"`?}2 .g.g;]45i`!a .g.g;]45b  pXJ/xcdd``6dd``baV d,FYzP1n:&&V! KA?H1ZX ㆪaM,,He` @201d++&1X +|-ȗvh(.P56j`,di3p ] O?y12p{0Q%0@penR~>.pb.#?'@FbH{! \4.=8fdbR ,.Ie82C 2'R}<3Dd @b  c $A? ?3"`?~2}b Ct$$Y`!Qb Ct$$ @ xcdd``fed``baV d,FYzP1n:&&! KA?H1:00 UXRY7S?&,e`abM-VK-WMcرsA V0Z;h(.P56J` [ a |?}@0W&00LZQ} 0|@8l1e$sY 5.pȂf `p\021)W20ePdk1 GbWFDd 8b  c $A? ?3"`?2h0i[]l-l9`!dh0i[]l-F'v 2xڝkAߛݦ65kM+VAIm]=xR/zTBK[,$Mi C(xA= !KAP'8Θ Ԅa/73߾ <}Fb1ˋ^nkS>!PSю9ipvwt!>oТ [jx#lX[5_vRP~iKQU8R'c͵#?o}z~19Q[qe\wTT[hŬO<0|yݰΧ747FXo$sp% r+Ypӂs'T c OWRXd ?gYH' Hh; v@kϸ(vشH=%^N{ M/],SZEsDlx q[yp^Òa!NN ZMPK/6_#5%~aĪ'|{V=8>J׆2{ 8Qאַ%-ئs8i0lDd b  c $A? ?3"`?2(cj'K;<^`!(cj'K;<^ xtxcdd``cd``baV d,FYzP1n:&B@?b 20熪aM,,He`H @201d++&1X +|-ÛvNHq%0 jV, O]%>?=$ Coh/Fxn prBP&f )(B"2K3@penR~+^U >  L\ #='fp=)4眭=kI/ďԇ0Sd|yo|+Ln$^NνfE.B dtM Dd , b  c $A? ?3"`?2RYW&Zd~=.`!&YW&Zd~=f e xڝKA߼zg["F$!<8bRX)oA $k b6ff'b2~̗fn=I>l"dLE 0Q'kUs)kFNZ؅&``!XGu9 I>؅& @|&xcdd``fed``baV d,FYzP1n:&B@?b ʞ ㆪaM,,He`HI? @201d++&1X +|-H`F\X@N20A|C `3d>#"3Ȅ?G@(\`#N@aS2ր j\4=`dbR ,.Ieԡ"b> 1 aDd b  c $A? ?3"`?21W;b֟ (`!W;b֟x" 5xڝKA̪f.QtǥkQ顈@LQABNݺt OAA;v_t ffwF ]}7<240D>N2dl[!B0 fMXq?&\>AA%&98X>^Xv2e?f5S(UmYkkbn:[2G}շ} ~SM)[1R"i(Jrv(8_+˜7i~}yeyJl%m}cA-~RmAXVpvLs"Vlňd+v׊fѨBG~bs~F9y(;<:{;/ɫ|i`AU6Nށq*1WGyG&!!Uy=[<],(V*:TF7tZӋpJuzuнG= Dd ,b  c $A ? ?3"`?2SOK+7Pg(/`!'OK+7Pg(’Hxcdd``> @c112BYL%bpu]haK,!r/6,Mr%nF:/tx,YLK^7GY7ƺWl: I󻨭Q Sr&LS[ə/8%LHA;*+P[ pDd hb  c $A ? ?3"`?2Oi %3o,`!Oi %3o, @`|\xcdd``ed``baV d,FYzP1n:&B@?b = UXRY7S?&,e`abM-VK-WMcرsA V0Z.6NHq50^i|M8ߔ ׁXPUL|15 SO@;0ea!=$F= 4×"70c/Œf+^׊D > M".pJG4 0y{iI)$5a>\E.<GTDd |b  c $A ? ?3"`?26?a_".~z`!`!r6?a_".~`0@xcdd``Ned``baV d,FYzP1n:,B@?b 00sC0&dT20͔ `[YB2sSRsv,\~ ʠ T$LX@:*!)i#7f 07FT)1dB@Q27D(lG!s dO%z3P^ 4F0dpVrAc 2@\NKLLJ% @0u(2t5= Ȫ.Dd b  c $A ? ?3"`?2 Ⱦpv'OܔF#`!Ⱦpv'OܔF" hxڥJA9,dM!"FѠiDDXtDHll'Pba/ Jufv3dc/ s=\ C tC0EĘ1r]WFI*A`yC\!GO `룾@:W\:[y`KF+#k`fW|˗M;jwk䥔5C\7m|LHEL yͩ# <η1QN 3}/}e՛4]#,߅K)״w'灬cO*xHm-Wy7o⟙qu`O?"dI$Mgrq'S}z&]8iLJofB1ocP >q4֠'QVTDd |b  c $A ? ?3"`?26?a_".~zw&`!r6?a_".~`0@xcdd``Ned``baV d,FYzP1n:,B@?b 00sC0&dT20͔ `[YB2sSRsv,\~ ʠ T$LX@:*!)i#7f 07FT)1dB@Q27D(lG!s dO%z3P^ 4F0dpVrAc 2@\NKLLJ% @0u(2t5= Ȫ.jDd dhb  c $A? ?3"`?2ls21glHpEG(`!ls21glHpEG @^ |Vxcdd``ned``baV d,FYzP1n:&B@?b 8 ㆪaM,,He`H @201d++&1X +|-wH;T T 4UƟ QQ& F%= s#wF%F0~<^C {I7F=w@&U'#E x8U23@X dokEIQ"/ׁO8 J.h,pt@ӌ;+KRsNePdk{> 1VDd b  c $A? ?3"`?2BM>ΨX<EB@|5+`!tBM>ΨX<EB@'@n=Bxcdd``gf``baV d,FYzP1n:&B@?b ᆪaM,,He`x7Ӂ`'0LYI9 V\ > 1X +|-T T2Ɂ^y\q?̬%2jn?m ( rڢCZwwJ1ku6ְmĈ90bm qnj +#?S]*⋇4m}pGox3\ANiRUu*~- R_K?Zɏ`ί{Jާ/E+UPkT(1:T`=9/@ݔ#4-#!v.p$SL38c6lE]{6B.pDd b  c $A? ?3"`?2 Ŷ},=j'a 0`!Ŷ},=j'a P%`\xڥ+aǟvf0ڤH8(#h9(''99(E8 ڜml3<}%(X+]CBBEd"a'5e/tzs-'f=s74!P0;>Qg/`T?K>'$+[Ռ%iDHv0wW~PlXsNM._ WkXΉF.^O8.P52?)He=N0;g˃l*m<. g,C6I5XE{$.~M\y$_EqY0s'2uyue?J9C+7l/@#`C6A9(| 2ƯyDd @hb  c $A? ?3"`?2AQ|Ī3`!AQ|ĪB @p|excdd``^ @c112BYL%bpu @c112BYL%bpujC U".8B`!~s>jC U".&/7JLxcdd``ff``baV d,FYzP1n:B@?b 30@0&dT _&,eBܤ6.B ;|.? _˟ dF\w@ZVBS˼cd~cW[ fmLˤ!{/>@ed^ DvG*;)MAp/T, TtQT0.~Ty^TysvT~"3%>XZZGt|l!<>0ʠm@|#8"%Hpf|ꀌЄ;| 8Uď(W 0T~% s2C@Qt*LE,+؆" + 8a4Ny/'"Xs#?`*BU^VG#F KdBAϥʿGlR|5AT~ 7*" ?@"le! %E \7/6)ₖ\R v 0y{4#RpeqIj.\E. ,Āf`!Dd 4b  c $A? ?3"`?2b_DcSE`!6_DcSxbZQRϥi`,LJ7VsP 27)?[[.hjHpB``0#RpeqIj./\E.B ~`%Dd +b  c $A? ?3"`?2  t+Q%K`! t+Q @MxڥSMKQΘΤd"`rѮ-BhQ hM_6*(@lpm.gsӢU1jz R8{=x)s ;dm2qjn7͚̂!Hqf4T)iuj{dKDpOGȲ)$Q{EIQabKL߲if.VnVᙆQP'-C%O5<`>7\w)"3uS0IytE{|]tt-vZx@Ǫ2IzN Z,c$׆y/mvVL9Wco'>ư3<ݸ"{/ ρl?G% ^X_sT~Ӹ  x9Iq3 Љ A'ȉDd @b  c $A? ?3"`?2N ;B4l!*M`!" ;B4l!R xcdd``> @c112BYL%bpuwCa4 bA,@sC2sSRst/B*aLw!|tf/L@HlC3ǰ )l,4m 0y{iI)$5d.P"CDHg!t?1e [×Dd $ Tb  c $A? ?3"`?2C2-eN/-ldR`!C2-eN/-lj XJxcdd`` @c112BYL%bpu?NHq50i':pwnηDWfGgFpFVTyQVTYP2p*_]_F? [<=9Q ~0^jF X +ss<|"?x҅_ ķj! %E \/qۃ䂦J.p'?h``:#RpeqIj.C \E.jDd TTb  c $A? ?3"`?2O*FCVP/+T`!#*FCVP/  XJXJxcdd``> @c112BYL%bpuU m P.P16z(Q 1y12ps@&WrA]!#t] `p021)W2ԡRYv] `LDd ,Tb  c $A? ?3"`?2Q9unOrH0-W`!%9unOrH0 XJxcdd``> @c112BYL%bpudKF&&\ s: @> 1,vMBDd 8 @b  c $A ? ?3"`?2^IMPC!(}Y`!^IMPC!(} vxcdd``dd``baV d,FYzP1n:&|B@?b u  ㆪaM,,He` @201d++&1X +|-7H`F\ 7xAZk+a|)0_Ώ  Ɖ~vT 0_c ~,/_ďL Qp()Jdu(#<@pQ\ Ma`5 Ps.bwba#I>pDVrAS8 40y{iI)$5d.P"CD|b@3X\UDd @b  c $A!? ?3"`?2&,nNrc+!hR[`!&,nNrc+!hR vxcdd``dd``baV d,FYzP1n:&|B@?b u 20 UXRY7S?&,e`abM-VK-WMcرsA V0Z!T TyAZk+a(_ `‰_Ɂ>U;|1Wpcf?Ηa+ ׊D > ?#+j. W&00\psײX w[pŰt,8) z) LiGNLLJ% {: @> 1,Dd  b  c $A"? ?3"`?2f[<&sA]^`!f[<&sA]@3@rOqxcdd``ef``baV d,FYzP1n:&c! KA?H1 30| UXRYloN` +ss~psq(İc@`_ PHqeZzƟCW|1Wgd|f.Sa[ B{_|>J?G6ETe9T4η@EU]/†OdF7"|A,@d++&߷xͮ{_AX@=Hs7f|-5??)WA32+ ?px"KIIǒ~) 6#pC׀ipcMߠ_,BSa*(u:|Mqf A*j:|M8 o U^ U~ '8 .taB/VT?vɊ'l(|C\+J_50H{qAKq.pIN&2\+KRs0u(2tA4Ag! 7SlDd Lb  c $A#? ?3"`?2AkeVa`!AkeVZ.@HHXxcdd``ef``baV d,FYzP1n:&zB@?b 10| UXRYloN` +ssp,(İc@`|@"B]j muBj%/ CW\gd|fvQa[ Ԇ!4\|&= LT#YTGw@+򓘑O( П! ~ AyDWpxs78+aWQ0 '@iƌ C<|UA84*D?_ LLL ~$JAA?`*_G~cՀ *T.y"X*L(D7ׄeܨ[\q3/5. bVa*`~V~7D(A˚ri_~.ₖ\2X.+KRsaPdh,Ā`-1\3Dd @b  c $A$? ?3"`?2}JxN1Y e`!QJxN1 @ xcdd``fed``baV d,FYzP1n:&&! KA?H1:00 UXRY7S?&,e`abM-VK-WMcرsA V0Z..h(.P56J` [ a |?}@0W&00 p-(>Fg> N2ps䂆8d 3v0o8.+KRsePdk{> 1bhADd @b  c $A%? ?3"`?2h.a%lKaWg?g`!_h.a%lKaW* -xcdd``ed``baV d,FYzP1n:&6! KA?H1:l ǀqC0&dT20 KXB2sSRsv,\~ H{T TVJ`!/GWbܤ\|a#d ]=fa#GdBܞ>"+ypAT+F&&\ {:@ĞB ~dj$Dd b  c $A&? ?3"`?2n,ӷs aNJi`!B,ӷs aN Hxcdd`` @c112BYL%bpuBЭNE6]fߛ7f (0rPۢX^9yGYpY3C~Ƹͬki|W zXǹ?7 >)8)hݢYhTMvF4QKwNej{ϫ92'u/8'o"゗cTKMGuM-6}/LEEnxd[O!b;3L[vb[ rB +6Օ0 Ƕ} ,@B2sSRsp? {dD,%0Ηa1e$^p{A&Y e.pL cv0o8+KRs@0u(2t5= hfQDd @b  c $A*? ?3"`?2 5SaQuHr`!5SaQuH@}" xcdd`` @c112BYL%bpu U~>'?p='bT`B=;{没gd,72weFfBu/#ȼj ,_׊D-p/#?cs W&00 pvpwX1j.p'_h`` #RpeqIj.\E.qa<Dd @b  c $A+? ?3"`?2N1Fpfbu`!ZN1Fpf ~ (xcdd``fdd``baV d@R`#,=F 7\ A?d@eǀqC0&dT20 KXB2sSRsv,\~  ٲUsi# VVJ o:p*#zFT) !okTbq?! %E \S> p?#u`wyWrAC `;LLJ% s:  , v120e.TEDd t@b  c $A,? ?3"`?2J^"#Xkw`!cJ^"#X"  1xcdd``dd``baV d,FYzP1n:&&v! KA?H1: ㆪaM,,He` @201d++&1X +|-Ɵ&T Ts@Z5+a5 )̨UL꽘Pׁ/bDר?&|C\+J/( ?O] M.p  `p121)W2ȂePdh, K] `+[3Dd @b  c $A$? ?3"`?2}JxN1Y%z`!QJxN1 @ xcdd``fed``baV d,FYzP1n:&&! KA?H1:00 UXRY7S?&,e`abM-VK-WMcرsA V0Z..h(.P56J` [ a |?}@0W&00 p-(>Fg> N2ps䂆8d 3v0o8.+KRsePdk{> 1bhDd @b  c $A(? ?3"`?2 lkcvYW-cX|`!lkcvYW-c" xuAKAߌjiDuЎAFD 6 2%c')C"ƒ]C>BЭNE6]fߛ7f (0rPۢX^9yGYpY3C~Ƹͬki|W zXǹ?7 >)8)hݢYhTMvF4QKwNej{ϫ92'u/8'o"゗cTKMGuM-6}/LEEnxd[O!b;3L[vb[ rB +AFKPUZ^_`abcdfghijlk]=nk()p k (1"p) n"k FMicrosoft Equation 3.0 DS Equation Equation.39qpE[ 2 nCompObj')fObjInfo*Equation Native 6_1224360603&0-FE_ВE_ВOle CompObj,. fObjInfo/ Equation Native  6 FMicrosoft Equation 3.0 DS Equation Equation.39qpE[ 2 n FMicrosoft Equation 3.0 DS Equation Equation.39q_1224360922?2FE_ВE_ВOle  CompObj13fObjInfo43pE[ 2 10 =1024 FMicrosoft Equation 3.0 DS Equation Equation.39q0v n(0)'=Equation Native O_1224361620DN7FE_ВE_ВOle CompObj68fObjInfo9Equation Native L_1224361585<FE_ВE_ВOle   FMicrosoft Equation 3.0 DS Equation Equation.39q0v n(1)'= CompObj;=fObjInfo>Equation Native L_1224361548AFE_ВE_ВOle CompObj@B fObjInfoC"Equation Native #Q FMicrosoft Equation 3.0 DS Equation Equation.39q5pE[ n1()=n FMicrosoft Equation 3.0 DS Equation Equation.39q_1224361596FFE_ВE_ВOle %CompObjEG&fObjInfoH(0y n(2)'=  FMicrosoft Equation 3.0 DS Equation Equation.39qfpELV n2Equation Native )L_1224361643KFE_ВE_ВOle +CompObjJL,fObjInfoM.Equation Native /_1224361749ISPFE_ВE_ВOle 2()=n!(n"2)!" 2! FMicrosoft Equation 3.0 DS Equation Equation.39q0X n(k)'= CompObjOQ3fObjInfoR5Equation Native 6L_1224361765UFE_ВE_ВOle 8CompObjTV9fObjInfoW;Equation Native < FMicrosoft Equation 3.0 DS Equation Equation.39qfx nk()=n!(n"k)!" k!_1222709136ZFE_ВE_ВOle ?CompObjY[@fObjInfo\B FMicrosoft Equation 3.0 DS Equation Equation.39q: x 1 FMicrosoft Equation 3.0 DS Equation Equation.39qEquation Native C6_1222709198g_FE_ВE_ВOle DCompObj^`EfObjInfoaGEquation Native H6_1222709251dFE_ВaВOle I8: x 2 FMicrosoft Equation 3.0 DS Equation Equation.39q"0: p 00 FMicrosoft Equation 3.0 DS EqCompObjceJfObjInfofLEquation Native M>_1222709312bqiFaВaВOle NCompObjhjOfObjInfokQEquation Native R>uation Equation.39q": p 10 FMicrosoft Equation 3.0 DS Equation Equation.39q": p 01_1222709364nFaВaВOle SCompObjmoTfObjInfopVEquation Native W>_1222709418lsFaВaВOle XCompObjrtYf FMicrosoft Equation 3.0 DS Equation Equation.39q": p 11Oh+'0 , @L l x  ObjInfou[Equation Native \>1TableۓSummaryInformation(x]:!Ie01.Fm,A\WE J6FbA-"r{O39|߽g. 5B!5s!\e9N'Nά3. yO)ʟٺLha.\O+"W|aN>R4w@ r|޷ƶh{,m6wlpAoG̚wt~=!rҀY~$Vn>xo\!Me@+.;⅜t+vȚry̧W71o\gt~<(chXG'*KviA0x}S!h>k>b{.[G\Tr}泔3m'uBdfՇ27hr)S#DOvɏ p/ib23~Ʌra~CG dA297H Y]P_AX< 3HGB{(qthJErRB4Fd*z N&C@}H1Q5!m\m YH g[譹݌Teiq(y9i'Y9!O$Om y#2"YP?'b=(@+݉VM坂Dd b  c $A.? ?3"`?2s@(Od͂Ã`!s@(Od͂ `41Q xڥ]HQΌ:jj.!d=TH ч__=DDEP=,KAPX!AKӽwfl*,s{=sgD,#$D>x= atT)Ye0?UIi:X>*jnO z(?ߴt$WkK!>̭̓>?yԒ+w:ֺdt1aSN~Ÿ#rfol:q~WVGDhJNxb"ݧd8y.rH+Ι?f}2:҅qfϛ>yRc+p&\x / WJ0^=Er~~D\b:Yz|&Jgcب`t`zy@ֿ9IAY=2Y;|| /rLk~_y];|ɩ{WF" 1cŐgs!z _vAy$~]x;׻߷?ֻazBT B}m_-k"!c9Ǖ ,#):R<6(ĸcgAI79^/4eZbfpq+}Ҵ;-'X2#Ftqr @bsv- Jޚ[ZgBSuywAgt{~pl$E3R+]y \r E/!/X\[ckPnH-u <]2'UJ=h4Dd @b  c $A/? ?3"`?2~–_;?xCڢ bZz`!R–_;?xCڢ b (+  xcdd``fed``baV d,FYzP1n:&,B@?b u X ㆪaM,,He` @201d++&1X +|-ʟ6h(.P56J`| [ 0ѕ3d>#d؞l=}`{"+2 I9 \|=p{ށ]j[ 5.pȂf `p\021)W2Lԡ"|b@3X?)fDd t hb  c $A0? ?3"`?2ت^4=y4`!ت^4=y4 @q|xcdd``> @c112BYL%bpu.n@=/$@|m8\Y7D⎆x ?!`)_ dn%Q Q! ~ AyD+^m*aOσGU%T(*?yp!G_[A&^ǒ( # sO y," ˂Є$; | 8?T$hxAp?t㜨|G3YQ,1ʯbsBV`Uk`˙ Qp()Jd2 h`J]3A\ \F#b;\221)W2aPdh,Āk`HM\#Dd b  c $A2? ?3"`?2mj]qce-H)I`!Aj]qce-H) Hxcdd`` @c112BYL%bpu 0D@22Nps@&UrAC r`CDkF&&\1 @ ]` "]%Dd b  c $A3? ?3"`?2oR;cM6c.KŒ`!CR;cM6c.`:Hxcdd`` @c112BYL%bpu 0D@22Nps@&UrAC r`CDkF&&\R @ ]` bg!t?00_#Dd b  c $A2? ?3"`?2mj]qce-H)I`!Aj]qce-H) Hxcdd`` @c112BYL%bpu 0D@22Nps@&UrAC r`CDkF&&\1 @ ]` "]%Dd b  c $A3? ?3"`?2oR;cM6c.K `!CR;cM6c.`:Hxcdd`` @c112BYL%bpu 0D@22Nps@&UrAC r`CDkF&&\R @ ]` bg!t?00_Dd b  c $A4? ?3"`?2o[iwB2`!o[iwB!xcdd`` @c112BYL%bpu 13X?V*Dd 0b  c $A5? ?3"`?2i%s M&8шE`!=%s M&8шkH xcdd`` @c112BYL%bpu#I32Ha g؞ F=g.U䂆8d 3v0o8.+KRs*@2u(2t5= ocDd b  c $A7? ?3"`?2ΎXEɽ0^`!ΎXEɽ0~@ hxڕK@ݥM (X'%:NҥBb -lDcG "tPJ ;x{w](Et)`#DgFHZ{ǭy4!b%5=I3&hB5GBm7]/,lPG ;-lqkZ17nS uJ Wk.z{:zV/&ELZTaI?\-12va4&WڊOibJWچs-]J(N*m.Ƹ_~]t°OfN7;k󭙻vg]LaZuޅ/ M>zƐQ )YRR8)?칲fďf%5Rviɓ./rYگ#_}~<.j\dA0Sk~4F~Aze[X5د枏jb@:~b$͞S;L<09w?;_3u<-K\.(~?! 9FM9\=Bzǩ<5F9oFzw!;ʆm-Bw\~)aL 㹇8kiB s{l\7Y vcuZ8k~8Dd @b  c $A9? ?3"`?2!b$qIRN^`!V!b$qIRN  $xcdd``fcd``baV d,FYzP1n:&B@?b u  UXRY7S?&,e`abM-VK-WMcرsA V0Z^+T TXAZc+a6ߴʷb`S@penR~^ > ᰑD@9dm$b.#\&& E\p-8&PRpeqIj.C \E.PdSDd b  c $A:? ?3"`?2jB?v%_?yϪ`!qjB?v%_?h?xcdd``Ned``baV d,FYzP1n:! KA?H1, @P5< %! `3);aV&br<K>bi2si#/ O@:*!|&^f? οCkG} _@&TD@edeнp~& Ma`X%gG!ݟ vm%4ֹ)|h 0y{iI)$5"\E.Dd TTb  c $A;? ?3"`?2O>-˙f%+"`!#>-˙f%  XJXJxcdd``> @c112BYL%bpu,"ITB=AEf-$ou9PױQXQ>,1ʯbsBV (H*Pc30ئ"2S 7*'Fp3D[7D(A2» sAk.p>nv0o`dbR ,.Ie C z0ec7Dd TTb  c $A=? ?3"`?2O2YwlU?ky<+`!#2YwlU?ky<  XJXJxcdd``> @c112BYL%bpu 1,Iy Dd b  c $A>? ?3"`?2Ww1k Mbm+3`!+w1k Mbm+`@+xcdd``Nbb``baV d,FYzP1n:! KA?H1a,@=P5< %! vfjv,L ! ~ Ay ;|.? _y. d*F\ bA:*a|Q?Ο*&]\ Ma``bm.f-]A|](_Y`B+@?E7N9\?*_?ǂ}I>z F\ /eBsA;L'Phn``KF&&\K s: @> 193XYDd b  c $A?? ?3"`?2. H;é->K `! H;é->Kn@8xڥ/CQ=}-n "tĠ#VIŏ4o4`d``0YՈs徜yshEBBleY!-qHVgm#%qs똯|#@;#ѥxPeG㫛8 [TBȣ|!u띸HwT!l"hX*Ms/%}ŦMdOzODfTk?KХ) *xܭU\=\T]9>,s7ލOz_z PSuЃefb*g~1C=l-UQ߾{V]y^_ͩZVdaWbݾx@ Nҙ18n..D]%Ds5R"SNDd @b  c $A@? ?3"`?2N-0o*`!"-0oR xcdd``> @c112BYL%bpu @c112BYL%bpu|ck`!Z~>|ckj Vxcdd``ed``baV d,FYzP1n:&B@?b u  ㆪaM,,He` @201d++&1X +|-$&T TAZc+a\ ~4o†*_C~`ve H@$w~ 'ďD 5̨5.(n`Ma`ŸpC< #lq|&<41 .h 0y{iI)$5A d/P"CXY=ÌtDd @b  c $A@? ?3"`?2N-0o*`!"-0oR xcdd``> @c112BYL%bpubi[2si#/@:+a= ~K"y12p{0%ˀL(Y$ǘ"A ] 05p~,g1ACGP@penR~C=׍p#_t.Fx\+ns1KXb. ߡL|%o p|%\? ~ -_ˉ c -jx/`WM=R !J׀AJNT`E03V_g N9E0`&pAs*87ͧ `pgdbR ,.Ie P"CXY=0jDd @b  c $A@? ?3"`?2N-0o*`!"-0oR xcdd``> @c112BYL%bpuڗ{;)xTfSIK!z LB5BHBT %z+TQYXD),B׋JBԈ-b%vxWPE*T֣k7?uUoREe,z-oDU4Hz+i-8qBdתRJ 87&jRJZ*4(~*Q*G&iT4Uǩ ~G~Bz^Kի^AKUuAUT]PuAUT]<5PIUT]PuA3{sܪn"dx P@Ô?=1\Nm{N-hΘOOGdQt*3͛i6h|yqN2kPF{稺B Ćerѣ}Z窺;TOϩ _唘 r9м'"#TN^ y)47hQ|l0c; m/!mNlYK`eT;%/uj7Tnvc _{`/3_ ^1pq8Lg+L%8q3tt^`:pFNL-8cLgNy 'ta:kvn>)+Sm]FVwV¹¹鬆}s0;g:t~g g;g'ӹNӹ΃LL!8?a:y< sON!8`:O%yίsp~t~wL9g8/ yMo 8̴&9HSm̘fh,0089C460ak0 3̄f&h,0G`h0Q9Jc s fLLjfƒ sf8LLifR 3y04̴fi,0 ?T('B$ Y X3,f%0K4Y T3K,ee042Y\3,gs`9da0+5J9\͜K\ A9|͜O|ц7PM>?%d.Y˰vf.#simV 2ӚdڬFzfVY-X+B3Ws˻I43DfH6WaWi*2Wۚj2+͵X̵dQo#s|z{ 4:77I6~F }zhm6A3l7[j=C 1G43BfD^nm~ݚrيjf+T7`{+7Xj>2ǭ6ܦmd~kߍ5vdkĶA-˙f%+O`!#>-˙f%  XJXJxcdd``> @c112BYL%bpu @c112BYL%bpu @c112BYL%bpu-˙f%+g`!#>-˙f%  XJXJxcdd``> @c112BYL%bpu-˙f%+l`!#>-˙f%  XJXJxcdd``> @c112BYL%bpů'((yZcHJ=ًi%q9(*w9 vgFo៛W }Jā),e]Ʋ&"jA#MʀMf!~/aBDd Hb  c $AH? ?3"`?2lEp߳2h`!`lEp߳2b@".xcdd``6dd``baV d,FYzP1n:&fV! KA?H1Z պ7$# !lo&`'0LYI9 O<|bرsA V0Z~A -PHq11TBk˼\p?M`k\! ~ Ay8 1n#J p_^FܼJ.hlpc h\0y{qĤ\Y\2C 2Q>wlGDd b  c $AI? ?3"`?2]do ufm`!e]do ufb83xcdd``6dd``baV d,FYzP1n:&fV! KA?H1Z XVsC0&dT20ͤ KP 27)?a₏B ;|.? _o  eF\L|, .2S y  #l47$37X/\!(?71;!20Y ǁk`HW .p v0o8+KRs@2u(2tA4T}b@#3Xw>ZDd b  c $AJ? ?3"`?2FjZ5$67+ /`!xFjZ5$67+ z8Fxcdd``ed``baV d,FYzP1n:V! KA?H1c 憪aM,,He`7S?&meabM-VK-WMcرsA V0Z>?Mh .P16Z3oc|ᣛ W&00|Q =@FBavw(*_/b῀aI#_ǘ_58&BH{F&&\Y @ ]` "z2xHBDd Hb  c $AK? ?3"`?2B'=ӏ=h`!`B'=ӏ=b@".xcdd``6dd``baV d,FYzP1n:&fV! KA?H1Z պ7$# !lo&`'0LYI9 7v.(İc@`|@" P.P56bb eiuy\cd&0͵f. ܐbr<7ם df%o#8?a/#Ib ln^%4614.=8fdbR ,.IePԡRYݏ`tDd |b  c $AL? ?3"`?29zj M4_#`!9zj M4_#6` xڕ=KAg._g#ZX$)DI/ZF8Q@.Xl$ؘ"EkZiB0fI(cywvfwD3_0b0BT}lF}к(M+ƣ$̂/`sH̸5GiZ} aC .1CDS C͖)xAK(RK;[=gjg{?EڋH݅Hqhc(^2 _8'MoL@ǃsҔyNo}~~׃\gO R7̢[Hd-6tob2Trb]A61~ƉEDd [b  c $AM? ?3"`?2թrz;_:1kt`!cթrz;_:1b`S1xcdd``6dd``baV d,FYzP1n:&V! KA?H1Z @e+깡jx|K2B* RvfRvL@(\)Î%[iX u9c" HK%ļ!ՍlF!!*"dL}Һ(̚cQ28 s1PƗ,3cdLQ(,+9ohC}}G !EޣOG#,xX]"4:S|.N+6s'V{k޺6ZnqSO)>#!'ʏl:EQGQqmK=4빫Mj%؟}u -u])ul"3ƍ̫})M1iq;)^%ږaz1Dž?70 ;n ~3CDd Tw0  # AO2TKSZ'rN0d`!(KSZ'rN RXJxcdd``> @c112BYL%bpu @c112BYL%bpubޱUsi#?@Z*!5Hy F\Ps}v& `p021)W2ԡ-_`n LNDd |0  # AQ2Y@%NHd5`!-@%NHd`h0xcdd`` @c112BYL%bpu#1dBA%7\` ;FLLJ% I s: /2NDd ||0  # AS2Y,[4 5`!-,[4 ``00xcdd`` @c112BYL%bpu#1dBA%7\` ;FLLJ% A2u(2tA4A!_ v120eC?NDd T|0  # AT2Yl r7\v\5`!-l r7\v\ `XJ0xcdd`` @c112BYL%bpu#1dBA%7\` ;FLLJ% s: /25L8 Bernoulli Random Variables in n Dimensions shermanp Normal.dotm shermanp56Microsoft Office Word@t@e}@b@d)l1՜.+,0@ hp  "(Engineering Computing SuDocumentSummaryInformation8epCompObjkypport ServicesXyJ 6 Bernoulli Random Variables in n Dimensions Title  F'Microsoft Office Word 97-2003 Document MSWordDocWord.Document.89q^ 2 0@P`p2( 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p8XV~_HmH nH sH tH @`@ NormalCJ_HaJmH sH tH DA`D Default Paragraph FontRiR  Table Normal4 l4a (k (No List 4@4 lHeader  !.)@. l Page NumberPK![Content_Types].xmlj0Eжr(΢Iw},-j4 wP-t#bΙ{UTU^hd}㨫)*1P' ^W0)T9<l#$yi};~@(Hu* Dנz/0ǰ $ X3aZ,D0j~3߶b~i>3\`?/[G\!-Rk.sԻ..a濭?PK!֧6 _rels/.relsj0 }Q%v/C/}(h"O = C?hv=Ʌ%[xp{۵_Pѣ<1H0ORBdJE4b$q_6LR7`0̞O,En7Lib/SeеPK!kytheme/theme/themeManager.xml M @}w7c(EbˮCAǠҟ7՛K Y, e.|,H,lxɴIsQ}#Ր ֵ+!,^$j=GW)E+& 8PK!Ptheme/theme/theme1.xmlYOo6w toc'vuر-MniP@I}úama[إ4:lЯGRX^6؊>$ !)O^rC$y@/yH*񄴽)޵߻UDb`}"qۋJחX^)I`nEp)liV[]1M<OP6r=zgbIguSebORD۫qu gZo~ٺlAplxpT0+[}`jzAV2Fi@qv֬5\|ʜ̭NleXdsjcs7f W+Ն7`g ȘJj|h(KD- dXiJ؇(x$( :;˹! I_TS 1?E??ZBΪmU/?~xY'y5g&΋/ɋ>GMGeD3Vq%'#q$8K)fw9:ĵ x}rxwr:\TZaG*y8IjbRc|XŻǿI u3KGnD1NIBs RuK>V.EL+M2#'fi ~V vl{u8zH *:(W☕ ~JTe\O*tHGHY}KNP*ݾ˦TѼ9/#A7qZ$*c?qUnwN%Oi4 =3ڗP 1Pm \\9Mؓ2aD];Yt\[x]}Wr|]g- eW )6-rCSj id DЇAΜIqbJ#x꺃 6k#ASh&ʌt(Q%p%m&]caSl=X\P1Mh9MVdDAaVB[݈fJíP|8 քAV^f Hn- "d>znNJ ة>b&2vKyϼD:,AGm\nziÙ.uχYC6OMf3or$5NHT[XF64T,ќM0E)`#5XY`פ;%1U٥m;R>QD DcpU'&LE/pm%]8firS4d 7y\`JnίI R3U~7+׸#m qBiDi*L69mY&iHE=(K&N!V.KeLDĕ{D vEꦚdeNƟe(MN9ߜR6&3(a/DUz<{ˊYȳV)9Z[4^n5!J?Q3eBoCM m<.vpIYfZY_p[=al-Y}Nc͙ŋ4vfavl'SA8|*u{-ߟ0%M07%<ҍPK! ѐ'theme/theme/_rels/themeManager.xml.relsM 0wooӺ&݈Э5 6?$Q ,.aic21h:qm@RN;d`o7gK(M&$R(.1r'JЊT8V"AȻHu}|$b{P8g/]QAsم(#L[PK-![Content_Types].xmlPK-!֧6 +_rels/.relsPK-!kytheme/theme/themeManager.xmlPK-!Ptheme/theme/theme1.xmlPK-! ѐ' theme/theme/_rels/themeManager.xml.relsPK] 2Kd}K2Kd}K  %%%%%(!6z "+'E)3+,./28r:D=lBFEJLlN?KLMOPQSTUWYD.<+BER+cqt{&f;; P/o8lALO  "'-27=NRVX` t v "68EY[dxzt  46fz|$8:   " 6 8 0!D!F!O!c!e!!!!!!!+"?"A"U"i"k"#2#4#J#^#`#y###;$O$Q$$$$$$$%%%&0&2&&&&&&&&' ''('*'7'K'M'''''''\(p(r(o))))))***+++:,N,P,000011b1v1x1%292;2222333444/5C5E5X:l:n:Z=n=p=u====>>>>>>>>AAA0BDBFBBBBvCCCDDDDDDEEEVFjFlFFFFGGG H H"H'H;H=HHHH%I9I;IIII*J>J@J`JtJvJ(KKFKZK\K,M@MBMGM[M]MaMuMwMMMMM N NN%N'NNNNO*O,OkOOOOOOOOOP%P'P,P@PBPPPPPQQTRhRjRUUUUUUVXjXlXXXXwYYYYYY [[![ ]] ]z]]]]]]]]]I^]^_^u^^^^__;_O_Q_|____ ` ````~aaaQbebgbccc-dAdCdIe]e_eBhVhXhiiiiii|jjjjjjjjjjjjjkkk3k5k>kRkTk_kskukkkkkkkkl ll(l*l5lIlKlVljlllwlllllllllIn]n_nenyn{nnnnnoo*o>o@ocowoyoooolppppppq(q*qrrrr s sBsVsXsrsssXtltnttttu&u(uz@z[zozqzzzzzzz{{{L{`{b{{{{L|`|b||||||||||}}} ~~ ~2~F~H~~~~8LNUikqh|~')Rfhqz5IK "چH\^ӈ)=?5IKauwʊ̊(<> k,@BUik#%)=?@TVϗїܗܘ%',@BÙʙޙ,@BJ^`fz|!57<PRɛ˛cwyӜ՜ڜ̝,@Bn̟Ο[oqѠӠؠɡݡߡOceǢɢ6JL{ϤѤ!57˥ͥ#%m¦ĦDXZxۧ ';="68G[]qͪϪ !zYmouϲ';=˳ͳҳAUW}Nbd$&2FHFZ\0DFRfhr-ACypj~>RT1EG Pdf8LN+?A)=?%'^rtwI]_4HJz35vvuMacv       & ( 8 L N     2 4    h | ~ @TVk';=BVX  K_azCWYdxz ?SU)=?{#%[oq>RTj~  "|Pdf  ' ; = y      !!!#$$\$p$r$$$$%&&_&s&u&&&&0'D'F''''''')()*)2)F)H)))))))c*w*y**** +4+6+<+P+R+v++++++?,S,U,,-@-B----------000C1W1Y1T2h2j2444455666777{777777|999999i:}::;;;;<<<<< >>>|@@@@@@&B:B  0A ? ? 3"`?  HD   0A ? ? 3"`?A  0A ? ? 3"`?d    vA ? ?F  % E< 5E<70RHERH9  C"`??B S  ?5"6K 84t@} {u T?|u }u O"~u i"u tI"u  u ld"u  T"u c"u \$K K B*urn:schemas-microsoft-com:office:smarttagscountry-region9 *urn:schemas-microsoft-com:office:smarttagsplace= *urn:schemas-microsoft-com:office:smarttags PlaceName=*urn:schemas-microsoft-com:office:smarttags PlaceType (HF   &&::==VVyjzjkkuu\lvyþ;ASV?EPV(. ]`",/HLZ^_c]dy  *FLuvwx}~ cgX^gm9:/5@#F###<<<<'?-?AAmEsEEEEEEFFFFFIFLF\F`FdFhFkFoF|FFFF"K"K$K$K%K%K'K(K*K+K-K.KGKHKKVZR\ ] `   z jmkn!<D^d-6rt cf$  -!0!!!("+"##G#J#v%y%%%&&&&&&&&1'7'''Y(\(((h)o)**++8,:,00&3(37 7 7_7::;;i;k;;;+<-<q=t===>>>>??@@AAAABBDD#H'HHHyJ|J%K(KCMGMOOOOVVMXVXXY[[[[[[s]z]]]E^I^n^u^_ _____``bbffLgNggghhiizj|jjjjjkkkkkllTlVlllanen'o*ooofplp qqkrmrrr_shsHvv{wwwwxxyyzzz{b}h}mqehkq͆چڇއV^Јӈ&)^ahl:z՗ؗ:<ۛ^cin@D" EGvzqu!$~-2sy"$Կֿqs INSVortympMRej}JN16INUY]`$(',?DHMZ_hqfhy *EO^c58'- 9=cgqw#%TYdf#%ADEHINX_gnv|P^b/4IM      >@mbd:?dj  w|MP##$$&&-'0'''-)0)))8+;+9,?,--~00=1C177M8V888V9Z9::;;<<AAEEEEEEEFFF\F`FsFvFwF|FFFGGHHKK"K"K$K$K%K%K'K(K*K+K-K.KGKHKK3333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333333"9E\d{t$;" 9 !!$$$$&&&&& ''+'7'N'''o)):,Q,0001b1y12244/5F5Z=q=u===>AA0BGBBBvCCDDDDVFmFHH(K?K,MCMaMxMMMM NN(NP(P,PCPPPPQXXwYYYY ["[ ]!]z]]]]u^^~aaQbhbccIe`eBhYh|jjjjjjjjjkk6k>kUk_kvkkkk ll+l5lLlVlmlwllllllnn*oAocozooolppppq+qrrr sBsYsXtotttu)uγҳAX'2I¸0GRir-DyPg8O+B(z6vvMdv     ) 8 O  5   h  @Wk KbzCZd{  ?V)@{[r>Uj #|Pg ' > y    !!$$%&_&v&&'0'G''''')+)2)I)))))c*z*** +7+<+S+v++++?,V,----00C1Z1T2k24445{777799i::;;;<<< > >|@@@@&B=BCCC D4DKDDD9EPEQEXEFFFFFFFF~GGGHHTIkIIIIJ6JMJOJfJJJJJKK!K"K"K$K$K%K%K'K(K*K+K-K.K6K9KDKHK`KaKKK"9E\d{t$;" 9 !!$$$$&&&&& ''+'7'N'''o)):,Q,0001b1y12244/5F5Z=q=u===>AA0BGBBBvCCDDDDVFmFHH(K?K,MCMaMxMMMM NN(NP(P,PCPPPPQXXwYYYY ["[ ]!]z]]]]u^^~aaQbhbccIe`eBhYh|jjjjjjjjjkk6k>kUk_kvkkkk ll+l5lLlVlmlwllllllnn*oAocozooolppppq+qrrr sBsYsXtotttu)uγҳAX'2I¸0GRir-DyPg8O+B(z6vvMdv     ) 8 O  5   h  @Wk KbzCZd{  ?V)@{[r>Uj #|Pg ' > y    !!$$%&_&v&&'0'G''''')+)2)I)))))c*z*** +7+<+S+v++++?,V,----00C1Z1T2k24445{777799i::;;;<<< > >|@@@@&B=BCCC D4DKDDD9EPE~G~GHHTIkIIIIJ6JMJOJfJJJJJKK"K"K$K$K%K%K'K(K*K+K-K.KGKHKzKKKKKKKKK.2vWFnl?o8bKhj^`o(() ^`hH. pLp^p`LhH. @ @ ^@ `hH. ^`hH. L^`LhH. ^`hH. ^`hH. PLP^P`LhH.808^8`0o(() ^`hH. pLp^p`LhH. @ @ ^@ `hH. ^`hH. L^`LhH. ^`hH. ^`hH. PLP^P`LhH.808^8`0o(() ^`hH. pLp^p`LhH. @ @ ^@ `hH. ^`hH. L^`LhH. ^`hH. ^`hH. PLP^P`LhH.h^`OJQJo(hHh^`OJQJ^Jo(hHohpp^p`OJQJo(hHh@ @ ^@ `OJQJo(hHh^`OJQJ^Jo(hHoh^`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHohPP^P`OJQJo(hH^`o(() ^`hH. pLp^p`LhH. @ @ ^@ `hH. ^`hH. L^`LhH. ^`hH. ^`hH. PLP^P`LhH.hFo8.2        jT        !h                 ʎ8        -7z?=rh} v : % L ' @)}a'_ D1KP10M>[w$ [W 4E!}!"6E"a%o(% (ne(C`,67-|.H1!2OP2e_273]5X]5"6'p6v29R<$=1y=c!>f>3A%KARBZB%FakFgHT7JKJK]NO?P IPNRPdQRRkX8YKZLZX]e^}^ [_v`6aMabL3bud! fnhGi|i|&jR`lmAim.opph*rs\}sY{h{h|6|Q }G<}~z%g"C<w%aU9s{y)NTOl>Er'eQ48g&v#qoTft~n9etw`_&~]ebgoUB=lN,k(cPm<_ o4]W{za$t_vlQ$/}HVCiv%"qCOZy8<woP}u 13^[dkv['5`]sU1J:ME5Z&kf54V?>EL;t!'$/zL"K$K@lrrrrrrzz./7K`@``@``,@``<@``T@``p@``@``@``@`` @``8@``@@`,`\@`4`l@`J`@`@UnknownG* Times New Roman5Symbol3. * Arial?= * Courier New;WingdingsACambria Math"1hF^(f8~*l1)Xl1)X4dyJyJ2QKP ?"2!xx5 Bernoulli Random Variables in n Dimensionsshermanpshermanp