A quick example calculating the column space and the nullspace of a matrix.

Isabel K. Darcy
Mathematics Department
Applied Math and Computational Sciences
University of Iowa

$$
\text { Determine the column space of } A=\left[\begin{array}{cccc}
1 & -10 & -24 & -42 \\
1 & -8 & -18 & -32 \\
-2 & 20 & 51 & 87
\end{array}\right]
$$

Column space of A

$=$ span of the columns of A
= set of all linear combinations
of the columns of A
Determine the column space of $A=\left[\begin{array}{cccc}1 & -10 & -24 & -42 \\ 1 & -8 & -18 & -32 \\ -2 & 20 & 51 & 87\end{array}\right]$

Column space of $\mathrm{A}=\operatorname{col} \mathrm{A}=$
$\operatorname{col} A=\operatorname{span}\left\{\left[\begin{array}{c}1 \\ 1 \\ -2\end{array}\right],\left[\begin{array}{c}-10 \\ -8 \\ 20\end{array}\right],\left[\begin{array}{c}-24 \\ -18 \\ 51\end{array}\right],\left[\begin{array}{c}-42 \\ -32 \\ 87\end{array}\right]\right\}$
Determine the column space of $A=\left[\begin{array}{cccc}1 & -10 & -24 & -42 \\ 1 & -8 & -18 & -32 \\ -2 & 20 & 51 & 87\end{array}\right]$

Column space of $A=\operatorname{col} A=$
$\operatorname{col} A=\operatorname{span}\left\{\left[\begin{array}{c}1 \\ 1 \\ -2\end{array}\right],\left[\begin{array}{c}-10 \\ -8 \\ 20\end{array}\right],\left[\begin{array}{c}-24 \\ -18 \\ 51\end{array}\right],\left[\begin{array}{c}-42 \\ -32 \\ 87\end{array}\right]\right\}$
$=\left\{\left.c_{1}\left[\begin{array}{c}1 \\ 1 \\ -2\end{array}\right]+c_{2}\left[\begin{array}{c}-10 \\ -8 \\ 20\end{array}\right]+c_{3}\left[\begin{array}{c}-24 \\ -18 \\ 51\end{array}\right]+c_{4}\left[\begin{array}{c}-42 \\ -32 \\ 87\end{array}\right] \right\rvert\, c_{i}\right.$ in $\left.R\right\}$
Determine the column space of $A=\left[\begin{array}{cccc}1 & -10 & -24 & -42 \\ 1 & -8 & -18 & -32 \\ -2 & 20 & 51 & 87\end{array}\right]$

Column space of $\mathrm{A}=\operatorname{col} \mathrm{A}=$

$$
\operatorname{col} A=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
1
\end{array}\right][-107 \text { ner answer }\right.
$$

$$
\left.\left.=\begin{array}{l}
\text { Want simpler and } \\
\left.\mathcal{L}\left[\begin{array}{l}
1 \\
-2
\end{array}\right]+c_{2}\left[\begin{array}{c}
-10 \\
-8 \\
20
\end{array}\right]+c_{3}\left[\begin{array}{c}
-24 \\
-18 \\
51
\end{array}\right]+c_{4}\left[\begin{array}{c}
-42 \\
-32 \\
87
\end{array}\right] \right\rvert\,
\end{array} \right\rvert\, \begin{array}{c}
c_{i} \text { in } R
\end{array}\right\}
$$

Put A into echelon form:

$$
\left[\begin{array}{cccc}
1 & -10 & -24 & -42 \\
1 & -8 & -18 & -32 \\
-2 & 20 & 51 & 87
\end{array}\right] \xrightarrow[\substack{R_{2}-R_{1} \rightarrow R_{2} \\
R_{3}+2 R_{1} \rightarrow R_{3}}]{ }\left[\begin{array}{cccc}
1 & -10 & -24 & -42 \\
0 & 2 & 6 & 10 \\
0 & 0 & 3 & 3
\end{array}\right]
$$

Determine the column space of $A=\left[\begin{array}{cccc}1 & -10 & -24 & -42 \\ 1 & -8 & -18 & -32 \\ -2 & 20 & 51 & 87\end{array}\right]$

Put A into echelon form:
$\left[\begin{array}{cccc}1 & -10 & -24 & -42 \\ 1 & -8 & -18 & -32 \\ -2 & 20 & 51 & 87\end{array}\right] \xrightarrow[\substack{R_{2}-R_{1} \rightarrow R_{2} \\ R_{3}+2 R_{1} \rightarrow R_{3}}]{ }\left[\begin{array}{cccc}1 & -10 & -24 & -42 \\ 0 & 2 & 6 & 10 \\ 0 & 0 & 3 & 3\end{array}\right]$

And determine the pivot columns
Determine the column space of $A=\left[\begin{array}{cccc}1 & -10 & -24 & -42 \\ 1 & -8 & -18 & -32 \\ -2 & 20 & 51 & 87\end{array}\right]$

Put A into echelon form:
$\left[\begin{array}{cccc}1 & -10 & -24 & -42 \\ 1 & -8 & -18 & -32 \\ -2 & 20 & 51 & 87\end{array}\right] \xrightarrow[\substack{R_{2}-R_{1} \rightarrow R_{2} \\ R_{3}+2 R_{1} \rightarrow R_{3}}]{\left[\begin{array}{cccc}1 & -10 & -24 & -42 \\ 0 & (2) & 6 & 10 \\ 0 & 0 & 3 & 3\end{array}\right]}$
And determine the pivot columns

$$
\text { Determine the column space of } A=\left[\begin{array}{cccc}
1 & -10 & -24 & -42 \\
1 & -8 & -18 & -32 \\
-2 & 20 & 51 & 87
\end{array}\right]
$$

Put A into echelon form:

$$
\left[\begin{array}{cccc}
1 & -10 & -24 & -42 \\
1 & -8 & -18 & -32 \\
-2 & 20 & 51 & 87
\end{array}\right] \xrightarrow[\substack{R_{2}-R_{1} \rightarrow R_{2} \\
R_{3}+2 R_{1} \rightarrow R_{3}}]{ }\left[\begin{array}{ccccc}
1 & -10 \\
0 \\
0
\end{array}\right]\left[\begin{array}{cc}
-24 & -42 \\
6 & 10 \\
0
\end{array}\right]
$$

And determine the pivot columns

$$
\text { Determine the column space of } \left.A=\left[\begin{array}{c}
1 \\
1 \\
-2
\end{array} \begin{array}{cccc}
-10 \\
\hline-8 \\
20
\end{array}\right] \begin{array}{ccc}
-24 & -42 \\
\hline 18 & -32 \\
51 & -37
\end{array}\right]
$$

$$
\text { Determine the column space of } A=\left[\begin{array}{ccc}
1 \\
1 \\
-2
\end{array} \begin{array}{cccc}
-10 \\
\hline-8 \\
20
\end{array} \begin{array}{ccc}
\hline-24 & -42 \\
\hline 18 & -32 \\
51 & -37
\end{array}\right]
$$

$$
\text { Determine the column space of } A=\left[\begin{array}{ccc}
1 \\
1 \\
-2
\end{array} \begin{array}{cccc}
-10 \\
\hline-8 \\
20
\end{array} \begin{array}{ccc}
\hline-24 & -42 \\
\hline 18 & -32 \\
51 & -37
\end{array}\right]
$$

col A contains all linear combinations of the 3 basis vectors:
$\operatorname{col} A=\left\{\left.C_{1}\left[\begin{array}{c}1 \\ 1 \\ -2\end{array}\right]+c_{2}\left[\begin{array}{c}-10 \\ -8 \\ 20\end{array}\right]+c_{3}\left[\begin{array}{c}-24 \\ -18 \\ 51\end{array}\right] \right\rvert\, c_{i}\right.$ in $\left.R\right\}$

$$
\text { Determine the column space of } \left.A=\left[\begin{array}{c}
1 \\
1 \\
-2
\end{array} \begin{array}{cccc}
-10 \\
\hline-8 \\
20
\end{array}\right] \begin{array}{ccc}
-24 & -42 \\
\hline 18 & -32 \\
51 & -37
\end{array}\right]
$$

$$
\text { Determine the column space of } A=\left[\begin{array}{ccc}
1 \\
1 & \begin{array}{ccc}
-10 \\
-2
\end{array} & \begin{array}{cc}
-24 & -42 \\
-8 & \\
20
\end{array} \\
\hline 18 & -32 \\
51 & -37
\end{array}\right]
$$

Determine the nullspace of $A=\left[\begin{array}{cccc}1 & -10 & -24 & -42 \\ 1 & -8 & -18 & -32 \\ -2 & 20 & 51 & 87\end{array}\right]$
Put A into echelon form and then into reduced echelon form:
$\left[\begin{array}{cccc}1 & -10 & -24 & -42 \\ 1 & -8 & -18 & -32 \\ -2 & 20 & 51 & 87\end{array}\right] \xrightarrow[\substack{R_{2}-R_{1} \rightarrow R_{2} \\ R_{3}+2 R_{1} \rightarrow R_{3}}]{ }\left[\begin{array}{cccc}1 & -10 & -24 & -42 \\ 0 & 2 & 6 & 10 \\ 0 & 0 & 3 & 3\end{array}\right]$

$$
\xrightarrow[\substack{R_{1}+8 R_{3} \rightarrow R_{1} \\
R_{1}-2 R_{3} \rightarrow R_{1} \\
R_{3} / 3 \rightarrow R_{3}}]{ }\left[\begin{array}{cccc}
1 & -10 & 0 & -18 \\
0 & 2 & 0 & 4 \\
0 & 0 & 1 & 1
\end{array}\right] \xrightarrow[\substack{R_{1}+5 R_{2} \rightarrow R_{1} \\
R_{2} / 2 \rightarrow R_{2}}]{ }\left[\begin{array}{cccc}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 1
\end{array}\right]
$$

Nullspace of $A=$ solution set of $A x=0$

Solve: $\mathbf{A} \mathbf{x}=\mathbf{0}$ where $\mathbf{A}=\left[\begin{array}{cccc}1 & -10 & -24 & -42 \\ 1 & -8 & -18 & -32 \\ -2 & 20 & 51 & 87\end{array}\right]$
Put A into echelon form and then into reduced echelon form:

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
1 & -10 & -24 & -42 \\
1 & -8 & -18 & -32 \\
-2 & 20 & 51 & 87
\end{array}\right] \xrightarrow[\substack{R_{2}-R_{1} \rightarrow R_{2} \\
R_{3}+2 R_{1} \rightarrow R_{3}}]{ }\left[\begin{array}{cccc}
1 & -10 & -24 & -42 \\
0 & 2 & 6 & 10 \\
0 & 0 & 3 & 3
\end{array}\right]} \\
& \xrightarrow[\substack{R_{1}+8 R_{3} \rightarrow R_{1} \\
R_{1}-2 R_{3} \rightarrow R_{1} \\
R_{3} / 3 \rightarrow R_{3}}]{ }\left[\begin{array}{cccc}
1 & -10 & 0 & -18 \\
0 & 2 & 0 & 4 \\
0 & 0 & 1 & 1
\end{array}\right] \xrightarrow[\substack{R_{1}+5 R_{2} \rightarrow R_{1} \\
R_{2} / 2 \rightarrow R_{2}}]{ }\left[\begin{array}{cccc}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & 2 \\
0 & 0 & 1 & 1
\end{array}\right]
\end{aligned}
$$

Solve: $A \boldsymbol{x}=\mathbf{0}$ where $\mathrm{A} \sim\left[\begin{array}{cccc}1 & 0 & 0 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 1 \\ 2 \\ 1\end{array}\right]\left[\begin{array}{llll}x_{1} & x_{2} & x_{3} & x_{4}\end{array}\right]\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right.$

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
-2 x_{4} \\
-2 x_{4} \\
-x_{4} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
-2 \\
-2 \\
-1 \\
1
\end{array}\right] x_{4}
$$

Solve: $A \boldsymbol{x}=\mathbf{0}$ where $A \sim\left[\begin{array}{ccc|c}0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & x_{1} & x_{2}\end{array} x_{3} \quad x_{4} . \left\lvert\, \begin{array}{lll}0 \\ 0 \\ 0\end{array}\right.\right.$

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
-2 x_{4} \\
-2 x_{4} \\
-x_{4} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
-2 \\
-2 \\
-1 \\
1
\end{array}\right] x_{4}
$$

Thus Nullspace of $A=$
Nul $A=\left\{\left.x_{4}\left[\begin{array}{c}-2 \\ -2 \\ -1 \\ 1\end{array}\right] \right\rvert\, x_{4}\right.$ in $\left.R\right\}$

Solve: $\mathbf{A x}=\mathbf{0}$ where $\mathbf{A} \sim \underset{(c c c \mid c}{\sim} \underset{0}{1}$
Thus Nullspace of $\mathrm{A}=$
$\operatorname{Nul} A=\left\{\left.x_{4}\left[\begin{array}{c}-2 \\ -2 \\ -1 \\ 1\end{array}\right] \right\rvert\, x_{4}\right.$ in $\left.\mathbf{R}\right\}=\operatorname{span}\left\{\left[\begin{array}{c}-2 \\ -2 \\ -1 \\ 1\end{array}\right]\right\}$

