ࡱ> #` j bjbj\.\. 4>D>DIX^^^^^^^rjjjjVlrfm^mmmmnn nuwwwwww$h^1qnn1q1q^^mmdwww1q^m^muw1quwwË^^mZm @?GjtgI,z0}vB,J^ٍpno|wod_pnnnw nnn1q1q1q1qrrr7<.rrr<rrr^^^^^^  Contents Critical Stress Areas of Bolt Threads Lengths of Thread Engagement Requirement Preloaded Bolts Methods of Applying and Measuring Preload Preload Relaxation Application Specific Testing Re-Torquing of Preloaded Bolts Change in Preload Relationship between Bolt Fatigue Life and Bolt Preload Preload for Bolts in Shear Bolt Bending Design criteria References Critical Stress Areas of Bolt Threads [1] The critical areas of stress of mating threads are: The tensile-stress area of the external thread (bolt) For steels of up to 100,000 psi ultimate tensile strength,  INCLUDEPICTURE \d "http://www.engineersedge.com/graphics/equation_thrdstrssa.gif" \* MERGEFORMATINET  where: At = tensile stress area of bolt thread. D = basic major diameter of the thread n = number of threads per inch For steels of over 100,000 psi ultimate tensile strength,  INCLUDEPICTURE \d "http://www.engineersedge.com/graphics/threadstrssb.gif" \* MERGEFORMATINET  where: Esmin = minimum pitch diameter of external thread The shear area of the external thread (bolt), which depends principally on the minor diameter of the tapped hole  INCLUDEPICTURE \d "http://www.engineersedge.com/thread_strength/image/assh.gif" \* MERGEFORMATINET  where: Knmax = maximum minor diameter of internal thread. Esmin = minimum pitch diameter of external thread.. Le =fastener thread engagement length in inches The shear area of the internal thread (hole), which depends principally on the major diameter of the external thread.  INCLUDEPICTURE \d "http://www.engineersedge.com/thread_strength/image/asn.gif" \* MERGEFORMATINET  Where: Enmax = maximum pitch diameter of internal thread. Dsmin = minimum major diameter of external thread. Lengths of Thread Engagement Requirement [1] If failure of a threaded assembly should occur, it is preferable for the bolt to break rather than have either the external or internal thread strip. In other words, the length of engagement of mating threads should be sufficient to carry the full load necessary to break the screw without the threads stripping. If mating internal and external threads are manufactured of materials having equal tensile strengths, then to prevent stripping of the external thread, the length of engagement should be not less than that given by the following value:  INCLUDEPICTURE \d "http://www.engineersedge.com/thread_strength/image/le3.gif" \* MERGEFORMATINET  Where: At = tensile stress area of screw thread Knmax = maximum minor diameter of internal thread. Esmin = minimum pitch diameter of external thread.. Le = thread engagement length in inches n = number of threads per inch In this formula, the factor of 2 means that it is assumed that the area of the screw in shear must be twice the tensile-stress area to attain the full strength of the screw (this value is slightly larger than required and thus provides a small factor of safety against stripping) If the internal thread is made of material of lower strength than the external thread, stripping of the internal thread may take place before the screw breaks. To determine whether this condition exists, it is necessary to calculate the factor J for the relative strength of the external and internal threads given by As x Tensile strength of external thread material (bolt) J = An x Tensile strength of internal thread material (hole) If the factor J is less than or equal to 1, the length of engagement is adequate to prevent stripping of the internal thread. If J is greater than 1, the required length of engagement Q to prevent stripping of the internal thread is obtained by multiplying the length of engagement Le by J: Q = J x Le For tapped bolt joint, if the material of tapped hole has lower strength than the bolt, the thread engagement length should be at least equal to Q in order to prevent the stripping of internal thread before the failure of bolt. If the thread engagement length is less then Q, the magnitude of the bolt preload should be reduced. Preloaded Bolts High preload tension increases joint strength, creates friction between parts to resist shear, and improves the fatigue resistance of bolted connections. Bolt preload in joints should be high enough to maintain joint members in contact and in compression. Loss of compression in a joint may result in loosening of fasteners under conditions of cyclic loading, and reduction of fastener fatigue life. The recommended preload Po can be determined from [1]: Po = 0.75 At Sp for reusable connections, and Po = 0.9 At Sp for permanent connections. where: Po = the bolt preload, At = the tensile stress area of the bolt, and Sp = the proof strength of the bolt. An approximate value of proof strength can be obtained from: Sp = 0.85 Sy, where Sy is the yield strength of the material. Methods of Applying and Measuring Preload Once the required preload has been determined, one of the best ways to be sure that a bolt is properly tensioned is to measure its tension directly with a strain gage. The choice of method of tensioning should be based on the required accuracy and relative costs. Tables 1 and 2 list the frequently used methods of applying bolt preload and the approximate accuracy of each method given by Machinerys Handbook [1] and NASA [2], respectively. The difference on the accuracy of the ultrasonic method between two Tables is due to the measurement instrument and the test control method. In field application involving large bolts, the error in accuracy may be much higher than the Table values. Table 1: Accuracy of Bolt Preload Application Methods [1] Method Accuracy Method Accuracy By feel 35% Computer-controlled wrenchTorque wrench 25%  below yield (turn-of-nut)  15%Turn-of-nut  15% yield-point sensing  8%Preload indicating washer  10% Bolt elongation 3-5%Strain gages  1% Ultrasonic sensing 1% Table 2: Accuracy of Bolt Preload Application Methods [2]  MethodAccuracyTorque-measurement: 1. Unlubricated bolts 35% 2. Cad-plated bolts 30% 3. Lubricated bolts 25%Other methods: 1. Hydraulic tensioners 15% 2. Preload indicating washers 10% 3. Ultrasonic measurement devices 10% 4. Bolt elongation measurement 5% 5. Instrumented bolts 5% Torque is relatively easy to measure with a torque wrench, so it is the most frequently used indicator of bolt tension. Unfortunately, a torque wrench does not measure bolt tension accurately, mainly because it does not take friction into account. The friction depends on bolt, nut, and washer material, surface smoothness, degree of lubrication, and the number of times a bolt has been installed. Fastener manufacturers often provide information for determining torque requirements for tightening various bolts. If this information is not available, the maximum and minimum expected preloads for bolt diameter d"  in the joint may be described by [3]: T Po,max =   (1.0 + u) KD T Po,min =   (1.0 - u) - Prelax KD where: Po,max = maximum expected bolt preload, lb Po,min = minimum expected bolt preload, lb T = applied torque, in-lb K = typical nut factor, 0.11 to 0.15 for lubricated fasteners and 0.2 for unlubricated fasteners, D = nominal fastener diameter (shank), in. u = preload uncertainty factor, in general, 25% Prelax = axial bolt preload loss, lb, about 5% of Po,min As an alternative to the typical nut factor method of determining preload, the torque-preload relationships can be determined experimentally. Here, the torque-preload relationships are determined by direct measurements taken from instrumented joint specimens. Statistical data is recorded for the torque required to achieve a desired bolt force. Bolt elongation is directly proportional to axial stress when the applied stress is within the elastic range of the material. If both ends of a bolt are accessible, a micrometer measurement of bolt length made before and after the application of tension will ensure the required axial stress is applied. The ultrasonic method of measuring elongation uses a sound pulse, generated at one end of a bolt that travels the length of a bolt, bounces off the far end, and returns to the sound generator in a measured period of time. The time required for the sound pulse to return depends on the length of the bolt and the speed of sound in the bolt material. The speed of sound in the bolt depends on the material, the temperature, and the stress level. For short bolts (L/D of less than 4:1) significant uncertainty may be dominated by the uncertainty in grip and thread lengths that determine the effect length of the fastener. The turn-of-nut method applies preload by turning a nut through an angle that corresponds to a given elongation. The method of calculating the nut-turn angle requires elongation of the bolt without a corresponding compression of the joint material. The turn-of-nut method, therefore, is not valid if there is a significant deformation of the nut and joint material relative to that of the bolt. The nut-turn angle would then have to be determined empirically using a simulated joint and a tension-measuring device. Preload Relaxation Preload relaxation may result over a period of minutes to hours after the first application of the preload due to: 1) Excess bearing stress under nuts and bolt heads caused by local yielding 2) Unevenly distributed bolt tension over the threads in a joint. Rretightening after several minutes to several days may be required. As a general rule, an allowance for loss of preload of about 5 per cent [3] may be made when designing a joint. Over an extended period of time, preload may be reduced or completely lost due to: 1) Vibration; 2) Temperature cycling, including changes in ambient temperature; 3) Creep of the joint materials 4) Joint loads The use of locking methods that prevent relative motion of the joint may reduce the problem of preload relaxation due to vibration and temperature cycling. Creep is generally an effect of softer material or bolt material in high-temperature. Differences in thermal expansion of the bolts and flange materials that might cause preload to increase or decrease must be taken into consideration. Application Specific Testing [2] Application specific testing refers to test conditions that closely resemble the actual configuration. The preload uncertainties defined above shall be used for small fasteners. Application specific testing is required for large fasteners. In general, a fastener is considered large if it has a diameter > 3/4. An application specific test must include the following items: a. Torque-Preload Tests: 1. Same lubricants 2. Same thread form 3. Same bolt diameter 4. Same type/size of torqued element (nut or bolt head) 5. Same joint configuration (a) Thickness (b) Material(s) (c) Surface finish (d) Washer(s) (e) Nut/nutplate/insert 6. Same torque method if torque is used (a) Approximately the same type of torque wrench (b) Torqued from same element (bolt head or nut) b. Preload Loss Tests: 1. Same preload level 2. Same length of thread engagement 3. Same bolt head and nut type/size/material 4. Same bolt diameter 5. Same joint configuration (a) Material(s) (b) Surface finish (c) Washer(s) (d) Number of joint interfaces 6. Same angle between bolt head/nut and joint interface c. Coefficient of Friction Tests for Flange and Shim Plates if not available from other resource. Care must be taken to maintain the calibration of torque and load indicators. Preload test shall include both the through-bolt joint and tapped-bolt joint. The preload loss shall evaluate the short-term preload relaxation and creep of the joint materials, but not the effects of vibration and the thermal cycling. Additional joint stiffness may be determined either by analysis or an application specific test. Fatigue S-N data may be obtained from the manufacture. The torque-preload relationships and the preload loss are determined by direct measurements taken from instrumented joint specimens. A valid application specific test must include an adequate sample and an acceptable Re-Torquing of Preloaded Bolts [2] Re-torquing of preloaded bolts using torque measurements as the means of determining the preload often results in unexpected preload values. If torque measurements are used to determine the preload in bolts which have undergone one or more installation cycles, they requires: Application specific testing, or Direct measurement or any method that does not rely on torque measurement. An installation cycle is defined as a procedure which produces a positive torque (increases preload) and then subsequently a negative torque (decreases preload) on a bolt. A preloaded bolt is in its first installation cycle until it is subject to a negative torque for the first time. Therefore, a bolt that has lost preload due to relaxation but as not been subject to a negative torque may be re-torqued and still considered to be in its first installation cycle. Change in Preload 1) Due to different coefficients of thermal expansion and temperature change [3]: If the bolt and flange materials have different coefficients of thermal expansion and the joint is subjected to a temperature change, it introduces a tension or relaxation in the bolt as: KbKj Pth = (    ( LDT(aj- ab) Kb + Kj Where Pth = axial bolt load due to thermal effects, lb Kb = bolt stiffness, lb/in. Kj = joint stiffness, lb/in. L = fastener grip length, in. DT = change in temperature, F aj = equivalent joint coefficient of thermal expansion, in./in./ F ab = bolt coefficient of thermal expansion, in./in./ F The stiffness of the bolt results from the stiffness of the bolt shank and the stiffness of the bolt thread. A bolted joint can include a number of separate parts and the individual part stiffness can be calculated approximately. The total joint stiffness is related to the individual stiffness values as shown below. 1/ Kj = ( (1/ Ki) where i = 1 to number of parts 2) Due to change in elasticity of temperature change: Let Kj1, Kb1 = joint stiffness and bolt stiffness at installation temperature Kj2, Kb2 = joint stiffness and bolt stiffness at operating temperature Po1 = preload at installation temperature Po2 = preload at operating temperature Then 1 1 1 1 Po1 (  +   ( = Po2 (  +   ( or Kb1 Kj1 Kb2 Kj2 1 1 1 1 Po2 = Po1 (  +   ( / (  +   ( Kb1 Kj1 Kb2 Kj2 3) Due to creep of the joint materials Creep is generally an effect of softer joint material or bolt material in high-temperature. If the creep deformation (c is know in the bolt joint, the loss of bolt preload Pcp is: KbKj Pcp = (    ( (c Kb + Kj 4) Due to external load [3]: When an external load is applied to tend separate the joint, part of this load will cause the further extension of the bolt (increase in bolt load). Part of the load will result in an increase of the joint thickness reducing of the compressive load on the joint as follows Pe = Peb + Pej where Pe = external load Peb = external load taken by bolt Pej = external load taken by joint For common joint designs the load is carried somewhere near the midplanes of the flanges. The loading plane factor is defined as the ratio of the distance between loading planes divided by the total thickness of the joint. distance between loading planes m =               total thickness of joint The resulting preload change on the bolt becomes: mKb Peb = (    ( Pe Kb + Kj mKb Pej = (1-     ( Pe Kb + Kj Relationship between Bolt Fatigue Life and Bolt Preload Fatigue life of a bolt is determined by the magnitudes of mean and alternating stress imposed on the bolt by external cyclic loads. If there is no bolt preload in loaded bolt joint, the bolt load is equal to the joint load. However, if preload is applied to the bolt, the joint is compressed and bolt load changes more slowly than the joint load as shown in the equation above (see Change in Preload Due to External Load) because some of the load is absorbed as a reduction of compression in the joint. This condition results in a considerable reduction in cyclic bolt-load variation and thereby increases the fatigue life of the fastener. Fatigue life usually presented in the form of S-N diagrams, where S stands for stress amplitude and N for number of cycle of applied load. The stress concentration points at the thread roots and the head-to-body fillets are the major factor, which affect fatigue life. Preload for Bolts in Shear Joints required to resist shear are designed as either friction-type or bearing-type connections. When shear connections subjected to stress reversal, server stress fluctuation, or where slippage would be undesirable, AISC [4] recommend using friction-type. In shear-loaded joints, with members that slide, the joint members transmit shear loads to the bolts in the joint and the preload must be sufficient to hold the joint members in contact and without additional sliding during the stress cycle. Therefore, the bolts are subjected to both tensile and shear loading simultaneously. In joints that do not slide, shear loads are transmitted within the joint by frictional forces that mainly result from the preload. Therefore, preload must be great enough for the resulting friction forces to be greater than the applied shear force. Shear loads are also produced due to preload torque. The shear stress induced in the bolt during application of the preload must also be considered in the bolted-joint design. Joints with combined axial and shear loads must be analyzed to ensure that the bolts will not fail in tension, shear or combined tension and shear. Bolt Bending Bolt bending may result from double shear, misalignment during assembly, use of long spacers, prying action, or from flanges that are several orders of magnitude stiffer than the bolt. In the latter case the flange tends to rotate as a rigid body, forcing the head of the bolt to rotate which applies moment loading to the bolt. Design criteria In general, for preloaded joints to work effectively they must meet the following criteria: 1) The bolt must have adequate strength. 2) The joint must have adequate strength 3) The bolt must have adequate fatigue life. The maximum and minimum preloads must be determined using of the following procedures: 1) typical uncertainty preload value or the application specific test, 2) the positive and negative thermal effects, and 3) the expected preload loss. The allowable stress criteria are defined in the NCSX design criteria [5]. The shear loads and tension load due to bolt preload and external loads shall be calculated from theoretical or empirical equations and the finite element analysis. 1) The bolt strength criteria The thread engagement length of the bolt shall provide adequate strength for the maximum bolt tension during installation and operating conditions Maximum bolt tension shall be determined from the maximum bolt preload, preload loss, thermal effects, and the external loads. If preload procedure involves the bolt tension and bolt torque, the combined tensile stress (von Mises stress) svm [1] and the maximum shear stress tmax determined by the Mohr s circle can be calculated from the following equations: svm = (st2 + 3ts2)1/2 tmax = [(st/2)2 + ts2)]1/2 where st is the axial applied tensile stress and ts is the shear stress caused by the torsion load application. The maximum bolt preload shall be limited by the axial tensile allowable of bolt tensile area and the bolt thread shear area. If the bolt is subjected to both tensile and shear loading simultaneously, the following relationship must hold true for the maximum bolt axial load [3] Rt2 + Rs3  OZ[\P Q R _ | } ̻yjXIX:Xhw!Z5CJOJQJ^JaJhr5CJOJQJ^JaJ#hKih65CJOJQJ^JaJh 5CJOJQJ^JaJ h fh fCJOJQJ^JaJh fCJOJQJ^JaJh?CJOJQJ^JaJ h_Th?hNCJOJQJ^JaJ h_Th?CJOJQJ^JaJh?5CJOJQJ^JaJ&h_Th?5>*CJOJQJ^JaJ hnh6CJOJQJ^JaJ  12[\lm5 6 Q R _ ` p q gd? 7$8$H$gd? 7$8$H$gdtj q |   Q % I J , - & F7$8$H$gda h7$8$H$^hgdw!Z h7$8$H$^hgd h7$8$H$^hgdR & F7$8$H$gdR 7$8$H$gd6 7$8$H$gd?  Q S T    $ ( ) * / бyhZIZI hnha~KCJOJQJ^JaJhFCJOJQJ^JaJ hnh=\aCJOJQJ^JaJ#hnhCJH*OJQJ^JaJ hnhLCJOJQJ^JaJ)jhnhCJOJQJU^JaJ hnhCJOJQJ^JaJhw!ZCJOJQJ^JaJ hnhRCJOJQJ^JaJ hnh6CJOJQJ^JaJh CJOJQJ^JaJ/ J K  % + , - . R X ﻦ~m\K=h[,CJOJQJ^JaJ hnh6CJOJQJ^JaJ hnhRCJOJQJ^JaJ hw!ZhCJOJQJ^JaJ hnha~KhnhH*hw!Z hnhhw!ZCJOJQJ^JaJ)j hnhCJOJQJU^JaJ)jhnhCJOJQJU^JaJh CJOJQJ^JaJ hnh CJOJQJ^JaJ hnhCJOJQJ^JaJX Y       ! P Q Y ͼ戮saPaPaP hnha~KCJOJQJ^JaJ#hnh{CJH*OJQJ^JaJh[,CJOJQJ^JaJ hnhCJOJQJ^JaJ)jhnh{CJOJQJU^JaJ)jhnh{CJOJQJU^JaJ hnhaCJOJQJ^JaJ hnhRCJOJQJ^JaJ hnh6CJOJQJ^JaJ hnh{CJOJQJ^JaJ  7LM?xy 7$8$H$gd 7$8$H$gdO+l 7$8$H$gd6 h7$8$H$^hgda & F7$8$H$gda h7$8$H$^hgd{ h7$8$H$^hgd 69:)KLͼޖޖo^o^޼L=LhN5CJOJQJ^JaJ#h6w hO+l5CJOJQJ^JaJ hnha~KCJOJQJ^JaJ#hnhaCJH*OJQJ^JaJ)jhnhaCJOJQJU^JaJ)jhnhaCJOJQJU^JaJ hnh{CJOJQJ^JaJ hnh6CJOJQJ^JaJ hnhRCJOJQJ^JaJ hnhaCJOJQJ^JaJ hnh=\aCJOJQJ^JaJLM{\]]rwxyz{UV޿޿޿ﮝsbPbPbPbPb#hnh=\aCJH*OJQJ^JaJ hnh=\aCJOJQJ^JaJ)j ,hnhO+lCJOJQJU^JaJ)jhnhO+lCJOJQJU^JaJ hnh CJOJQJ^JaJ hnh|CJOJQJ^JaJ hnha~KCJOJQJ^JaJhFCJOJQJ^JaJ hnh6CJOJQJ^JaJ hnhO+lCJOJQJ^JaJ79tPQR 7$8$H$gdO 7$8$H$gdt 7$8$H$gdN 7$8$H$gd1 d87$8$H$gd[, 7$8$H$gd 7$8$H$gdo h7$8$H$^hgd=\a679<=@st| !-PͿuuudddddR#hNhCJH*OJQJ^JaJ hnhc5CJOJQJ^JaJhNCJOJQJ^JaJh[,CJOJQJ^JaJhCJOJQJ^JaJh[,CJOJQJ^JaJ#hNhNCJH*OJQJ^JaJhNCJOJQJ^JaJ hnhCJOJQJ^JaJ hnh=\aCJOJQJ^JaJ hnhoCJOJQJ^JaJOPQRbﻪ}l[I[8[ hnhy|CJOJQJ^JaJ#hKihaD<5CJOJQJ^JaJ hnhaD<CJOJQJ^JaJ hnh1CJOJQJ^JaJhaD<CJOJQJ^JaJhNCJOJQJ^JaJ hnh>ICJOJQJ^JaJ hnhCJOJQJ^JaJ hnhOCJOJQJ^JaJ#hNh=CJH*OJQJ^JaJ hnh=CJOJQJ^JaJ hnhtCJOJQJ^JaJRbc,-a  no 7$8$H$gdG 7$8$H$gdF 7$8$H$gdxP 7$8$H$gdn 7$8$H$gd y 7$8$H$gdNO 7$8$H$gdaD< &*+./0;<@A[\`bcdnost  HITU^_lm޿޿ͿޛޛͿޛޛͿͿͿͿޛޛޛ#hVmhaD<CJH*OJQJ^JaJ#hVmhVmCJH*OJQJ^JaJhVmCJOJQJ^JaJ hnhy|CJOJQJ^JaJ hnhaD<CJOJQJ^JaJ hnhNOCJOJQJ^JaJ8m=]ak4:ctwп}}}l^l^l^P^Bh~q]CJOJQJ^JaJhS#CJOJQJ^JaJhi-CJOJQJ^JaJ hnhMCJOJQJ^JaJ hnhFCJOJQJ^JaJhFCJOJQJ^JaJ hnhhi;CJOJQJ^JaJ#hKihxP5CJOJQJ^JaJ hnhxPCJOJQJ^JaJ hnh1CJOJQJ^JaJh1CJOJQJ^JaJ hnh y CJOJQJ^JaJmnoy ŴveWI8 hnhi-CJOJQJ^JaJhnzaCJOJQJ^JaJhnCJOJQJ^JaJ hnh!CJOJQJ^JaJ hnhLZCJOJQJ^JaJhCq;CJOJQJ^JaJhi-CJOJQJ^JaJ hnhMCJOJQJ^JaJ hnhGCJOJQJ^JaJ hnhxPCJOJQJ^JaJh~q]CJOJQJ^JaJhFCJOJQJ^JaJhACJOJQJ^JaJogukd 8$$Ifl\- Q K  4 laNytLZ $7$8$H$If $$7$8$H$Ifa$ 7$8$H$gd{  06~~~~ $7$8$H$Ifukd$9$$Ifl6\- Q K  4 laNytLZ67DJch~~~~ $7$8$H$Ifukd<:$$Ifl6\- Q K  4 laNytLZhi~~~~ $7$8$H$IfukdT;$$Ifl6\- Q K  4 laNytLZ~~~~ $7$8$H$Ifukdl<$$Ifl6\- Q K  4 laNytLZ    ( rgr $7$8$H$If $$7$8$H$Ifa$ 7$8$H$gdaD<ukd=$$Ifl6\- Q K  4 laNytLZ   [!^!!!!!L"M""""4#5#?#_#g#h###$.$p$x$z$|$}l}^M hnhCJOJQJ^JaJhEDCJOJQJ^JaJ hnh8?CJOJQJ^JaJ hnhVBCJOJQJ^JaJ hnh_kCJOJQJ^JaJ hnhy|CJOJQJ^JaJ hnh?;CJOJQJ^JaJ hnhaD<CJOJQJ^JaJ#hnzaB*CJOJQJ^JaJphhnzaCJOJQJ^JaJhl*CJOJQJ^JaJ( ) = T Z $7$8$H$If $$7$8$H$Ifa$bkd>$$Ifl_F $     4 la<ytnzaZ [ \ q w $7$8$H$If $$7$8$H$Ifa$bkdt?$$Ifl_F $     4 la<ytnzaw x y $7$8$H$If $$7$8$H$Ifa$bkdL@$$Ifl_F $     4 la<ytnza $7$8$H$If $$7$8$H$Ifa$bkdA$$Ifl_F $     4 la<ytnza $7$8$H$If $$7$8$H$Ifa$bkdA$$Ifl_F $     4 la<ytnza !! $7$8$H$If $$7$8$H$Ifa$bkdB$$Ifl_F $     4 la<ytnza!!!7!!U!Z! $7$8$H$If $$7$8$H$Ifa$bkdD$$Ifl_F $     4 la<ytnzaZ![!\!^!|$~$$$$$$%% %.%~~~ 7$8$H$gd~< d87$8$H$gd+ 7$8$H$gdaD<bkdD$$Ifl_F $     4 la<ytnza|$~$$$$$$$$$$$$$$$$%%%% %"%.%2%<%%%%M&u&v&&&' ''L'l'H(g(yhyh hnhZhCJOJQJ^JaJ hnhCJOJQJ^JaJ#hl*h$CJH*OJQJ^JaJ hnh$CJOJQJ^JaJ hnh~<CJOJQJ^JaJ#hl*h+CJH*OJQJ^JaJ hnhCJOJQJ^JaJhl*CJOJQJ^JaJ hnh+CJOJQJ^JaJ(.%%% &v&&& ''h(i()),,a,- . . .. . 7$8$H$gd6w 7$8$H$gd 7$8$H$gdZh 7$8$H$gd 7$8$H$gdaD< 7$8$H$gd+ 7$8$H$gd~< 7$8$H$gd$g(h()))))O*P***++V+|++++,,,,,,- --0--- . .޼޼޼޼ޠveTTTTv hnh}<CJOJQJ^JaJ hnh!CJOJQJ^JaJhCJOJQJ^JaJhhS\CJOJQJ^JaJh QCJOJQJ^JaJh!CJOJQJ^JaJh~q]CJOJQJ^JaJ hnhCJOJQJ^JaJ hnhCJOJQJ^JaJ hnhZhCJOJQJ^JaJ hnhCJOJQJ^JaJ . .....//-0.0/0>2?2@2\2`2a22223333ϰϢϐp_N_=p hnhCJOJQJ^JaJ hnh4]CJOJQJ^JaJ hnh7KCJOJQJ^JaJ hnhCJOJQJ^JaJh]T5CJOJQJ^JaJ#hKih5CJOJQJ^JaJhCJOJQJ^JaJh]TCJOJQJ^JaJ hnh]TCJOJQJ^JaJ hnh6w CJOJQJ^JaJ#hKih6w 5CJOJQJ^JaJh6w CJOJQJ^JaJ ....$/%///.0/0?00000>2?2@2a2b233344 7$8$H$`gd 7$8$H$gd7K 7$8$H$gd 7$8$H$gd 7$8$H$gd6w 424j4444444565g5h5555556(6;6I6h666 7$8$H$gd7$8$H$^`gd 7$8$H$`gd345666667777R7T77B8M8R88888ͿͿ~mm_Q@ hnh8?CJOJQJ^JaJhQPCJOJQJ^JaJh|zCJOJQJ^JaJ hnhb~CJOJQJ^JaJ hnhCJOJQJ^JaJh@bCJOJQJ^JaJ hnh@bCJOJQJ^JaJ h>{h>{CJOJQJ^JaJh>{CJOJQJ^JaJ hnh>{CJOJQJ^JaJ hnh4]CJOJQJ^JaJ hnhCJOJQJ^JaJ6778899999::;];^;1=2=3=E= 7$8$H$gdaD< 7$8$H$gd 7$8$H$^gd & F7$8$H$gd & F7$8$H$gd. 7$8$H$gd. 7$8$H$gd T 7$8$H$gdb~ 7$8$H$gd>{889a999999999/:0:g:h:::::@;];^;п{jjj\jKj:K hnh.`CJOJQJ^JaJ hnhCJOJQJ^JaJhKiCJOJQJ^JaJ hnh.CJOJQJ^JaJ#hKih T5CJOJQJ^JaJh]T5CJOJQJ^JaJ#hKih.5CJOJQJ^JaJ hnh TCJOJQJ^JaJ hnh6w CJOJQJ^JaJhb~CJOJQJ^JaJ hnhb~CJOJQJ^JaJ hnhtCJOJQJ^JaJ^;;;< <`<a<b<g<t<<<<===0=1=2=3=D=E=F=I=S=~=ͿͿﱠ}k]O]AhX+CJOJQJ^JaJh$)CJOJQJ^JaJhE>>> ?"??? @L@@AAAC C=C>CwCxCC$D|D 7$8$H$gd$) 7$8$H$gd_k 7$8$H$gdI 7$8$H$gdZ 7$8$H$gdaD<~======0>F>>>>>>>>>>>>>>򴦔sasRsA h2_h2_CJOJQJ^JaJhICJH*OJQJ^JaJ#h2_hE>>>>>>>>>>>>>>>>>??ʶtetVD2#h2_hECQCoCvCwCxC}C~pbpTFbhCJOJQJ^JaJh.CJOJQJ^JaJhqqCJOJQJ^JaJhX+CJOJQJ^JaJhBCJOJQJ^JaJ& jShORhORCJOJQJ^JaJ hORhORCJOJQJ^JaJhORCJH*OJQJ^JaJ#h2_hORCJOJQJ]^JaJ#hORhORCJOJQJ]^JaJh$)CJOJQJ^JaJhORCJOJQJ^JaJ}C~CCCCCCCCCCCCCC D"D$D(D*D.DJDbD|DDDDDDͿͿugVug hnh/#CJOJQJ^JaJh/#CJOJQJ^JaJh/#CJH*OJQJ^JaJ hnhqqCJOJQJ^JaJhCJOJQJ^JaJhlCJOJQJ^JaJhQ CJOJQJ^JaJhqqCJOJQJ^JaJ hORhqqCJOJQJ^JaJhqqCJH*OJQJ^JaJ#h2_hqqCJOJQJ]^JaJ|DDDHEE*F,FFFvGxGGG8I:IJIlIIIKKK1K 7$8$H$gd| 7$8$H$gd 7$8$H$gdi. 7$8$H$gd]x 7$8$H$gd/# d87$8$H$gd]x 7$8$H$gd_kDDDFEJELENERETEVEZE`EdEfEhElE㱢}l^lJ<.h]xCJOJQJ^JaJh/#CJOJQJ^JaJ& j)h2_h/#CJOJQJ^JaJh/#CJOJQJ^JaJ h2_h/#CJOJQJ^JaJ& j(h2_h/#CJOJQJ^JaJ h2_h/#CJOJQJ^JaJh/#CJH*OJQJ^JaJ hnh/#CJOJQJ^JaJ#h2_h/#CJOJQJ]^JaJh]xCJOJQJ]^JaJh/#CJOJQJ]^JaJh]xCJOJQJ^JaJlEnErEtEvEzEEEEEEEEEEϻziWE6Eh]xCJOJQJ]^JaJ#h2_h/#CJOJQJ]^JaJ#hIh/#CJH*OJQJ^JaJ h]xh]xCJOJQJ^JaJh]xCJOJQJ^JaJ& j)h2_h]xCJOJQJ^JaJh]xCJOJQJ^JaJ h2_h]xCJOJQJ^JaJ& j(h2_h]xCJOJQJ^JaJ h2_h]xCJOJQJ^JaJh]xCJH*OJQJ^JaJ hnh]xCJOJQJ^JaJEEEEEEEEFFFFF F"F$F(F*F,FXFFFFFFFFFϾ}kZ}ޏް}IްI hnh]xCJOJQJ^JaJ h2_h]xCJOJQJ^JaJ#h2_h]xCJH*OJQJ^JaJ#h2_h]xCJOJQJ]^JaJh/#CJH*OJQJ^JaJ#h2_h/#CJOJQJ]^JaJh]xCJOJQJ^JaJ h2_h/#CJOJQJ^JaJh]xCJOJQJ]^JaJh]xCJH*OJQJ^JaJ#h2_h/#CJH*OJQJ^JaJFFFFFFFFFFFFFFFFG(G*G,G.G6G8G:GCJOJQJ^JaJh%>CJOJQJ^JaJhCJOJQJ^JaJ h|h|CJOJQJ^JaJh%>CJOJQJ^JaJh|CJOJQJ^JaJh|CJH*OJQJ^JaJ h2_h|CJOJQJ^JaJh]TCJOJQJ^JaJh]TCJH*OJQJ^JaJ h2_h]TCJOJQJ^JaJ1KUK{K|KLLL*MfMhMMMMN0N2N4N6N8NPNzNNNN 7$8$H$gd_k 7$8$H$gdv d87$8$H$gdv d87$8$H$gd 7$8$H$gd|MMMMMMMMMMMMMMMNNNxdVE6h|CJH*OJQJ^JaJ h.h|CJOJQJ^JaJh|CJOJQJ^JaJ& j)h2_h|CJOJQJ^JaJ& j(h2_h|CJOJQJ^JaJ h2_h|CJOJQJ^JaJhCJH*OJQJ^JaJ h2_h|CJOJQJ^JaJ#h2_h|CJH*OJQJ^JaJhCJOJQJ]^JaJh|CJOJQJ]^JaJ#h2_h|CJOJQJ]^JaJNN"N$N&N*N,N0N4N6N8N:N+ 7$8$H$gd_k 7$8$H$gd6RR$RDRR!S"S#S$S7S?SSSS TT#TTT2U4UJU\UiUkUmUUUgVVVVW;WWW京zzlzzzlzlzlzlz^zzzlha~CJOJQJ^JaJh6CJOJQJ^JaJ hnh6CJOJQJ^JaJ#hKih65CJOJQJ^JaJh65CJOJQJ^JaJhOCJOJQJ^JaJh6w CJOJQJ^JaJh|zCJOJQJ^JaJhE9CJOJQJ^JaJhT3CJOJQJ^JaJhlCJOJQJ^JaJ#WWWWW X+h6w CJOJQJ^JaJhcCJOJQJ^JaJh fCJOJQJ^JaJ h>+h>+CJOJQJ^JaJ hnh>+CJOJQJ^JaJ#hKih>+5CJOJQJ^JaJh>+5CJOJQJ^JaJh>+CJOJQJ^JaJ{Y~YYYYYYYYYYYYYYYYZZZCZMZNZSZdZfZtZuZ|Z£pbTha~CJOJQJ^JaJhn9CJOJQJ^JaJ hFhqCJOJQJ^JaJ hFhFCJOJQJ^JaJ hn9hn9CJOJQJ^JaJh\CJOJQJ^JaJ hzha~CJOJQJ^JaJ hzhzCJOJQJ^JaJ h4Nh4NCJOJQJ^JaJhzCJOJQJ^JaJhqCJOJQJ^JaJYYYYZZ[ [[[\\\\.]/]^^&_(_b_d_ h7$8$H$^hgdVq 7$8$H$gdI^ & F7$8$H$gdVq 7$8$H$gdVq 7$8$H$gdF 7$8$H$gd_k 7$8$H$gdz|ZZZZZZZZZZZZZZZZZZ[[[ [:[R[[[[[[[[[\\´¦Ц輦Њ||´m^hVq5CJOJQJ^JaJhn95CJOJQJ^JaJhCJOJQJ^JaJhpCJOJQJ^JaJhCJOJQJ^JaJha~CJOJQJ^JaJhn9CJOJQJ^JaJhqCJOJQJ^JaJh\CJOJQJ^JaJ hFhFCJOJQJ^JaJ h\h\CJOJQJ^JaJ!\0\7\\\\]],]-]/]o]^^^^^J^ͼ͉ͫxgUxG6 hVqhDCJOJQJ^JaJhpCJOJQJ^JaJ#hVqh(XCJH*OJQJ^JaJ hVqh_5~CJOJQJ^JaJ hVqhI^ CJOJQJ^JaJ hVqhCJOJQJ^JaJ hVqhI1CJOJQJ^JaJ hVqhBGCJOJQJ^JaJ hVqhL]CJOJQJ^JaJ hVqhVqCJOJQJ^JaJ hVqh!?CJOJQJ^JaJ hVqhCJOJQJ^JaJJ^L^R^T^^^^^^^__ _ _______$_̾tbPtBbPtPh(XCJOJQJ^JaJ#hI^ hI^ CJH*OJQJ^JaJ#hI^ hI^ CJH*OJQJ^JaJhI^ CJOJQJ^JaJh(XCJH*OJQJ^JaJhI^ CJOJQJ^JaJhVqCJOJQJ^JaJ hVqhI^ CJOJQJ^JaJhpCJOJQJ^JaJ hVqhDCJOJQJ^JaJ#hVqhDCJH*OJQJ^JaJ hVqhDCJOJQJ^JaJ$_(_,_._0_4_:_<_>_@_B_H_J_P_R_T_V_X_Z_`_b_d_ŶziWzWWIhVqCJOJQJ^JaJ#hI^ hDCJH*OJQJ^JaJ hDhDCJOJQJ^JaJ#hI^ hDCJH*OJQJ^JaJhDCJOJQJ^JaJh)YCJOJQJ^JaJhDCJOJQJ^JaJh)YCJH*OJQJ^JaJhDCJH*OJQJ^JaJh)YCJOJQJ^JaJhVqCJOJQJ^JaJhVqCJH*OJQJ^JaJd_p_r_t_____!`#`'`;````````````azl^M?^M?M?M^h4;CJOJQJ^JaJ hnh4;CJOJQJ^JaJh CJOJQJ^JaJh?CJOJQJ^JaJh!?CJOJQJ^JaJh"CJOJQJ^JaJhVqCJOJQJ^JaJh_5~CJOJQJ^JaJh_5~CJH*OJQJ^JaJh(XCJOJQJ^JaJ#hI^ h_5~CJH*OJQJ^JaJh_5~CJOJQJ^JaJ hI^ hI^ CJOJQJ^JaJd_"`#```;aa?a@aAaEaFab 䫙䇙vhZKZKh7CJH*OJQJ^JaJh7CJOJQJ^JaJh?CJOJQJ^JaJh*CJH*OJQJ^JaJU#h h CJH*OJQJ^JaJ#h h CJH*OJQJ^JaJhCJH*OJQJ^JaJh*iCJOJQJ^JaJhQCJOJQJ^JaJhzCJOJQJ^JaJh CJOJQJ^JaJh*CJOJQJ^JaJ d"1 where Rt is the ratio of maximum axial load to axial load allowable and Rs is the ratio of shear load to shear load allowable If combined tension, shear, and bending are experienced, the following interaction equation must be satisfied [3] (Rb + Rt)2 + Rs3 d"1 where Rb is the ratio of maximum bending load to bending load allowable. The locking device shall be selected to prevent the failure of loose bolts 2) The joint strength criteria The separation of a preloaded joint must not occur. The equation for external load taken by the joint Pej is described above in the section of change of preload due to external load. Separation of a joint may occurs when Pej = Po,min If the bolt is loaded in shear, bearing stress may occur as the bolt is pressed against the side of the bushing. The allowable bearing stress shall be limited to the yield strength at temperature. The minimum bolt preload shall be used to calculate the friction force if the joint is designed as friction type. In shear-loaded joints, with members that slide, the joint members transmit shear loads to the bolt and the minimum preload must be sufficient to hold the joint members in contact and without additional sliding during the stress cycle. The maximum axial bolt load shall be used to calculate the bearing stress under the bolt head, nut, washer, and the insulation material. The washer shall be big enough to spread the maximum preload on the flange or the insulation material. Thus the washer thickness shall provide enough strength for the bending and shear stress under the bearing load. 3) The bolt fatigue criteria, The preload stress level and the cyclic stress variation shall satisfy the acceptable fatigue life curve. References 1. Oberg, E., Jones. F., Horton, H., and Ryffel, H:  Machinery s Handbook , 27thEdition, Industrial Press Inc., New York, 2004 2.  Criteria for Preloaded Bolts , NSTS 08307, Rev. A, NASA, 1998 3. Chambers, J.  Preloaded Joint Analysis Methodology for Space Flight Systems , NASA Technical Memorandum 106943, 1995 4.  Manual of Steel Construction , AISC, Seventh Edition, 1970 5.  NCSX Structural Design Criteria , NCSX_CRIT_CRYO_00, NCSX Specification, Nov. 29 2004 ,.HJPbϽϮϒsdUFs8h/CJOJQJ^JaJh 2.5CJOJQJ^JaJhD5CJOJQJ^JaJh?5CJOJQJ^JaJ h 2.h 2.CJOJQJ^JaJhQCJOJQJ^JaJh?CJOJQJ^JaJhvlCJOJQJ^JaJh7CJH*OJQJ^JaJ#h h7CJH*OJQJ^JaJh7CJOJQJ^JaJ#h h7CJH*OJQJ^JaJ h7h7CJOJQJ^JaJHJln & F7$8$H$gd~& h7$8$H$^hgd~& 7$8$H$gd h7$8$H$^hgd 7$8$H$gd78 & F7$8$H$gd 7$8$H$gd 2. 7$8$H$gd_k & F7$8$H$gd? h7$8$H$^hgd7XZ^(0<JLPXZdjln<PᥔufufUDDD h78h78CJOJQJ^JaJ h h/CJOJQJ^JaJh CJH*OJQJ^JaJ h2_h CJOJQJ^JaJhnCJOJQJ^JaJ h h CJOJQJ^JaJh CJOJQJ^JaJhQCJOJQJ^JaJh/CJH*OJQJ^JaJ h2_h/CJOJQJ^JaJh/CJOJQJ^JaJ h/h/CJOJQJ^JaJP2@NXb<|ַ||k\J#h 2.h 2.5CJOJQJ^JaJh?5CJOJQJ^JaJ h78h78CJOJQJ^JaJhFwCJOJQJ^JaJhnCJOJQJ^JaJhQCJOJQJ^JaJ h~&h~&CJOJQJ^JaJh~&CJOJQJ^JaJ hnh CJOJQJ^JaJh CJOJQJ^JaJh 2.CJOJQJ^JaJh78CJOJQJ^JaJ       > @ 0 2   f h j  7$8$H$gd3o 7$8$H$gdQP 7$8$H$gd_k 7$8$H$gd 2. 7$8$H$gd78        V Z    D   . 0   ³wewwWIWwW;h\CJOJQJ^JaJhzCJOJQJ^JaJhQ6CJOJQJ^JaJ#hG1hG1CJH*OJQJ^JaJh3oCJOJQJ^JaJ h3oh3oCJOJQJ^JaJhG1CJOJQJ^JaJhG15CJOJQJ^JaJh&45CJOJQJ^JaJ hQPh6w CJOJQJ^JaJh&4CJOJQJ^JaJhQPCJOJQJ^JaJ h 2.hYCJOJQJ^JaJ d f h j  hG1h3oCJOJQJ^JaJh3oCJOJQJ^JaJ h3oh\CJOJQJ^JaJh"CJOJQJ^JaJ21h:p6/ =!"#$%  DfwV=http://www.engineersedge.com/graphics/equation_thrdstrssa.gifl  S HA(equation_thrdstrssabv\`ؑ>'pJnv\`ؑ>'pJPNG  IHDRJPLTEHtHHHttHHHHtHHHtHHttHtttttttHHHHtt߿tߜH߿ttߜǥbKGDH cmPPJCmp0712Hs!IDATx^v0 PBm[W9v4!VQډ۟teY2Y dd4mfT3)ՌՌjFJ@5#%yF5P,[v[ܿ=gFI.%8Jo53m|  |bѵNOH^7=H&&e`Mμ~5ьm\O'={'s\{y NmNiGKqiv'-Z: B]n~Z7_6I \(yֻA.J)e:y.S22Ñ~Ec}Bc $ ͍r.1"s]5քR: \TnM$>L$$ӌi,0hFZk잩eZDUZe /6m?Y>0SYD>1+1{?勑9Rxa(=!dBLK-1ql6^L3hc{!˪s^ɘn&H+({b{Hd5"uS0R9z"=Z5-$0{ȸ5a6ᅣ6[ t8Ofou_7'#QE+izqkgE6ȴ6~dZR2K%j)W2jfsW2/!T3PHyjQͨfT3RbgT3)ՌՌjFJ`_jI0yIENDB` Df76http://www.engineersedge.com/graphics/threadstrssb.gif^  S :Athreadstrssbb /e·. \%ٓ>2 A n /e·. \%ٓ>2PNG  IHDR>Y`TPLTEHtHtHHHHtHHHHHHHHtHHttHtttttHHHHtttHttߜHtߜ`bKGDH cmPPJCmp0712Hs)IDATx^&&CҺi$je-9@<<;] ]R)Z׋S>UgSSPu6>UgSSPu6>UgSSPu6>UgSSPu65v7_ e뼱k43ߊN/jeVmI}0wxZϮw܁9ӯy@.Yyt+? tZ5sy.9>vo4T1p^-N/|tGlM?oF}lC1~FY (Zc[Td0f69H9gk E4@$xqoڋAz?Zt>~u!?}.}~aicFFNTI}lPNoqQNȐ{͓1ͧ[V7߃S1wc`Z\,gBAJG|9BcY*7[Ӓ G-lVv .\i?!ap4Gwb&y̶ CWP,,tD(5R2 R5u^NH6,UTy$]SRs|nD!77LVQ1څ D)h(WE/> &*/s7bMr|)f; iY#p[}>)F7MU|Kq*>J:d/;9b.Fa4@G^C%wPʥ pRl-6B: UJb6G>X6:q6$#=m΋x-rcL؜l7Hd7VJ|]x޴-:,{^t1W@9S|0U*'"uL[ y̆qqV:nFRek.e^%)njaEMl$'ҙ#jGSh5foL m4St7s'-&=ũ5bϻ݃]DXs^rhfIl?-#E7H0X7FJ >uY="Ȟ _jY_ aѮ_`!6]#WŇCn _q%QjBse=jl׭}c?*_9먫:k I|3 M7p6 !㓁IG¯ hZrՃʮ/;π]|WySUB̊VC컁57Q⬈es{l>oA}@}}+sy[m4d]ŸfTmcލ:/Md᫽rKaki}Z=^8lsڢlV}KסRnlM畇؍Y6 {@G${ؾ]ǖmTF>FgTTM}OE@gTTM}OE@gTTM}OE@gTTM}OE@gTTM}OE@ԧ?oi eyIENDB`t Df';http://www.engineersedge.com/thread_strength/image/assh.gifN  S *A asshb RckO`f~r nj RckO`f~PNG  IHDRi<PLTE333fff33f3f3f3f3f3̙ff3f̙ff̙3̙33ff3333ff3f̙ff3ff33f3fff3f3ff3f3333f33ff33ff̙33fff3333f33f3fff̙f33ff33̙ff3̙f3ff333fff3f33ff33ff3f3fff3f33f33fff33333f3333ffff33f33f3̙ff̙f333ff̙f̙ff33f3f33̙f33ffff3̙33ff3fff33fff33f33f3333ffffffff3333̙33x8ނbKGDH cmPPJCmp0712HsIDATx^ r EEHB)d$25G 4oo+˗]F%%}]jg&Q?Dvkc@nfuzZ9e6ʬAk`^㚂ziۦ͇4fM]H=[k@&gfۯĪ-N0a'ۯAS?uo@F'!O<X,nSHc|L/B'c)HcFM/{1}U:v-Λ Q'[7.Ά_+KȿߥdS|?\0(%u_;6E>ix+528[Ԧ͇$\<8wr_O^y kD>)r_7R@϶dU_eƕ[kHya٥P)&i够/\ᬼYyž/͋z %u= jlYP%6ª%$7jM,/ Oteql)+Z%(7IZ7`jJ8ɥ.$(Ax6]oLۭ0r#P0UU {E.No2v)Ecb4pC-B}P-N)O2=ś5;|9Ns)0).Aߍ"+.ăy;niƝ5;in[ f Sygy$iPw0NQ?t4.^$gMh(o>v^La7$s}2pvqҸO|s88,qiBo!OCyHم7^K96IENDB` Df:http://www.engineersedge.com/thread_strength/image/asn.gifL  S (Aasnb> 2JAL r n 2JALPNG  IHDR?5TPLTE333fff33f3f3f3f3f3̙ff3f̙ff̙3̙33ff3333ff3f̙ff3ff33f3fff3f3ff3f3333f33ff33ff̙33fff3333f33f3fff̙f33ff33̙ff3̙f3ff333fff3f33ff33ff3f3fff3f33f33fff33333f3333ffff33f33f3̙ff̙f333ff̙f̙ff33f3f33̙f33ffff3̙33ff3fff33fff33f33f3333ffffffff3333̙33x8ނbKGDH cmPPJCmp0712HsIDATx^[ d/s/LJE0=;D v7|/_ ρ)9p?_=bpf z9pt}aBW Z\z!*jz@ksq~NZ;k=wp9B%n`OQU~00 ORaJl 8SPۇ&Fe vzqR^ 'hT RJN0@BGhxO`"uWz\d > \}.D  ur6ޘ 2 dd%@GE ĎVvbmJQ9K~2tyѥv` M({7I]vy 7>Wm$- ztSoGcD S0 $&ʗz\ BzoGWŦ1mqQ0XZ*%g @{ރLȔa-׽<38T,PS3!ا D2y##+`X_`0Iqż&[Ï^ s(1/G `#YHzسq.sJKR@>ߪ`hO|Hz ai/0Ȗ3bQ^B c`z8U2j\ cebAo@t1@;}ū`NDx R&iO]EӴ$z/[3NZyɬ8SwK^EzPG쓒L/bG̫<_A!em)L* !ݙi 1=h&+9U]%ߩO0$!c\o4E >u%A ΅* Vl :I5p0(](^ W%,H 0%(a=OtOyd^d)X^WG|ӞO蠀 WSo7Jz&~1[t51JDY ZEk̰I90Ags^sq=Bd"|H6  Lo쯝:/+qâKC7Acn# "[wPuy:M*xSzy}4;|]ҹ8e)&etON{o)qwv?cii%3^ xI[c#0-:!-vrAΛ*k'O<\_Jwh P9irH.v0]WFQA2Tj^goS9~*f3H+R ק+4ʫιf6%0mlmiZ` YUȿ΁%:\hhv0VY#te&nP= WJR]d^UoXBxFaDIN]:a_κvpZ;\6|Md5p~9ŧa;AHgn*̔\ I rg"M+ܶF} E#;)eJq~!m_QFSosA(_y;u#F(p/$b{L$1XwW0?1hBTw.},;II6IC^( xs#L::"SaQ)2˅6SN70I-1/[yz t:b YN|HDf[;#J^W/<.T,b3-\Bn zFp>be,%h+޳ `WuAoHJo JM% ]™+l2hhkѲ(y. 2y笪v}#MBSGY._laôgL*ūZ[ Uտ}쒀34[$qnSoro<`>/P= vaopbW + -!]_ ŊqϪ [i@فBեg>0o[%#5W}إ9s@}Ʋ3M9;۪qq0jwwjvɐ[Q8p\ThcP96FɪVV.UCpX+}(cp@5E@3z2>-n_.O' )$˝_|1n f[c єA@8gPG϶QT@)zgގd'MIENDB`$$IfN!vh5K 55 5#vK #v#v #v:V l5K 55 5/ /  / / / / / /  / 4aNytLZ$$IfN!vh5K 55 5#vK #v#v #v:V l65K 55 5/ / / / / /  / / / 4aNytLZ$$IfN!vh5K 55 5#vK #v#v #v:V l65K 55 5/ / / / / /  / / / 4aNytLZ$$IfN!vh5K 55 5#vK #v#v #v:V l65K 55 5/ / / / / /  / / / 4aNytLZ$$IfN!vh5K 55 5#vK #v#v #v:V l65K 55 5/ / / / / /  / / / 4aNytLZ$$IfN!vh5K 55 5#vK #v#v #v:V l65K 55 5/ /  / / /  / / / /  4aNytLZ$$If<!vh5$ 55#v$ #v#v:V l_5$ 55/ /  / / / / 4a<ytnza$$If<!vh5$ 55#v$ #v#v:V l_5$ 55/  / / /  / /  4a<ytnza$$If<!vh5$ 55#v$ #v#v:V l_5$ 55/  / /  / 4a<ytnza$$If<!vh5$ 55#v$ #v#v:V l_5$ 55/  / / / / 4a<ytnza$$If<!vh5$ 55#v$ #v#v:V l_5$ 55/  / /  / 4a<ytnza$$If<!vh5$ 55#v$ #v#v:V l_5$ 55/  / /  / 4a<ytnza$$If<!vh5$ 55#v$ #v#v:V l_5$ 55/  / /  / 4a<ytnza$$If<!vh5$ 55#v$ #v#v:V l_5$ 55/  / /  / 4a<ytnza$$If<!vh5$ 55#v$ #v#v:V l_5$ 55/  / / / / 4a<ytnzaD@D NormalOJQJ^J_HmH sH tH DA@D Default Paragraph FontRi@R  Table Normal4 l4a (k@(No ListH^@H  Normal (Web)CJOJQJ^JaJj@j t Table Grid7:V0IX 12[\lm56QR_`pq|Q%IJ,- 7LM? x y  7 9 t PQRbc,-a  no 067DJchi()=TZ[\qwxy7<=>UZ[\^ 8>?Fr%QH I ""#$$$$$$B%C%%%%&&&&&2'S'c'd'((())******+5+C+S+f+t++++,,.,D,h,,,,,,,-O-P---//d0e0f000111 2 233333555*5?5@5x55555<6v6w67777&8'8w88899S9|9999#:j:k:::K;L;T;e;z;{;<<<<=*=+= > >.>D>b>c>>>>>>>>>>>>?????@?AABBBBBCC;EUZ[\^ 8>?Fr%QH I ""#$$$C%%%%&&&&2'S'c'd'(())******+5+C+S+f+t++++,,.,D,h,,,,,,,-O-P---e0f000111 2 23333555*5?5@5x55555<6v6w67777&8'8w88899S9|9999#:j:k:::K;L;T;e;z;{;<<<=*=+= > >.>D>b>c>>>>>>>>>????@?BBCC;E??@B}CDlEEF`GBCDEFGIJKLMNOPQSVWY\dmrv|j 3S9z IXCCCCC8@0(  B S  ?IX OLE_LINK1=KX)=KX ҵ#!ӵ#l"Ե#/3յ#%ֵ#~׵#%ص#ٵ#Tڵ#\۵#ܵ#ݵ# .bGs@RVVKX   0dIuBRVVKX 9*urn:schemas-microsoft-com:office:smarttagsState9 *urn:schemas-microsoft-com:office:smarttagsplace  25fiOT " T Y SU]_AM17GMsy%%**|++++i0q00033 5555<5>5G5J5557777773949G9H9Q9R9999999C;F;O;S;U;X;w;y;<<<<<<<<<<= =k=t=>>>>>>>>>>>>>>???MDMNMPMMMOOOOPPPPPPQQ9R>I>N>>>>>MMMNOOPPPPKX333333333333333333333333333333333333333P^BBWCWC7F8FAFmFnFoF}GHDIEIIIJ#JfJiJJJJJJJJKQMUMwMMMMOOPPQQQQsRyRTTTTWWKXKX"k('RUZId4TEU8po;dؼT5fHaglVY?mcq!Nh ^`hH)h ^`hH.h pLp^p`LhH.h @ @ ^@ `hH.h ^`hH.h L^`LhH.h ^`hH.h ^`hH.h PLP^P`LhH.^`o() ^`hH. pLp^p`LhH. @ @ ^@ `hH. ^`hH. L^`LhH. ^`hH. ^`hH. PLP^P`LhH.88^8`o() ^`hH.  L ^ `LhH.   ^ `hH. xx^x`hH. HLH^H`LhH. ^`hH. ^`hH. L^`LhH.^`o(. ^`hH. pLp^p`LhH. @ @ ^@ `hH. ^`hH. L^`LhH. ^`hH. ^`hH. PLP^P`LhH.h 88^8`hH)h ^`hH.h pLp^p`LhH.h @ @ ^@ `hH.h ^`hH.h L^`LhH.h ^`hH.h ^`hH.h PLP^P`LhH.h ^`hH)h ^`hH.h pLp^p`LhH.h @ @ ^@ `hH.h ^`hH.h L^`LhH.h ^`hH.h ^`hH.h PLP^P`LhH.^`o(. ^`hH. pLp^p`LhH. @ @ ^@ `hH. ^`hH. L^`LhH. ^`hH. ^`hH. PLP^P`LhH. ^`hH) ^`hH. pLp^p`LhH. @ @ ^@ `hH. ^`hH. L^`LhH. ^`hH. ^`hH. PLP^P`LhH.UZIEUY?mo;dT5f"k('aglcq                  `                                             mTTP{PxP6w I^ "N~&uKiLut37.`AcT3U y S#/#$&*l*X+,i- 2.1I1&4:6't678E9n94;hi;Cq;aD<[<}<~<%>7??VBEDGBGKG>IE+pY Q!Fn#)z_k5 DnI 2_[,NOv/c5U+Q-bo ..Og6lEGat=>{<'= B!6 (&7rR!?qb~FwlD{#?)c]T $)to4n| WRi.G1uM~M4]r8?ORvl@o 067DJchi()=TZ[\qwxy7<=>UZ[KX@||||45689:;=>?MMMNOIX@@@$@L@@>@@@@@D@F@H@@@L@N@@@^@@@UnknownGz Times New Roman5Symbol3& z Arial?Times-Roman"qh˱- K-- K-!24dXX :QHX)?t2+Stress Areas of Screw Threads of a Fastenerhmfanhmfan,        Oh+'0 ,8 X d p |,Stress Areas of Screw Threads of a Fastenerhmfan Normal.dothmfan6Microsoft Office Word@q@膵@@{VF@PF- K՜.+,0 hp  PPPL-X ,Stress Areas of Screw Threads of a Fastener Title  !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~     Root Entry FR,GData E1TableȘWordDocument4SummaryInformation(DocumentSummaryInformation8CompObjq  FMicrosoft Office Word Document MSWordDocWord.Document.89qRoot Entry F '2G@Data E1TableȘWordDocument4 SummaryInformation(DocumentSummaryInformation8CompObjq  FMicrosoft Office Word Document MSWordDocWord.Document.89q՜.+,D՜.+,\ hp  PPPL-X ,Stress Areas of Screw Threads of a Fastener Title4 $,