ࡱ> ac`'` Hbjbj uX&f4f4f484d5|L25p8"8883:"U: a:NJPJPJPJPJPJPJ$EMhO<tJYi::"3:i:i:tJ88K???i:88NJ?i:NJ??rITI8~5 xf4Q;jINJK0LxIzOa>OIOI\i:i:?i:i:i:i:i:tJtJ+?di:i:i:Li:i:i:i:.f4f4 3.3 Spherical Geometry Neutral Geometry (axioms below) is a structure that works for all of the Big Three geometries: Euclidean, Spherical, and Hyperbolic. You just make certain choices about the distance boundary and the situation about parallel lines and you choose one of the 3. Absolute Geometry is what were building in our textbook its is only about Euclidean and Hyperbolic Geometries. Theyre really not the same thing at all though some website authors seem to use the terms interchangeably. So, get a 6 diameter ball, a handful of rubber bands that fit snugly on the ball, and some sticky dots. Also have on hand a little protractor one of those hard plastic semi-circle ones clear plastic if you can get it. Lets get started. The Axiomatic Structure for Neutral Geometry Undefined terms: point, line, plane, space Axioms: A1 To each pair of points (A, B) is associated a unique real number, denoted AB, with least upper bound, a. A2 For all points A and B, AB  EMBED Equation.DSMT4  0, with equality only when A = B. A3 For all points AB = BA. A4 Given any four distinct collinear points A, B, C, and D such that A  B  C, then either D  A  B, A  D  B, B  D  C, or B  C  D. A5 Each two points A and B lie on a line, and if AB < a , that line is unique. A6 Each three noncollinear points determine a plane. A7 If points A and B lie in a plane and AB < a, then the line determined by A and B lies in that plane. A8 If two planes meet, their intersection is a line. A9 Space consists of at least four noncoplanar points, and contains three noncollinear points. Each plane is a set of points of which at least three are noncollinear, and each line is a set of at least two distinct points. A10 (Ruler Postulate): Given line L and two points P and Q on L, the points of L can be placed into one to one correspondence with the real numbers x such that ( a < x ( a (called coordinates) in such a manner that 1. points P and Q have coordinates 0 and k > 0, respectively 2. if A and B on the line have coordinates a and B, then AB is  EMBED Equation.DSMT4  A11 (Plane Separation Postulate): Let L be any line lying in any plane P. The set of all points in P not on L consists of the union of two subsets H1 and H2 of P such that 1. H1 and H2 are convex sets 2. H1 and H2 have no points in common 3. if A lies in H1 and B lies in H2 such that AB < a, line L intersects segment  EMBED Equation.DSMT4 . A12 Each angle ( ABC is associated with a unique real number between 0 and 180 denoted m ( ABC. No angle can have measure 0 or 180. A13 (Angle Addition Postulate): If D lies in the interior of ( ABC, then m ( ABD + m( DBC = m ( ABC. A14 (Protractor Postulate): The set of rays  EMBED Equation.DSMT4  lying in a plane and on one side of a given line  EMBED Equation.DSMT4 , including ray  EMBED Equation.DSMT4 , may be placed into one to one correspondence with the real numbers x such that 0 ( x ( 180 (called coordinates) in such a manner that 1. ray  EMBED Equation.DSMT4  has coordinate 0 2. if rays  EMBED Equation.DSMT4  have coordinates c and d, then m ( CAD =  EMBED Equation.DSMT4 . A15 (Linear Pair Axiom): A linear pair of angles is a supplementary pair. A16 (SAS Postulate): If two sides and the included angle of one triangle are congruent, respectively, to two sides and the included angle of another, the triangles are congruent. Many of these should seem quite familiar. The Ruler Postulate has some new things in it, though. Visualizing the undefined terms: point: {(x, y, z)(  EMBED Equation.3 } Note that our points are 3-dimensional in Euclidean geometry. Each will have, of course, a single coordinate in Spherical geometry. The equation for a sphere centered at the origin and where the length of the radius is 1 is the math expression that follows such that in the set above. You may use a sphere of radius other than one at some other time, but it makes some calculations easier to have r = 1. The volume of a sphere is  EMBED Equation.3 . Here:  EMBED Equation.3 . This means our space is ounded! Very non-Euclidean, indeed. Euclidean 3-D space is unbounded. The formula for the surface area of a sphere is  EMBED Equation.3 . Here:  EMBED Equation.3 4p. line: Great Circle Why are these  straight lines ? What is  straight on the floor or down the hall? If you walk in a circle on the floor of the room, your outer leg goes farther with each step than your inner leg. If youre walking along a straight line down a hallway, then each leg moves the same distance with each step. On a ball, if you walk so that each leg moves the same distance with each step, you will be walking on a straight line which is a circle of longitude or a great circle. If you consistently move one leg a farther distance than the other you will trace out a circle on the surface of the sphere. Each great circle is contained on the surface of the sphere and in a Euclidean plane that slices through the sphere and contains the center of the sphere: (0, 0, 0) in our model. The center of the sphere, (0, 0, 0), is NOT a point in our geometry but is an important reference point for us in the embedding space. Circles, on the other hand, are the intersection of the surface of the sphere and a Euclidean plane that slices through the sphere and does not contain the center of the sphere. Put a straight line on your ball with a rubber band and walk your fingers along it. Now walk your fingers in a circle on the surface of the ball. See the difference? plane: We will need to distinguish between surface plane (of which there is exactly one and this is the one in the undefined terms) and tangent planes in surrounding 3D space. We will use the planes in 3D space that are tangent to the surface of the sphere to measure angles, but these are not the undefined term plane; these are Euclidean planes in the embedding space. space: We dont have space in Spherical Geometry. It is on the list because the axioms can also create Euclidean and Hyperbolic geometries that do have space. Working through the axioms, we have A1 To each pair of points (A, B) is associated a unique real number, denoted AB, with least upper bound, a. In Euclidean and Hyperbolic geometry the boundary, a, is infinity. In Spherical geometry, a = p. So our lines are NOT infinitely long, they are bounded above  and, in fact, below. Let s look at how long our lines can be by checking A10. A10 (Ruler Postulate): Given line L and two points P and Q on L, the points of L can be placed into one  to  one correspondence with the real numbers x such that ( p < x ( p (called coordinates) in such a manner that 1. points P and Q have coordinates 0 and k > 0, respectively 2. if A and B on the line have coordinates a and B, then AB is  EMBED Equation.3  In spherical geometry, the formula for a coordinate is in radian measure. Its the central angle subtended by the point on the plane that slices through the sphere. So if you start at (1, 0, 0) and walk along the equator to (0, 1, 0), the coordinate for that point is  EMBED Equation.3 , And if you walk in the other direction to (0, (1, 0), the coordinate for that point is ( EMBED Equation.3 . The inequality in the axiom has one end open and the other closed, so that the point that is exactly at p doesn t have TWO coordinates. This was very carefully worked out and written out so that it  works . For a =  EMBED Equation.DSMT4 , we get Euclidean Geometry and Hyperbolic Geometry. For Spherical Geometry a = p. We will work on the sphere centered at the origin with radius length one. Well go from  EMBED Equation.DSMT4  in coordinates as we walk on the equator. Lets talk about the equator (put a rubber band on your sphere to model the equator, its a great circle). Imagine the center of your sphere and the 3 axes coming through the sphere out into the embedding space where you are. Start at point (1, 0, 0) and go around to ((1, 0, 0). Youve gone halfway around the equator and if you keep walking youll get all the way back to (1, 0, 0). Youve gone a distance  EMBED Equation.3  with half of the coordinates positives and the other half negatives. This cannot happen in Euclidean Geometry. So we re going to pick a = p. A10 (2) will now read: if A and B on the lines have coordinates a and b, then AB is  EMBED Equation.3  The model for Spherical Geometry is the surface of a sphere. If point a is on the equator and is  EMBED Equation.DSMT4  while point b is also on the equator and has a coordinate  EMBED Equation.DSMT4 . Then the absolute value of their difference is  EMBED Equation.DSMT4 ; this is how far apart they are. If point c is  EMBED Equation.DSMT4  and we want the BC, take the absolute value of the difference to get  EMBED Equation.DSMT4  which is larger than  EMBED Equation.DSMT4 , so we then subtract this from 2 EMBED Equation.DSMT4  so that the distance is actually  EMBED Equation.DSMT4 . Note that the formula guides you to the shortest distance between the pointsnot the longest. Put an equator on your sphere with a rubber band and mark off these points with the dots. Pick any point you want to be zero and either direction to be positive and work from there. Backing up, we can discuss earlier axioms. A1 To each pair of points (A, B) is associated a unique real number, denoted AB, with least upper bound, a. So now we know that distances are restricted to values between p, and (p. How do we calculate distance? What s the distance formula? D = rq where q is the central angle between the two points in radian measure. Now this formula does have a little wrinkle to it. See A12, we still have the geometric angle restriction that angles measure strictly between 0 and 180. A2 For all points A and B, AB  EMBED Equation.DSMT4  0, with equality only when A = B. A3 For all points AB = BA. These are familiar enough. A4 Given any four distinct collinear points A, B, C, and D such that A B C, then either D A B, A D B, B D C, or B C D. Lets actually look at the plane that contains the equator with a central angle marked off and discuss between. BC =  EMBED Equation.3 . If the coordinate for B is  EMBED Equation.3 , then the coordinate for C is  EMBED Equation.3 . Now, is E between B and C. Sure, thats clear. However, look at F. Isnt F between B and C along the arc outside the central angle. Very non-Euclidean indeed. And this situation does NOT contradict the axiom either. Put sticky dots on a line on your ball and check the axiom out. So weve got the old familiar linear Euclidean between, and Taxicab metrically between and now weve got a little ambiguous Spherically between. Note that saying E is between C and B doesnt tell you ANYTHING about where E is on one of our spherical lines. Angles and Angle measure. Lets look at a line through the North and South poles and the equator on your ball. Put a third line on the ball that crosses these. Now, take your protractor and place it on the vertex of any angle. Notice that it sticks out from the surface of the sphere and it only touches the spheres surface at the vertex. This is perfect. This is exactly the way we measure angles. Now project the lines of the sides up to the plane that the protractor is in, lining one side up with the zero line of the protractor. Where the other line touches the curve is the measure of the angle. So Euclidean angles in the plane are used to measure Spherical angles on the surface of the sphere. The angle axioms should be pretty familiar. Theres nothing very unusual about angles except for projecting them through the embedding space to measure them. There is an interesting relationship between two special points on a line in Spherical Geometry. If the points are 180 degrees apart on a line, then the points are called antipodal.  Put a point on a line and imagine a straight Euclidean line through the spheres interior to the other side. These two points are related. Theyre like the North and South Polesand if you rotate your ball just right they CAN be the North and South Poles. This kind of point pair is called antipodal  i.e., points that are  across from each other. Each point on the sphere has exactly one antipodal point that is p away from it. This is a very non-Euclidean situation. Given a line AB and a point C on it, there is exactly one point that is antipodal to C: D (think of the North and South Poles). All lines through these polar points are intersecting in two points C and D. Each of these intersecting lines is perpendicular to the line that is the equator. Try this out on your ball. Run a line through C and its antipodal point and then measure at the angles formed at C and with the equator. Theyre right angles at the equatorand hopefully, now you see three things: two lines intersect at 2 points, the perpendicular to a line from a point not on the line is NOT unique, and there are no parallel lines to be had Now go back and notice that the first axiom of our Neutral Geometry is NOT the first axiom of the system were building in the text. Spherical Geometry is NOT a model of the axioms were building in Chapters 2 4. Thats why I had to start off this lesson with the axioms for Neutral Geometry. Now get another distinct antipodal pair and run a line through them. Notice that it intersects BOTH of the lines weve got on the ball. What happens if you put a fourth line on the ball not through antipodal points, just anywhere. If I define parallel lines as lines that share no points, are any of these lines parallel? Spend a few moments working out the situation about parallel lines. It turns out that there are no parallel lines on the surface of a sphere. Now this ties in to a larger picture situation among all geometries. In some geometries, like the Three Point Geometry, Fanos Geometry, and Spherical Geometry, there are NO parallel lines. In Euclidean Geometry and the 4-point 6-line incidence geometry (page 72) , if you have a line and a point not on that line theres EXACTLY ONE line parallel to the given line through the point. In other geometries, like Hyperbolic Geometry, and the geometry in text Example 1 page 52 with the first model, there are MANY lines parallel to a given line through a given point not on that lines. So here weve lost parallel lines along with corresponding external angles and alternate interior angles (these are strictly Euclidean notions). We still have good old polygons, though. Given a finite set of line segments, if you connect the endpoints of the segments one to another and then attach the ends of the first and last segment with no crossings at interior points, you will get a polygon. A closed figure that contains some amount of area of the plane. These are triangles, quadrilaterals, dodecahedrons.and in Spherical Geometry weve got: BIANGLES, a two sided polygon with two angles. Take all the lines off your ball. Pick two antipodal points and run two lines through them. You have just created 4 biangles. These two-sided shapes are what you get if you cut a wedge of a cantaloupe and then peel off the rind in one piece. These are strictly Spherical polygons. The have bilateral symmetry and the two end angles are called summit angles. The sides are meridians of longitude to refer back to Earth vocabulary. Theorem: The summit angles of a biangle are congruent and the summit vertices are antipodal. Theorem: The area of a biangle area is 2 EMBED Equation.3 , with r the radius of the sphere and  EMBED Equation.3 in radian measure. Theorem: A finite number of biangles will cover the sphere Run a third line through the antipodal points You will have divided the surface of the ball into 6 biangles. This cannot happen in Euclidean geometry. A plane in Euclidean geometry in infinite and cannot be divided into a finite number of polygons. But the plane in Spherical Geometry is a bounded surface it can fit into a box. Triangles and quadrilateral. Yes, weve got them. We will build some triangles and explore them. On your ball, consider the line through the North and South poles (points N and S, line NS) and the equator, (line L), and call the center of the sphere O. Choose points A and B on L at a distance p/4 apart. This will make ( AOB have a measure of  EMBED Equation.3 . Draw the meridians of longitude through A and B  passing through N  so they are great circles. This forms a spherical triangle (ABN. What is m(ANB? (recall that we measure angles on the sphere using the lines tangent to the lines). It s  EMBED Equation.3 . Now the m(NAB and m(NBA are both  EMBED Equation.3 . And if we add this up we get considerably more than p (180(). This is a big difference between Euclidean and Spherical triangles. The sum of the interior angles of a Euclidean triangle is always 180(. Well the sum of the interior angles of a Spherical Triangle varies and is always more than 180(. Repeat this process for two other points C and D on L that are a distance p/3 apart  so that m(COD is 60. How large is (CND? How many degrees in this triangle? Is there a correspondence from (ABN to (CND that gives 3 corresponding congruent angles and 3 corresponding sides? No. Then these triangles are not congruent. We do have SAS as a shortcut to declaring congruence its the last axiom on the list. So it works in EG and SG. But not all of the other little shortcuts like AAS, SSS, ASA work Is the Euclidean triangle congruence shortcut AAS satisfied? Well, unfortunately, no. Sides AN, BN, CN, and DN are all congruent and the base angles are congruent too. So if we use the Euclidean shortcut to congruence AAS, wed declare them to be congruent when theyre not. This is a big difference with Euclidean geometry. +:{| "   F H v x z | ~ :<jlnpjhnEHUjj8D hnCJUVaJjmhnEHUj8D hnCJUVaJ jhn j-hnh9jhnEHUj8D hnCJUVaJjhnUhnOJQJh{h;hn hn5CJ 0  & ' S T \ ]  "$ 0^`0 0^`0!G01jlt|t @ ^ @ 0^`0 0^`0 0^`0tv ()uv'(st() p p0^`0 @ 0^`0 @ ^(*!"VWnopq@ADEŻ{jhnEHUjo8D hnCJUVaJ j<hn jhnj hnEHUj8D hnCJUVaJjK hnEHUjڬ8D hnCJUVaJjhnEHUj8D hnCJUVaJjhnUhn jhn*  "#$%fOoĺڶگڨڙڋڋڋwmjhnEHU&jD hnB*CJUVaJphhjhnEHUj&D hnCJUVaJ j|hn hn5\h;jhnEHUj8D hnCJUVaJ jhnhnjhnUjhnEHUj8D hnCJUVaJ&v`68`bd ""V#W#$$$,&-&&&&& 0^`0`^` 0^`0gd^(*,.068@ "W#w##$$$-&4&I&h&&((p(t(((:+<+־֠֎ևփևzuz֎֎֎n j-hn h\ hn\hh9 hn5\hnOJQJjJ!hnEHU&jD hnB*CJUVaJphj8hnEHU&j'D hnB*CJUVaJphhT`hnjhnUjhnEHU&jPD hnB*CJUVaJph+&&((x)z)))8+++,Y,],w,x,z,..000 @ 0^`0 0^`0 0^`0 0^`0<+>+F+J+L+N+R+_,`,s,t,u,v,-----..`.b.........//000000{lju8D h@CJUVaJjh@OJQJUh@OJQJh@j'hnEHUj GK hnCJUVaJ j-hnj{%hnEHUjFK hnCJUVaJj"hnEHUj BK hnCJUVaJjhnU jhnhnOJQJhn%0000<1>1p11 22212223242^2_2p3q333"4$4&4(4 5:5F5556666{6|66վժ՛نwmنj1h@EHUj BK h@CJUVaJjh@Uj.hhhhEHUj2M hhCJUVaJ j-hhj,hhhhEHUj˯2M hhCJUVaJjhhUhhh@h@OJQJjh@OJQJUj)h@EHOJQJU$0>1B1_2`2o3 5 5x5z555666699999999 0^`0gd@gdh pgd@ p0^`0gd@66666666667767778797l7m777777777777788Ȼ׬אtgXj2M h@CJUVaJj@h;h@EHUj2M h@CJUVaJjx=h;h@EHUj2M h@CJUVaJjr:h;h@EHUj2M h@CJUVaJju7h;h@EHUj`2M h@CJUVaJh@jh@Uj4h;h@EHUj22M h@CJUVaJ888:8;8R8S8T8U8w8x88888999999999::$;*;0;2;4;<;;;;;<<=====滮檚xnjKhnEHUj8D hnCJUVaJjhnU j-hnOJQJhnOJQJhhh9hnjHh;h@EHUj?2M h@CJUVaJj3Fh;h@EHUj&2M h@CJUVaJh@jh@UjCh;h@EHU*9999999999::D;;;<<<<'=(=C=D=_=`=a=b=== 0^`0==a>b>c>d>e>f>g>h>i>j>k>l>m>n>o>p>q>r>s>t>u>>?@@!A^ 0^`0==z>{>>>>>>>>>>>>>>>>>HEIEGG}HHHHHMIIIIJJJOOPPBRERORtRSTTT켲죙}x} hn5hh7h9hnOJQJjThnUjpRhnEHUj KK hnCJUVaJjZPhnEHUjJK hnCJUVaJjENhnEHUjJK hnCJUVaJjhnUhnjhnCJUmHnHu/!A"A=A>AAAACCCCDDDCEDEEEFEGEHEJEKEFF&H'HJJKKKLL.MMMPPPPARBRCRDRERtRuR(T)TTTTUUUTUUUVUV `^``TTTTTTTUUUUVVXX6X8XfXhXXXXXYYYYZZZZZZZZZZZZ[ ["[sij^hnEHUjm^K hnCJUVaJj\hnEHU jDhnjZhnEHUju]K hnCJUVaJ jhnhnOJQJ hn5\jXhnEHUjWK hnCJUVaJjhnUjVhnEHUjD hnCJUVaJhn)VVVV WWWXXYY\\B^D^^^^^````bAB^ & F0`0"[$[[[[[]\^\\\^^*^,^^^`^^^ _ _bK]Ē֒ג֝џҟ%&'lmpq!"$hujhuUjWehnU hn0JjchnUhx87j`hnEHUj#8D hnCJUVaJh)3 hn5\U jDhn jhn jhnhnOJQJhnjhnU4 SSA is down the tubes, too. It doesnt work at all as a shortcut to declaring congruence. Of course, it doesnt work in Euclidean either so its a real failure. But students love it and continue to suggest it year after year. If you spell it backwards you can see what I tell my students they are for suggesting it. Is SSS a good shortcut in Spherical? Build some triangles and see what you find out. How about ASA? Do these triangles enclose a finite amount of area? Sure they do. So we can talk about area of a Spherical triangle; we just cant use the Euclidean formula. Girards Theorem: The area of a triangle is the product of the square of the radius and (the sum of the measures of the angles less pi).  EMBED Equation.DSMT4  = area of a spherical triangle. Note that the Euclidean formula is focused on lengths, base length and side length, while the Spherical formula involves only the angle measure. Do we have right triangles? Sure we do. In fact, there are isosceles and equilateral right triangles in Spherical geometry. See if you can find these on the ball. One of each. How do the interior angles add up in these triangles? What about the Pythagorean Theorem? Try using the Pythagorean Theorem with your equilateral right triangle. Does it work? On to quadrilaterals. Put one on your ball. You can do this easily if you have the equator and two perpendiculars to the equatorthen move up and run a line across the perpendiculars. Can we use decomposition to discuss the sum of the interior angles of a quadrilateral? Sure, run a diagonal (we still have those) and get two triangles. 180 + a is the sum of the interior angles of one triangle and 180 + b is sum of the interior angles of the other. Together they add to 360 + a + bmore than 360. Do we have squares and rectangles? What are the defining characteristics of these? Actually, we cant have them. If the 2 base angles are 90(, then the angles at the top are going to be more than 90. So no squares and no rectangles. Those are strictly Euclidean. Circles: We have them and they even look like circles, too. And they have almost the same definition, too. A circle is the set of all points equidistant from the centers. Unfortunately, spherical circles have two centers. If you sketch a circle on your ball, make it kind of small so you can see it at a glance. Put a sticky dot on the center. Now, run your finger around to the antipodal point of the center. Cant you draw a radius from each center to the circle one is longer than the other, for sure, but if you draw a bunch of radii from the antipodal point to the circle, theyll all be the same length. So, two centers. Well, that takes us through a little bit of Spherical Geometry. Well be going back to Chapter 3 next. Note that theres homework for this section that isnt numbered. Its just a separate assignment to turn in. Spherical Geometry Homework On a separate sheet of paper list the following 25 things legibly!: Make a list of 10 things that are the same in Euclidean geometry and Spherical Geometry under the Neutral Geometry axiom system. You must list all the axioms that are the same as 1 thing. You may not list Axiom 2 and Axiom 3 as two things that are the same. Make a list of 10 things that are different in Euclidean geometry and Spherical Geometry. You must list all the axioms that are different as 1 thing. Make a list of 5 good web sites that taught you something about Spherical Geometry. List the site and what you learnedwhat you liked about it and whether it might be appropriate for a high school supplement were you to teach Spherical Geometry to your students. If you cant find 10 things AFTER sharing information with your classmates, then fill in with good websites that discuss Spherical Geometrynot the ones that are too hard, the ones that appeal to you and helped you learn something more about the subject. Here are two good ones that you may use to get your list started:  HYPERLINK "http://www.math.uncc.edu/~droyster/math3181/notes/hyprgeom/node5.html" http://www.math.uncc.edu/~droyster/math3181/notes/hyprgeom/node5.html  HYPERLINK "http://chickscope.itg.uiuc.edu/explore/eggmath/geom/" http://chickscope.itg.uiuc.edu/explore/eggmath/geom/ Helping each other is encouraged, as always.     PAGE  PAGE 10 JK]^Ւ֒-.ѕҕҕӕh !ϘИwxyz{|}~d^ & FϟПџnop !#$&` & F$%'(*+-.45689?@BCDFGHhnh0JmHnHuh h0Jjh0JUhujhuU&')*,-678DEFGHh]h&`#$ ,1h/ =!"#$% `!?}[DkZ|H(T$@& xڝOAƿٻ=0 $J "( #0@  @!Hwn"IM)EJH$ܝm̞>noG7ofn6:p/k:ߺ`5l Nx7&_o·;iEXcT*U*1caZc"l:K l˥w7#Np Wm?ˮ8:T>fRg(mޓr=q icHw9&#"Y?if I/iT~?{=8?E T39.h)Zzvc~=+փ^1kzҩ J3@&f͆ ut_jJrʹ1%G1#Ba2ä!07pHYc8 a3< eH.lUbh0z (RZ0az]cX-aFr H"S!&RmDd J  C A? "2,$\.M##:;5D8 `!,$\.M##:;5@RqxMQJ@6j Ճ  z(hQ޴ Rlu@Ӕ=ٓ.zEr N̷!2 F $K!BY$rrU kX"&$":S5BU;#`,9 jx,G6Ϣ,OM`('+Gy#\4(WFb^>,{Cs0wx׽!<4:8 |wz&+nx=۶ a2vaVvVԬXSOEx]5!8;4!TdGR#"`Vc7"HhX$94kexybӸXP/ ECyʽi8}B~@dDd | 0J  C A? "2`^,C+8 `!`^,C+&` h{HxڽTKq73ma.W],%XguY7\C!޶CDM# D`|gfs-K|?}oW@'RT ^Phl6=81W|l2ERDd#]oM'10i-)ܵFG}pBB0Ja?J;5$bcGI܋xIԃZo{S}4$bK,$bpur%PJ^Bp<!FR)~zj-6|.Vc!-6NxzHzF5BU,XewЁh`É?GWρw/!C㥑wJncFh}4A 7P/]s" x}RVBeaTד`Y}ݣOkU-->~X\n6IHUf҇ }ʷ4x2 gÀǿt] [ P~H Dd @J  C A? "2Ia#6c8 `!Ia#6bh x]QJQǬA Jڴr!7Ң0P*' Z=@/1;Zнs|_E@K > !!f)h2(͡P41U%E 489G(` 1,tiʊnj[HɌT1DΑU((C-X_1};p$?0j^&n?qn:i}\_e&3"ٽfW"͠BT;y-9]2߾r+εE,?NLvP{XIYBʬ~b- wQfdy)FodY>v|zT@nR[p߸ڈDPGSrAf!' ,H +duYg5%U|~%lDd @J  C A? "2Vlx<8u8 `!Vlx<8ut xeRM/Q=V}TDh'l*V؍Jҏ0+[IK D)ͼ{=Vl&B\,qҞӞ%Tmd 60-y({_j;+W?)>`i> 3bT'_pG0B׬-ڮvO]NDi7HE|XC?)lr.U{@OyF8~mo;;K8V@û3TZjty~ S|P>$4EHuuBԢ,ڹ46\;19!x԰:L\wFZιaS{^m ܌굍$tAkN(4:tcϞsSӍ=O6ѣOO |PDUj}vDd @J  C A? "24MZ{F: 8 `!4MZ{F:th xeRMK@}~jR?(衠Ń4m^*Ŷx QV!MU'G/<&Xg7n3y3!6-cK))φT(! n4aK؇gƏ3WY Y9SI>!ьxm27_(ܓ2FZ|s߻4uѯxq( -;G|$ eӾj\PC>; ***ĸi"_*@ӇՆUe]zkxE>Qơ\Ӫz-DrhPFn~*XŏYBha7024];L;{aWy2lXi'ء|-=A %]>z5(qR Z򓕝|x5{nr0&) ӓ#HR෽dJ~u}Dd @J  C A? "2qcz)y w)8 `!qcz)y wth xeRJP=3>j5 ]* n\H6RleZJPW~K?HvuM7sḡ06 `PO6!.h MiKFÌ.J2-FG].L< ~G:J"5OKXeHBL7_(ܓ6 T k׿jU[bQ`gF i˗,Y@iwjp-WUS4s|i4~P>+(ek~;HVa"lU  !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWYZ[\]^_befghijklmnoqprstuvwxyz|{}~Root Entry F`Hxd@FData XfWordDocumentuObjectPoolJ Px`Hx_1144563180FzxzxOle CompObjiObjInfo "#$'*+,/2347:;<?BCDEHKLMNQTWZ]bglopqty~ FMathType 5.0 Equation MathType EFEquation.DSMT49q~ \~DSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  e"Equation Native _1144564239 Fx xOle CompObj i FMathType 5.0 Equation MathType EFEquation.DSMT49q~ \~DSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  aObjInfo Equation Native  _1144564586F x xOle "-bifa"-bd"a2a"-a"-bifa"-b>>a{ FMathType 5.0 Equation MathType EFEquation.DSMT49qCompObjiObjInfoEquation Native _1144564924 F xUx~ \~DSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A   AB FMathType 5.0 Equation MathType EFEquation.DSMT49qOle CompObjiObjInfo Equation Native !~ \~DSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  AX  FMathType 5.0 Equation MathType EFEquation.DSMT49q_1144564954FUxƤxOle %CompObj&iObjInfo(~ \~DSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  AB  FMathType 5.0 Equation MathType EFEquation.DSMT49qEquation Native )_1144564977"FƤxƤxOle -CompObj .iObjInfo!0Equation Native 1_1144565103$FƤx7xOle 5~ \~DSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  AB  FMathType 5.0 Equation MathType EFEquation.DSMT49qCompObj#%6iObjInfo&8Equation Native 9_11445651731)F7x7x~ \~DSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  AB  FMathType 5.0 Equation MathType EFEquation.DSMT49qOle =CompObj(*>iObjInfo+@Equation Native A,~ \~DSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  AC andAD  FMathType 5.0 Equation MathTy_1144565238.F7xxOle FCompObj-/GiObjInfo0Ipe EFEquation.DSMT49q~ \~DSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  c"-dEquation Native J_11575990146E3FxxOle OCompObj24Pf FMicrosoft Equation 3.0 DS Equation Equation.39qOصY x 2 +y 2 +z 2 =1 FMicrosoft Equation 3.0 DS Equation Equation.39qObjInfo5REquation Native Sk_1157597619Y@8FxxOle UCompObj79VfObjInfo:XEquation Native YK_1157599056=Fxbx/I 43r 3 FMicrosoft Equation 3.0 DS Equation Equation.39qXl 43Ole [CompObj<>\fObjInfo?^Equation Native _:_1157597735BFbxbxOle `CompObjACafObjInfoDc FMicrosoft Equation 3.0 DS Equation Equation.39q"Y 4r 2 FMicrosoft Equation 3.0 DS Equation Equation.39q Equation Native d>_1157599106;GFbxରxOle eCompObjFHffObjInfoIhEquation Native i#_1274954249'hLFIxIxOle j  FMicrosoft Equation 3.0 DS Equation Equation.39q,m  a"bifa"b<2CompObjKMkfObjInfoNmEquation Native n_1274955512TQFxx"a"bifa"b>( FMicrosoft Equation 3.0 DS Equation Equation.39q,|  2Ole rCompObjPRsfObjInfoSuEquation Native v6_1274955530VFgxgxOle wCompObjUWxfObjInfoXz FMicrosoft Equation 3.0 DS Equation Equation.39q,܅ 2 FMathType 5.0 Equation MathType EFEquation.DSMT49qEquation Native {6_1144565621,[FgxطxOle |CompObjZ\}iObjInfo]Equation Native _1295167435c`FطxطxOle ~ \~DSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  " FMathType 5.0 Equation MathType EFEquation.DSMT49qCompObj_aiObjInfobEquation Native _1295167516eFطxIxDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  ("-p,p] FMathType 5.0 Equation MathType EFEquation.DSMT49qOle CompObjdfiObjInfogEquation Native DSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  2p FMathType 5.0 Equation MathType EFEquation.DSMT49q_1295166514|jFxxOle CompObjikiObjInfol$DSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A   p3 FMathType 5.0 Equation MathType EFEquation.DSMT49qEquation Native _1295166560oFxxOle CompObjnpiObjInfoqEquation Native _1295166612mwtFxxOle DSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A   5p7 FMathType 5.0 Equation MathType EFEquation.DSMT49qCompObjsuiObjInfovEquation Native _1295166656yFxNxDSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A   8p21 FMathType 5.0 Equation MathTyOle CompObjxziObjInfo{Equation Native pe EFEquation.DSMT49q4DSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  "- 6p7_1295166710r^~FNxNxOle CompObj}iObjInfo FMathType 5.0 Equation MathType EFEquation.DSMT49q,DSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A   12p7Equation Native _1295166749FxxOle CompObji FMathType 5.0 Equation MathType EFEquation.DSMT49q DSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  pObjInfoEquation Native _1295166758Fx0xOle  FMathType 5.0 Equation MathType EFEquation.DSMT49q DSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  pCompObjiObjInfoEquation Native _1295166783F0xzxOle CompObjiObjInfoEquation Native  FMathType 5.0 Equation MathType EFEquation.DSMT49q$DSMT5WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A   2p7_1274956465OFzxxOle CompObjfObjInfo FMicrosoft Equation 3.0 DS Equation Equation.39q,a, 3 FMicrosoft Equation 3.0 DS Equation Equation.39qEquation Native 6_1274956499FxxOle CompObjfObjInfoEquation Native 6_1274956576Fx\xOle , 4 FMicrosoft Equation 3.0 DS Equation Equation.39q," 712CompObjfObjInfoEquation Native >_1157601426F\x\xOle CompObjfObjInfoEquation Native ; FMicrosoft Equation 3.0 DS Equation Equation.39qZ r 2  FMicrosoft Equation 3.0 DS Equation Equation.39q_1274959870F\xxOle CompObjfObjInfoEquation Native )_1274961269FxxOle CompObjf, ,  FMicrosoft Equation 3.0 DS Equation Equation.39q,8_ 4 FMicrosoft Equation 3.0 DS EqObjInfoEquation Native 6_1274961517FxxOle CompObjfObjInfoEquation Native 6_1144570915Faxaxuation Equation.39q,(l 2 FMathType 5.0 Equation MathType EFEquation.DSMT49q~ \~DSMT5WinAllBasicCodePagesOle CompObjiObjInfoEquation Native ,    Times New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A  r 2 (A++B++C"-p))Oh+'0h  $ 0 <HPX`3Leigh/uDWVvn.څ vdYeNmI`/9 kIi!֜PhuVËsSӍ=O61OO bh՟DUj}utDd @J  C A? "2qcz)y w8 `!qcz)y wth xeRJP=3>j5 ]* n\H6RleZJPW~K?HvuM7sḡ06 `PO6!.h MiKFÌ.J2-FG].L< ~G:J"5OKXeHBL7_(ܓ6 T k׿jU[bQ`gF i˗,Y@iwjp-WUS4s|i4~P>+(ek~;HVa"lU/uDWVvn.څ vdYeNmI`/9 kIi!֜PhuVËsSӍ=O61OO bh՟DUj}utDd |J  C A? "2-W-;1|&S!WS ]8 `!W-;1|&S!WS` 0xeRKo@fW=TBACj%.-zIe5 CGJNT* / [%:}zv>|`(\@VE!Ϛd21-Z5W ZPzfJܳ g)0U@% O 4,s§-1= Ku$dSk{Vܞf%ֻrH!}.-(O_~7edt?2 "8O W£U~R{ *huoN= 㤇bneE:l4uF'0p;:Ly?kWl4Hc{FA#c)@oD~i@ k`룖Óf|5 Xr3۝*@f%k-̼\*ta拔zTIY?$#Y̺Dd J   C A? "24U S<^5(8 `!U S<^5hxeRkA&i`7M{Dc*(m=&ŋl$S-Ɠxc ZP,m|3Y|7߼fR3f !Ul6SKP1]Z$D(C9FXx܄]|gGEVybA6Gp$cT:(2ŎB9Z{a9R2"/VN~Zv C~{QE9vkcw!z$AUHbT&]\(8HpR66 ro=f j`lFtj6Q4"kVyx4uwZYwjmmyNc+ Mm2u5o;*6gͫxn(?N ?5-i(g' 2ϗ E-Miᒧ䥬ǿW ߊį` XP7# ptgD'Gʡ'7Dd @hJ   C A ? " 27m ƍu8 `!m7m ƍZ @p|;xڝJ@$m  B C/Ң EV*Zģ'⡏x<3dAы&;2;̎8H#eI! O,ˌnٗP ڕe!`s$AELxv21ph?”{+Nxė$JWɢ RW_D; ì-|s(0+UN%w9ҷ/xrO\W5Nk[,dΪ223Q5df+,N6pgOcOZ0Dd 0lJ   C A ? " 2קB0|'n18 `!fקB0|'6k4xcdd``f 2 ĜL0##0KQ* W􀹁YRcgbR v3 憪aM,,Hab e-f Y wfRQ9A $37X/\!(?71&:Q VS`5l[L ƕg77 lnQ%cM @penR~CP k.@eۛJ.hsc] `p121)Wx\ ]` 7q֡SDd lJ   C A ? " 2} R`)ߐLYa8 `!Q R`)ߐLhxcdd``~$d@9`,&FF(`Ts A?db@=P5< %!@5 @_L ĺE,a KL *'gMas ,dU' x f22J`y ,@B2sSRs?aba\ 1B&\PsCl nv0o8<+KRsA<.E.bYg/\[{JiO) )O`-]JF{򦶘^13ěoT6?|{T,w49.}h(>0lŏ>{ @y]yryp6 yMyrL_ՊBecqycp~Uo#ylPHCT҅whtU+WQ1?wEB\@Y ԏDd lJ  C A? "2x 4 [IT%8 `!L 4 [IRxcdd``$d@9`,&FF(`Ts A?dbA3zjx|K2B* Rj8 :@u!f0109Y@#ȝATN`gbM-VK-WMcXsF V0ZnŚ1lWs2HQ%0W&00|dn771 lnA%ԧ\;b;~LLJ% s:@ĞB 0Cb/NDd lJ  C A? "2xbRU$uT'8 `!LbRU$uRxcdd``$d@9`,&FF(`Ts A?dbA3zjx|K2B* Rj8 :@u!f0109Y@#ȝATN`gbM-VK-WMcXsF V0Z-mLF]F\= FX \Un771 lnA%ԧ\;b;~LLJ% +@2u(2t5=`n-ŗPfiDd J  C A? "2X0 ~i)8 `!X0 ~i@RmxMQN@YOV`bȁFh!RⱩZRB1IN^%x }ØLę1t3_AH$O@4r)Cܑ̑ S2bUaPqM]XA#ptnfb,ɝ=yxі`Dd @b  c $A? ?3"`?2.ǬHpq T,8 `!ǬHpq xuRKQnѸ٨A(XD{dK$Hۭj 1!IX)C//Eſ_[( }|̛7ߛ a ؇\ ^E!3ā>3 d Α.ss(Do۵ȫ*hDw:8"R%h$WVrZwEgdg|DHq~!&ilӳȊmgIBZq{? aJj?LQ׏] "[__vryo2wA{N~܄IwYļ;0n-yNsƣ ΢(neጷvT$2gzn(2 qT14 NL~j#ܐJyg9 H9m "!& F3Rt/tGDd Tb  c $A? ?3"`?2#9Ww/k.E8/8 `!#9Ww/k.E XJHxuRAKQmh l ڃ*=&Z&խ4PzIॗzvQ1;͛0P!dSD "DZF/IP&=da$cY eTlIVe_`Q 4iy+Z__H;l B{3ٯ[MN.{tzٳW~~߹)N{< i)BƈnjNy?hs0vo0 *U˵%`Mi4VSl/3ϕ3bS:Tfy-҂S֚T~0~l9Y4Xe{@GVXg{%ύu "55-Oh񝊢4H[AJ=nЄ+d2y٪t:Dd HJ  C A? "2,Dsx`Ahұ޵A28 `!Dsx`Ahұ޵A @h"xu=HAg.&iNA*j) F!XbqXGR X"X{܁ޱoa!`ݢ+NZ:T8{ KtAp҂/:N-jLfJfŘpHU#0j~A[>\[{JiO) )O`-]JF{򦶘^13ěoT6?|{T,w49.}h(>0lŏ>{ @y]yryp6 yMyrL_ՊBecqycp~Uo#ylPHCT҅whtU+WQ1?wEB\@Y ԏDd lb  c $A? ?3"`?27V Wuxm~48 `! V Wuxm~RxuRkALV4I"h*表Ko=d,LJ񴬺@҄$=x^=z^īD즂?fwvy}o Y@ "Jlf/9^q3q6 l2~ϳT4G^yԃ^+~g>>%K bhe%JN~I[JXPh᰼ˏ{`N.tz1.We_\KT9 е:ӓqp7^ur磳dW>R->]js`ZZ9} g (ZUmVjrb*{AWImm6ܺ";dgTLxߊ'Rp|/׵2BC\ךh4ʼy$mecޕD%xRpvQbdžJ8KiNW|ܐ9Dd hlb  c $A? ?3"`?2G$؆y=?20#78 `!$؆y=?20L@|xڥRkALV4TCP&I &cI=x^7?E<]Aof61߼y}yE@" #a'Db:jNےeĩ,l\T9cYL5{xeP(  l M2ٗDYТf7 Od luAq':~^ ٰX:5CzJ ZA?s s._8Hq4F6p{%6z 82Q޻6jpu-zX= ^0@:__N&YA&rZF}y,nSϩz vxc+jmΚWX!B=uJZ -]MdhVZ]z\]62/kwڃ (8֩Tɇ|/7,u/koDd hlb  c $A? ?3"`?2P% E V %5,:8 `!$% E V %5T@|xڥRkALV4ITCAKBKj/)x\Vj i$%ͥz ċ ͛^I `7P7o{߼e@" #D "14NيeGYBWظ+cY%(JTVV`9B%%4 R52WDY#GOh~'s2^m:a w`_Of:, o:{o q(وM7GOV?T`Y 1KcԹm/3Cq*yd"㻻'6j nkm~~ >rs2yMΪtzǗȥj͂w8cimW7zon륋 ]^|%o e oc/^㱖x[wݯ^̿kg8%tiF+&G6U<ȜJMt)6J q1VXñv>''^.*-orDd lb  c $A? ?3"`?2X{φ!-5bJg04=8 `!,{φ!-5bJg0n`:xڥRo@ޝ48 H8`*!]&Pb`p 4VP0?X:d`aFB َL|߯GX;4B-E%t:e:/+>}i2t2ȱf-%,KW5o9 |ks>3S8{Q@\'LFThQq-ZfC<8 rV[кxtHoN=3!u{\ɨ >s[@_H9*ph:m` <!8c_ll;Lzqbo3t.Z*ȼ:mߺS}>LN+݇SFZr z X(9]s5׮\8a#t‹xe3*j;᪻#wثnuBF@QC\i +efM9<_gӉ ⿍ƿPMkTs8[)F5#b1z((JrN>x΀TDd lb  c $A? ?3"`?2N_1K\eY*@8 `!"_1K\eYTxڥRoP9F JP5uXtI5-"%,u #+*#B?XXCk${N*}wwG2؇|L^(E$fB\[l(2zd0'fW/ JrhIr #"5KPk!QVr } ~t U;pX~/Ó1=Ƈ`X: XĬ~`8,,QsDo$9Zޝ~8_^>ف8"OP|w&V}Ts`ع[ pyMެ :@"i @K+k޴6ǾK]$^r%n&KVdT7sDd b  c $A? ?3"`?2T̮!XQI|0[wF8 `!T̮!XQI|0[*@`!xEQM/Q=MG̴t!JB#+N hAVR]`cS?E~DD{3wKZD" 6$~yQK)f43`` }I:LOK"K] XQq]EzBZaS\|YhWeٌl7辵LÍa)F ~ul!W\ Nr96JꁗwbzTuܬVĴ1=S=T7sDd |lb  c $A? ?3"`?2FHXe݈ZC+l(" I8 `!HXe݈ZC+l(L`0xڥRAkALV4[A-J&ꪁ I$ڃ%^ ћ;MA `|3Pηo{߼oajX<QHf3nҥԶ"~9q*"l\L9c[t+z4|{1`٣!2A&hTd$Bˊ[ G?M 2YN3Z?Gsܹm'٬;|_ 8cT Na,QkփMPNkkA~ nD2=Mުv[q_m"t؏P?mxıo^m\K&!#Ǯe'p'hK^)~^H :%tYVF.ϦgL2,l>7d_o q9 fRXR9 i\ܰ%mDd J  C A? "2,$\.M##:;5L8 `!,$\.M##:;5@RqxMQJ@6j Ճ  z(hQ޴ Rlu@Ӕ=ٓ.zEr N̷!2 F $K!BY$rrU kX"&$":S5BU;#`,9 jx,G6Ϣ,OM`('+Gy#\4(WFb^>,{Cs0wx׽!<4:8 |wz&+nx=۶ a2vaVvVԬXSOEx]5!8;4!TdGR#"`Vc7"HhX$94kexybӸXP/ ECyʽi8}B~@dDd lJ  C A? "2w 'vEbSN8 `!K 'vEbRxcdd``$d@9`,&FF(`Ts A?dbA3zjx|K2B* Rj8 :@u!f0109Y@#ȝATN`gbM-VK-WMcXsF V0Z^ʘ1lWs2Hq%0W&00sE,(<&[?c[P)84d%#RpeqIj.#\E.vLDd lJ   C A? "2x` :-]J^]:TP8 `!L` :-]J^]:Rxcdd``$d@9`,&FF(`Ts A?dbA3zjx|K2B* Rj8 :@u!f0109Y@#ȝATN`gbM-VK-WMcXsF V0Z=LF]F\= &X \PʵzG!1nnc܂J.Ov&.v0o8+KRsnePdk{> 1 [ RDd hlJ ! C A? " 2aSW|2Y#dA\R8 `!TaSW|2Y#dA@|"xcdd``~$d@9`,&FF(`T A?djg0@0&dT0pE1At 2Bab`r,&;35V ZZǰb@`𵼙=mLF]F\=́ '1Ay! ̍W 27)?a +RB8gܞ4NK^vT8 `!n>4NK^0(x.,#<xڕJ@$MӤ=yP$I *Dҳx𤾀_OI" qw) Lf33X=*XQ<8-(_ |آWVSSRy{hjJI2ZVq6qOf,!=QH#ga #eD>W(-}i~~M -WoTkvDluߋX9ZIt=M{q]&Axl8󾌲_*Tp .gIMܬ6.өRb.'qؿ_C;DyK Fhttp://www.math.uncc.edu/~droyster/math3181/notes/hyprgeom/node5.htmlyK http://www.math.uncc.edu/~droyster/math3181/notes/hyprgeom/node5.htmlyX;H,]ą'cIDyK 5http://chickscope.itg.uiuc.edu/explore/eggmath/geom/yK jhttp://chickscope.itg.uiuc.edu/explore/eggmath/geom/1TablePSummaryInformation(DocumentSummaryInformation8 CompObjq Normal.dotdog30Microsoft Office Word@D@b~x;@~e6 SK՜.+,D՜.+,, hp|  -\X' 3 Title(RZ _PID_HLINKS MTWinEqnsAd x5http://chickscope.itg.uiuc.edu/explore/eggmath/geom/ SuFhttp://www.math.uncc.edu/~droyster/math3181/notes/hyprgeom/node5.html    FMicrosoft Office Word Document     @@@ NormalCJ_HaJmH sH tH <@< Heading 1$@&5CJ :@: Heading 2$@&5\DA@D Default Paragraph FontVi@V  Table Normal :V 44 la (k@(No List ZC@Z Body Text Indent  @ 0^`0L^@L Normal (Web)dd[$\$ B*ph6U@6 Hyperlink >*B*ph4 @"4 Footer  !.)@1. Page NumberFV@AF FollowedHyperlink >*B* phX&'ST\]'(CD!"WX>Bab  2 [ O P   =   <=>*+?@AyzCDE]^_FJdeg+-!!H!I!!!!!!!7%8%9%:%;%<%=%>%?%@%A%B%C%D%o%p%q%%%.&g&h&T'U'V'W'''''''''4({(|(((((((((((((((((((())))**++++,P,Q,..v.w.///////////0011F4G4p5q5^6_66K7L7990:1:;;;;;<<==>>>>>>>>>1@2@e@f@@1A2AAA0B1BDDDDDDDDhEiEF FhGiGHHIIIIIII=J>JzJ{J K KKKK L!LxLyLzL{L|L}L~LLLL9M:M;MxNyNzNNOOO7P8PRRRRRRRRRRRSSISJSKSSPTQTTTUUVVV7W8W9WWWWSXTXUXVXWXXXYXXXXXXXXXXXXXXXXXXXX000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000@0@0@0@0@0@0@0@0@0@0@00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000;00;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0;0; 0;0; 0;0; 0;0; 0;0; 0;0;0;0; 0;000000000000000000000000000000000000000000000000000000000000000 000 00 0000000000000000000000X0000X0000X0000X0000X00X00X00@0@0X0000t %%%(<+068=T"[$H1679;<>?BEGTt&09=!AKVҕ&H2458:=@ACDFQRSUG3E]_ 2 J L ] u w  ( * L d f Qeg!57AUW#%L`bu !!!""!"]"u"w"""""##Y#q#s#######$$$u''')))<)P)R)r)))<>P>R>y>>>AAABBBBBB>JVJXJ9WWWWXQXX:::::::::::::::::::::::::::::::::::::::XX !(!! /X2$B|Qާ22$}[DkZ|HG.@t(  <  # AB S  ?|(XDT _Hlt201216252FXX@GXX0<%AMu{77w<<====+>2>>>E?M?XXXXXXXXXXXXXX _ a  D F >C?Y~+/KLEJRW   m n .!4!I!K!R"]"""##/&1&))9)<) ***.*'+2+++.u.33779 92;q;;;??2@N@AACBIBBBBBFFKKLLMMGOgOQRFSHSXXXXXXXXXXXXXX3333333333333333333333333333333333333333333333333333333333/4E4F4G455^6^69999;;==XXXXXXXXXXXXXXXXX==XXXXXXXXXXXXXXAa鰾-2Hqg!DP(I8h ^`OJQJo(h ^`OJQJo(oh pp^p`OJQJo(h @ @ ^@ `OJQJo(h ^`OJQJo(oh ^`OJQJo(h ^`OJQJo(h ^`OJQJo(oh PP^P`OJQJo(^`o(.^`.pLp^p`L.@ @ ^@ `.^`.L^`L.^`.^`.PLP^P`L.0^`0o(0^`0o(.0^`0o(..0^`0o(... 88^8`o( .... 88^8`o( ..... `^``o( ...... `^``o(....... ^`o(........^`.^`.pp^p`.@ @ ^@ `.^`.^`.^`.^`.PP^P`.(Ig!D-2Aa                  X"PЕp°R[>v3F""@:2)3x87hW<T`h|p7{Mu{nf;9@@==" ==T  !%&01[A[B[ChDhEhGX@  @(@0@@@(*X@.0d@4l@:x@F@XZ@^@ @UnknownGz Times New Roman5Symbol3& z Arial?5 z Courier New;Wingdings"1hrֆ6 SK-6 SK-!4d\X\X 2QHP ?;23Leighdog    MSWordDocWord.Document.89q