GCSE Mathematics - ELITE Tuition

  • Pdf File 1,684.78KByte

´╗┐Revision

Guides

ABCDEFGHIJKLMNOPQRSTUVWXYZ abcdefghijklmnopqrstuvwxyz-&!?,''.()[]/\*@;:1234567890

GCSE Mathematics

Higher Tier

Stafford Burndred

Consultant Editor: Brian Seager, Chairman of Examiners

Easingwold School

GCSE Mathematics

Name ....................................................................................................................................

Address ................................................................................................................................

..............................................................................................................................................

..............................................................................................................................................

Date of exams:

(1) ..............................................................................

(2) ................................................................................

Aural .........................................................................

Coursework deadline dates:

(1) ..............................................................................

(2) ................................................................................

Exam board ..........................................................................................................................

Syllabus number ...................................................................................................................

Candidate number ...............................................................................................................

Centre number .....................................................................................................................

Further copies of this publication, as well as the guides for Foundation and Intermediate tiers may be obtained from: Pearson Publishing

Chesterton Mill, French's Road, Cambridge CB4 3NP Tel 01223 350555 Fax 01223 356484

Email info@pearson.co.uk Web site

ISBN: 1 84070 272 9 Published by Pearson Publishing 2003

? Pearson Publishing

No part of this publication may be copied or reproduced, stored in a retrieval system or transmitted in any form or by any means electronic, mechanical, photocopy, recording or

otherwise without the prior permission of the publisher.

Easingwold School

Introduction Examiner's tips Number skills Calculator skills Fractions, decimals and percentages Number patterns Equations Variation Algebraic skills

Graphs

Easingwold School

Contents

...........................................................................................

vi

........................................................................................... vii

Rational and irrational numbers .........................................

1

Using a calculator: Brackets, memory and fractions ..........

2

Using a calculator: Powers, roots and memory .................

3

Standard form ....................................................................

4

Percentages and fractions..................................................

5

Calculating growth and decay rates ..................................

6

Patterns you must recognise..............................................

7

Product of primes, highest common factor,

lowest common multiple and reciprocals ..........................

8

Trial and improvement .......................................................

9

Equations ........................................................................... 10

Rewriting formulae ............................................................. 11

Iteration .............................................................................. 12

Direct and inverse variation ............................................... 13

Using algebraic formulae ................................................... 14 Rules for indices (powers) .................................................. 15 Expansion of brackets ........................................................ 16 Factorisation ? 1................................................................. 17 Factorisation ? 2................................................................. 18 Factorisation ? 3................................................................. 19 Solving quadratic equations .............................................. 20 Simultaneous equations: Solving using algebra ................ 21 Simplifying algebraic fractions ? 1 ..................................... 22 Simplifying algebraic fractions ? 2 ..................................... 23

Drawing lines...................................................................... 24 Simultaneous equations: Solving by drawing a graph ...... 25 Solving equations using graphical methods...................... 26 The straight line equation y = mx + c ............................... 27 Using tangents to find gradients ....................................... 28 Expressing general rules in symbolic form ? 1 .................. 29 Expressing general rules in symbolic form ? 2 .................. 30 Drawing graphs.................................................................. 31 Sketching graphs ? 1.......................................................... 32 Sketching graphs ? 2.......................................................... 33 Speed, time and distance graphs ...................................... 34 Area under a curve............................................................. 35

Contents

Angles Similarity Congruency Transformations Measurement Circles Perimeter, area and volume

Pythagoras' theorem and trigonometry

Vectors Locus

Intersecting and parallel lines ............................................ 36 Bearings ............................................................................. 37

Similarity............................................................................. 38

Congruent triangles ? 1 ..................................................... 39 Congruent triangles ? 2 ..................................................... 40

Combined and inverse transformations............................. 41 Enlargement by a fractional scale factor............................ 42 Enlargement by a negative scale factor............................. 43

Compound measures......................................................... 44 Time ................................................................................... 45 Upper and lower bounds of numbers ? 1.......................... 46 Upper and lower bounds of numbers ? 2.......................... 47

Length, area and volume of shapes with curves................ 48 Angle and tangent properties of circles ? 1 ...................... 49 Angle and tangent properties of circles ? 2 ...................... 50 Angle and tangent properties of circles ? 3 ...................... 51

Calculating length, area and volume ? 1 ........................... 52 Calculating length, area and volume ? 2 ........................... 53 Calculating length, area and volume ? 3 ........................... 54 Formulae for length, area and volume .............................. 55 Ratio for length, area and volume ..................................... 56

Pythagoras' theorem .......................................................... 57 Trigonometry: Finding an angle......................................... 58 Trigonometry: Finding a side ............................................. 59 Trigonometry: Solving problems........................................ 60 Trigonometry and Pythagoras' theorem for 3-D shapes.... 61 Sine, cosine and tangent of any angle ? 1 ........................ 62 Sine, cosine and tangent of any angle ? 2 ........................ 63 Sine, cosine and tangent of any angle ? 3 ........................ 64 Sine rule, cosine rule, area of a triangle ? 1 ...................... 65 Sine rule, cosine rule, area of a triangle ? 2 ...................... 66

Vectors ? 1.......................................................................... 67 Vectors ? 2.......................................................................... 68 Vectors ? 3.......................................................................... 69 Vectors ? 4.......................................................................... 70

Locus (plural loci) ............................................................... 71

Easingwold School

Contents

Questionnaires Tables and graphs Cumulative frequency

Designing questionnaires................................................... 72 Sampling ............................................................................ 73 Hypotheses ........................................................................ 74

Comparing data ................................................................. 75 Histograms ......................................................................... 76 Grouped data..................................................................... 77

Cumulative frequency ........................................................ 78 Using cumulative frequency diagrams to compare distributions .................................................... 79

Standard deviation

Standard deviation ............................................................. 80 The normal distribution...................................................... 81

Scatter diagrams

Line of best fit .................................................................... 82

Probability

Estimation of probability by experiment ........................... 83 Tree diagrams..................................................................... 84 Conditional and independent probability ......................... 85 Probability (and, or)............................................................ 86 Probability (at least)............................................................ 87

Supplementary material

3-D co-ordinates ................................................................ 88 Inequalities ......................................................................... 89 Critical path analysis .......................................................... 90 Linear programming........................................................... 91 Transformations (matrices) ? 1 ........................................... 92 Transformations (matrices) ? 2 ........................................... 93

Important facts you are expected to know ............................................................................. 94

Diagnostic tests

Diagnostic tests ......................................................................... 98 Answers...................................................................................... 111

Index

........................................................................................... 116

Easingwold School

................
................

Online Preview   Download